Automatically detecting player roles in Among Us

1*t Harro Tuin
Serpentine Al
Eindhoven University of Technology
Eindhoven, the Netherlands
among-us-2021 @serpentine.ai

Abstract—Player role identification in the online social deduc-
tion game Werewolf has been a common research topic in the
past decade. Among Us, a fairly new online social deduction
game, gained a lot of popularity recently. Given the popularity
of the game, an opportunity arises to extract information on
social deduction.

This research focuses on extracting information from emer-
gency meetings in Among Us and subsequently using this infor-
mation to automatically detect player roles. First, a framework
is presented that can be used to extract information from videos
with gameplay of Among Us. This framework can extract the
chat messages from the emergency meetings, detect imposters at
the end of the game, and extract voting data.

Secondly, the framework is used to process videos with 59
games of Among Us gameplay. The data produced by the
framework will be normalized and transformed into numerical
data using term frequency-inverse document frequency (tf-idf).
Finally, two types of Support Vector Machines (SVM) and a Naive
Bayes classifier are used to automatically detect player roles.
We show that detecting player roles is a difficult yet learnable
challenge.

Index Terms—Data extraction, NLP, Machine Learning, SVM,
tf-idf, social deduction, Among Us

I. INTRODUCTION

In the past decade, there has been a lot of attention in
automatically classifying player roles in the Werewolf game
in which only imperfect information is available [1]-[5]. A
relatively new online video game with imperfect information
is the social deduction game Among Us.

The game Among Us is played online with up to ten players.
Among these players, there is one (or more) imposter who
tries to eliminate the other players, called crewmates. The
identity of the imposter(s) is unknown to the crewmates. The
crewmates can win the game by voting out all impostors in the
game, or by completing all tasks. If the imposter achieves to
eliminate all crewmates before all tasks have been completed,
the imposter wins the game. However, players (including the
imposter) can call emergency meetings in which they can
discuss (via chat or voice) and vote on who they think is
the imposter. Each emergency meeting the player with the
most votes is eliminated from the game (the vote can also be
skipped).

The goal of this research is twofold: (1) provide a frame-
work that can be used to extract data from Among Us
gameplay and (2) provide a baseline for classifying player

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

2" Martin Rooijackers
Serpentine Al
Eindhoven University of Technology
Eindhoven, the Netherlands
among-us-2021 @serpentine.ai

roles using machine learning, based on the chatlogs of the
emergency meetings.

While communicating through voice is possible in Among
Us, the framework focuses on extracting information from
games where only chatting enabled. The main reason to only
use chat is because chat messages are easy to associate to the
respective player, whereas with voice this is not necessarily
the case.

The data extracted by the framework has to be preprocessed
in order to use machine learning methods. The variation of the
words used in the messages found by the framework will be
reduced using various techniques. Subsequently, the words will
be transformed into numerical vectors using term frequency-
inverse document frequency (tf-idf) weighting.

For the classification of player roles, three different methods
will be compared. The first two models (with linear, and RBF
kernel) are a type of Support Vector Machine (SVM). Previous
research showed that SVMs can achieve high accuracy on
classifying short phrases with simple syntax in the Werewolf
game [2]. The performance of the two SVM models will be
compared to a probabilistic classifier called Naive Bayes. The
performance of the machine learning methods is validated by
using k-fold cross validation.

II. FRAMEWORK

A framework is built to extract information out of videos
of Among Us gameplay and is open source'. The framework
uses the OpenCV library to go through a video frame by frame
[6]. For each frame, a check is done to see if this frame is
a chat window, voting screen, or end screen. Based on which
type of information is displayed in the frame, the frame is sent
to the appropriate subroutine. An example of the framework
locating the messages and player names during an emergency
meeting in Among Us is displayed in Fig. 1.

A. Features

The framework extracts several features from a video with
Among Us gameplay. It can detect and read the chat messages
that are sent during emergency meetings. Furthermore, it can
extract voter data like finding who started the discussion, who
voted for whom, and the color of the body that was reported
(if the discussion was started this way). Next to that, it can

'Our code can be found on:
https://github.com/TeamSerpentine/among-us-2021

T
Killyellow and ifinof him killlpink?) @

P

Fig. 1. Example of text detection.

extract which of the players are an imposter at the end of each
game.

B. OCR for chat messages

The main part of the framework that is used in this paper
is the optical character recognition (OCR) of chat messages.
These messages can be extracted any time the chat screen is
open in the video that is being analyzed. The following process
is used to extract the text from a chat screen:

1) Re-scale the image to a 1920 by 1080 pixel resolution,
this way the feature used to detect a chat screen (see
Fig. 1) is always at the same location.

2) The image is checked to see if the chat screen is
properly opened. To do so, the algorithm checks for a
pattern ”xz/100” (with z being any natural number) at
the bottom right part of the screen (again, see Fig. 1
for an example). If it exists, then we know that the chat
screen is fully opened and can process the frame with
OCR.

3) Turn the image to grayscale, then threshold with a value
of 245 (with a max of 255) to filter out messages from
players already eliminated from the game. This will
create separate white rectangular boxes with usernames
followed by their chat message. We can locate these
texts with the EAST text detection [7] and process them
with Tesseract OCR engine [8] to turn the images into
JSON files containing the messages.

4) The left side of these boxes (or the right side, if the
message is sent by the player itself) contains an image
of the player who sent the message. These locations are
cross-referenced with the original image to find the color
of the player who sent that message.

C. Detecting impostors in training data

In the videos with the imposter ejection confirm func-
tionality turned on, the framework can parse the video and
(potentially) extract who the impostors are. There are two
aspects to this, (1) detecting who gets voted out, and (2) the
end screen which shows the impostors if they win.

The voting data is acquired by checking the voting screen
when the votes are processed. If a player has the most votes,

this player will be eliminated, resulting in a message several
frames later which will indicate if this player was an impostor
or not. Without confirm eject, the framework can still find all
impostors if the number of players eliminated is equal to the
number of impostors.

If the impostors win, the end screen will show all impostors.
If this is the case, the framework can detect all player models
and extract the colors from them.

D. Voting data

There are three types of data extracted from the voting
screen. First, who started the meeting. Second, the color of
the body that was reported to start the meeting. Third, the
framework can extract who voted for whom (in case voting is
not anonymous), and when the vote was cast.

The first two types of data can be determined from the
announcement of a meeting. This frame will have the person
who started the meeting, and the body (with color) if the
meeting was called due to a body being reported.

The third piece of data can be extracted by looking at
the icons that appear under someone’s username when voting
ends.

III. DATA PREPARATION

The framework is used to process 59 unique videos with
Among Us gameplay, with each video containing one full
game. While the framework extracts additional features this
research only focuses on using the chatlogs.

A. Preprocessing

After the framework has processed the gameplay, some
initial checks are done. The first check is to see if the number
of imposters matches the number of colors found as imposters
by the framework. During this check, 4 files are found in which
the numbers do not match. For example, this could be due to an
imposter leaving the game before the game has actually ended.
These 4 files are therefore excluded from further processing.
After completing the checks, a label is added to each message
indicating whether it was sent by an imposter (label = 1), or
by a crewmate (label = 0). The messages and the labels are
the only data that is used for further processing.

B. Natural language processing

In order for a machine learning algorithm to learn a function
that can map the data to the corresponding labels, the data has
to be transformed from natural language to numerical values.

1) Tokenization: First the messages found by the frame-
work are fokenized. Tokenization is a technique that splits
up strings of text into tokens ("words”) based on spaces and
punctuation. This implementation uses word level tokenization
based on spaces.

2) Text normalization: The variation across tokens will
be minimized to reduce randomness, and increase the ma-
chine learning performance. Non-alphanumerical characters
are removed from the tokens, and all characters will be
transformed into lowercase. Furthermore, tokens will be lem-
matized. Lemmatization is the process of grouping words
together in their inflected forms. Effectively, this means that
all morphological affixes from words are removed. This paper
uses the WordNet lemmatizer implementation of the Python
Natural Language Toolkit (NLTK) to lemmatize [9].

3) Stop-words: Stop-words are words that occur frequently
but do not contain useful information. The collection of
stopwords as listed by NLTK is used to remove the stopwords.

4) Word Vectorization: Term frequency-inverse document
frequency (tf-idf) is used to transform text documents into
vectors. Tf-idf gives more weight to words that are frequent
in a specific document but infrequent over all documents.
Equation 1 specifies how weight is given to a text document.
The weight is found by multiplying the term-frequency of term
1 in document j by the log of the total number of documents
N scaled by the number of documents containing ¢:

Wi,; = tfiJ‘ . lOg(dﬁ) (1)
i
In order to transform the tokens into numerical features a
zero matrix of size m X n is initialized, with the messages as
rows and unique tokens as columns. Subsequently, if a word
is in a message (row) the zero corresponding to that word will
be replaced by the tf-idf value.

IV. EXPERIMENT

In this experiment, the messages from Among Us gameplay
are analyzed and automatically classified in terms of player
role. Effectively, this is a binary classification problem with
the labels: imposter (label = 1) or a crewmate (label = 0).

Three models will be trained and evaluated. The first model
is a Naive Bayes classifier, this model is used because the
model is fast, and hyperparameter tuning is relatively simple.

Secondly, SVM is used with both a linear and RBF kernel.
Both models use the LIBSVM implementation [10].

A. Input data

The input dataset is a sparse matrix with tf-idf values.
The dataset contains 1115 messages after going through the
data preparation steps, however, following these steps some
messages become empty (e.g. only stopwords). Therefore,
these messages are excluded from the dataset. Following this
exclusion, 811 messages are left.

In this research mainly games with a single imposter were
used as input data. Consequently, if the imposter sends as
many messages as a single crewmate, this will lead to an
imbalance in the labels of the data. To decrease the effect of
imbalance in the data, the weights of the classes are adjusted
inversely proportional to the class frequencies in the input data.
Since SVM models are distance-based all features need to be

on the same scale. Since the features in the data contain the
tf-idf values, no further scaling is needed.

The dataset is split into two stratified sets to make sure the
machine learning methods generalize well. The trainset will
contain 80% of the preprocessed dataset and the testset the
remaining 20%. The trainset will be used to train and validate
the model hyperparameter settings, this is done by using k-fold
cross validation with 5 folds. The testset is used to evaluate
the model after tuning the hyperparameters.

B. Hyperparameter tuning

Gridsearch is used to find the optimal hyperparameters for
all three models. For the SVM, 15 different parameters C and
~v will be tested on a logarithmic scale between 0.01 and 64.
For the Naive Bayes classifier, the fit_prior parameter will be
true or false. The fit_prior indicates whether the class prior
probabilities should be learned or not [11]. When set to false,
a uniform prior will be used. The smoothing parameter o will
be varied on a linear scale between 0.1 and 1 with a step size
of 0.1. ROC AUC score is used as an evaluation metric since
this yields the best overall models [12].

The optimal parameters found by the gridsearch for the
SVM with the RBF kernel are C' = 0.1 and v = 0.03.
For the SVM with a linear kernel multiple parameter settings
give the same results, we choose the median of the optimal
parameters: C' = 0.3, v = 1. The best results for the Naive
Bayes classifier are without setting priors and with smoothing
parameter o = le™".

C. Results

The results of the models with tuned hyperparameters
evaluated on the testset are displayed in Fig. 2, Fig. 3, and
Fig. 4.

V. DISCUSSION

The results show that the SVM with the RBF kernel has the
highest average AUC score (0.62) over all folds. The figures
show a red dashed line which indicates predicting the labels
correctly by chance. In terms of average score, the perfor-
mance of the SVM with the linear kernel is slightly worse
(AUC score 0.57) compared to the RBF model. Similarly, the
Naive Bayes classifier also achieves an AUC score of 0.57.
Furthermore, Fig. 2 shows a very smooth curve compared
to Fig. 3 and 4. This could be due to the independence
assumptions between the features, which reduces the number
of parameters exponentially. For all models, the scores are
above the line that indicates chance. From the figures, we can
see there is a lot of variation between the folds with AUC
scores ranging from 0.58 to 0.68 for the SVM with the RBF
kernel. It is expected that this variation is quite strong due to
the small size, and imbalance, of the dataset.

VI. LIMITATIONS

The main limitations of the research in this paper are the
following: the OCR and color detection of the framework, the
amount of available data, preprocessing of the data, and the
imbalance in the labels.

o8

;1)
;1)

06

ROC fold 0 (AUC = 0.56)
ROC fold 1 (AUC = 0.54)
ROC fold 2 (AUC = 0.58)
ROC fold 3 (AUC = 0.60)
ROC fold 4 (AUC = 0.59)

== Chance

—— Mean ROC (AUC = 0.57 = 0.02)

+1 std. dev. o0

Tue Positive Rate {Positive labe
Tue Positive Rate (Positive labs!

02

1
o8
i.;
ki
]
&
2
]
&
S 04
ROC fold 0 (AUC = 0.59) ; ROC fold 0 (AUC = 0.66)
ROC fold 1 {AUC = 0.53) @ /‘ ROC fold 1 {AUC = 0.59)
ROC fold 2 (AUC = 0.48) = ROC fold 2 (AUC = 0.58)
ROC fold 3 (AUC = 0.60) 02 ROC fold 3 (AUC = 0.61)
ROC fold 4 (AUC = 0.66) ROC fold 4 (AUC = 0.68)
Chance == (Chance
Mean ROC (AUC = 0.57 £ 0.06) —— Mean ROC (AUC = 0.62 = 0.04)
+ 1 std. dev. o0 + 1 std. dev.

o0 oz 04 0.8 08 Lo o0 02 04

False Positive Rate (Positive label 1)

Fig. 2. ROC AUC curve Naive Bayes

First, the OCR of the framework that is used to extract in-
formation is not always correct. It has difficulty distinguishing
a t and an i in particular. Furthermore, it can misidentify the
color of a player due to the player using cosmetics (items to
customize characters).

Secondly, only 59 games could be analyzed. It is expected
that the performance of the classifiers will improve once more
data becomes available.

Furthermore, the preprocessing steps impact the perfor-
mance of the classifiers. Since the messages sent in Among
Us are informal and sent under time constraints they often
contain uncommon languages and typographical errors. This
increases the challenge of preprocessing the data.

Finally, the training data is imbalanced. Most of the games
that were used for the analysis only contained 1 imposter and
only roughly 15% of the messages analyzed were sent by an
imposter.

VII. CONCLUSIONS AND FUTURE RESEARCH

The experiments described in this paper showed that chat-
logs from the game Among Us can be used to identify player
roles. The results showed that all three different classifiers
successfully learned something from the input data, this shows
that identifying player roles is a learnable problem.

The contribution of this paper is twofold. First, the paper
addressed a framework that allows extracting information from
videos of Among Us gameplay. This framework is open source
and can be used by other researchers. Secondly, an experiment
was conducted to demonstrate that identifying player roles
automatically based on brief and casual chat messages is a
learnable challenge.

We invite other researchers to use the framework developed
in this paper to generate more training data. It is expected
that increasing the size of the dataset can significantly im-
prove the performance of classification models. Additionally,
the features extracted through NLP could be combined with
other features generated by the framework. Next to that, the
preprocessing steps could be improved and tailored to the
context in which the messages are written. Finally, it could

False Positive Rate (Positive label. 1)

Fig. 3. ROC AUC curve linear SVM

0.6 08 1 0.0 02 04 06 k) 1
False Positive Rate {Positive label: 1)

Fig. 4. ROC AUC curve SVM RBF kernel

be interesting to see word embeddings work well with the
informal and short messages.

ACKNOWLEDGMENTS

This project was completed at Serpentine Al. The authors
thank Serpentine Al for creating an amazing environment for
Al enthusiasts. Furthermore, the authors thank Long Nguyen
for contributing a module to the framework. Finally, this
project would not have been possible without Wolf van de
Hert and the TAB who took time to review the paper.

REFERENCES

[1] G. Chittaranjan and H. Hung, “Are you a werewolf? detecting deceptive

roles and outcomes in a conversational role-playing game,” in 2010 IEEE

International Conference on Acoustics, Speech and Signal Processing,

pp. 5334-5337, IEEE, 2010.

T. Fukui, K. Ando, T. Murakami, N. Ito, and K. Iwata, “Automatic

classification of remarks in werewolf bbs,” in 2017 5th Intl Conf

on Applied Computing and Information Technology/4th Intl Conf on

Computational Science/Intelligence and Applied Informatics/2nd Intl

Conf on Big Data, Cloud Computing, Data Science (ACIT-CSII-BCD),

pp. 210-215, IEEE, 2017.

Y. Hatori, S. Wu, Y. Lin, and T. Utsuro, “Mining preferences on

identifying werewolf players from werewolf game logs,” in International

Conference on Entertainment Computing, pp. 353-356, Springer, 2017.

[4] M. Hagiwara, A. Moustafa, and T. Ito, “Using g-learning and estimation
of role in werewolf game,” in Proceedings of the Annual Conference
of JSAI 33rd Annual Conference, 2019, pp. 205E303-205E303, The
Japanese Society for Artificial Intelligence, 2019.

[5] Y. Lin, M. Kasamatsu, T. Chen, T. Fujita, H. Deng, and T. Utsuro,
“Automatic annotation of werewolf game corpus with players revealing
oneselves as seer/medium and divination/medium results,” in Workshop
on Games and Natural Language Processing, pp. 85-93, 2020.

[6] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[71 X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang,
“East: An efficient and accurate scene text detector,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[8] R. Smith, “An overview of the tesseract ocr engine,” in Ninth Inter-
national Conference on Document Analysis and Recognition (ICDAR
2007), vol. 2, pp. 629-633, 2007.

[9] S. Bird, “Nltk: The natural language toolkit,” in In Proceedings of the
ACL Workshop on Effective Tools and Methodologies for Teaching Natu-
ral Language Processing and Computational Linguistics. Philadelphia:
Association for Computational Linguistics, 2002.

[2

—

[3

[t}

[10]

(1]

[12]

C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM transactions on intelligent systems and technology
(TIST), vol. 2, no. 3, pp. 1-27, 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825-2830, 2011.

J. Huang and C. X. Ling, “Using auc and accuracy in evaluating learning
algorithms,” IEEE Transactions on knowledge and Data Engineering,
vol. 17, no. 3, pp. 299-310, 2005.

