
Adaptive General Search Framework
for Games and Beyond

Chiara F. Sironi
Game AI and Search group

Department of Data Science and Knowledge Engineering
Maastricht University

Maastricht, The Netherlands
c.sironi@maastrichtuniversity.nl

Mark H. M. Winands
Game AI and Search group

Department of Data Science and Knowledge Engineering
Maastricht University

Maastricht, The Netherlands
m.winands@maastrichtuniversity.nl

Abstract—The research field of Artificial General Intelligence
(AGI) is concerned with the creation of adaptive programs
that can autonomously address tasks of a different nature.
Search and planning have been identified as core capabilities
of AGI, and have been successful in many scenarios that require
sequential decision-making. However, many search algorithms
are developed for specific problems and exploit domain-specific
knowledge, which makes them not applicable to perform different
tasks autonomously. Although some domain-independent search
algorithms have been proposed, a programmer still has to make
decisions on their design, setup and enhancements. Thus, the
performance is limited by the programmer’s decisions, which
are usually biased. This paper proposes to develop a framework
that, in line with the goals of AGI, autonomously addresses a
wide variety of search tasks, adapting automatically to each
new, unknown task. To achieve this, we propose to encode
search algorithms in a formal language and combine algorithm
portfolios with automatic algorithm generation. In addition, we
see games as the ideal test bed for the framework, because they
can model a wide variety of complex problems. Finally, we believe
that this research will have an impact not only on the AGI
research field, but also on the game industry and on real-world
problems.

Index Terms—adaptive search, search algorithm generation,
Artificial General Intelligence, General Game Playing

I. INTRODUCTION

Research in Artificial Intelligence (AI) has largely focused
on the so-called “narrow AI”, which consists in developing
specialized programs that show intelligence only on specific
tasks and in specific contexts. Some of these programs are
quite successful, but in general, they incur the risk of over-
fitting to the problem. Often, they tend to be refined using
domain-specific knowledge and engineering tricks, and usually
most of the knowledge is coded by the programmer instead
of being learned by the program. This leaves less room for
actual AI and makes the programs not applicable to any
other task, unless major modifications are performed first. This
picture recently led researchers to concentrate on more general
AI, defining a new research area called Artificial General
Intelligence (AGI) [1], [2]. This research area tackles the
creation of programs that are able to perform different complex

tasks in different environments and learn how to adapt to
perform each task.

Search and planning have been identified among the core
competences that an AGI should possess [2]. Moreover, we are
currently facing the need to plan ahead in increasingly more
complex situations, and search has shown to be successful
in many applications that involve sequential decision making,
such as logistics [3], health care [4], [5], and structural
engineering [6]. This motivates the interest in investigating
search algorithms form an AGI perspective.

Numerous successful search algorithms and variants thereof
have been developed so far. The minimax algorithm [7], for ex-
ample, is the foundation of most of the tree-search algorithms
that enabled computer programs to reach a good performance
in many board games. From minimax, the popular αβ-search
[8], that uses a pruning technique to speed up the search, was
developed. Moreover, to address problems with only one agent
that can make decisions, the popular A∗ search algorithm [9]
and its variants have been developed. One of the successful
applications of these algorithms is pathfinding [10].

However, in many circumstances search algorithms are
designed with specific problems in mind. Often they take
advantage of problem-specific heuristics, designed ad-hoc by
a problem expert. In order to address a different task, such
algorithms might require the intervention of the programmer
or a different domain expert. More general search approaches
have started developing after the use of Monte-Carlo evalua-
tions was proposed [11]. Notably, one of the most successful
ones has been the Monte-Carlo tree search (MCTS) algorithm
[12], which uses Monte-Carlo simulations instead of domain-
specific heuristics to evaluate states. Research on this algo-
rithm has particularly flourished also thanks to the field of
General Game Playing (GGP) [13], which aims at creating
programs that can address a wide variety of games without
knowing them in advance. In this context, search algorithms
that do not necessarily need problem-specific knowledge, like
MCTS, have been investigated.

However, for this kind of algorithms, research has shown
that there is no single setting or combination of enhancements
working best on every possible game [14], [15]. Moreover,
although aiming to reduce human intervention, for most of

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

the approaches proposed so far for GGP, the programmer is
still required to make decisions on the design of the algorithm.
For example, s(he) has to decide in advance which algorithm
to use, which enhancements to activate and which parameter
settings to use.

To overcome these limitations, some research on adaptive
agents has been performed. For example, Swiechowski et al.
[16] proposed an online mechanism for GGP that learns which,
among a portfolio of action selection strategies for MCTS, is
the most suited strategy for the current game. The work of Lu-
cas et al. [17] investigates the use of evolutionary algorithms
to adapt online the weights that bias action selection during
the playout phase of MCTS, applying the resulting algorithm
to general video game playing (GVGP). Another example is
the work of Mendes et al. [18], who proposed the use of
algorithm portfolios for GVGP. Instead of having an expert
chose an algorithm in advance, a meta-agent trained offline
selects among a portfolio of possible search algorithms the one
that is predicted to perform best on the given game. Finally,
Sironi et al. [19] proposed an approach to automatically tune
MCTS parameters online for each new game, instead of letting
the programmer tune them manually offline.

Despite automatizing some of the decisions, these ap-
proaches still require the intervention of the programmer to
choose, for example, which MCTS strategies to consider,
which parameters to tune, which domains to use for the
values, or how to populate the portfolio. This implies that the
final performance of the algorithms is still limited by human
decisions, which are usually biased. In fact, programmers tend
to make decisions depending on the problems they anticipate
the search will tackle, but new and unexpected problems
might arise in the future. This paper introduces the vision
behind the project that deals with this gap. The main idea
is to develop a framework that, in line with the goals of
AGI, can autonomously address a wide variety of search tasks
(including, but not limited to games), adapting automatically
to each new, unknown task.

Initial research on agents that automatically adapt to each
new game, like the one discussed above, has shown how
research in the direction of automatic adaptation, promoted
also by the field of AGI, is becoming more and more relevant
also for GGP. Self-adaptive agents were also identified as
an important research challenge during the 2019 Dagstuhl
seminar on Artificial and Computational Intelligence in Games
[20]. Moreover, the need to look for more advanced artificial
game players has also been highlighted by Gaina et al. [21],
who envisioned the development of an agent that goes beyond
classical GGP agents. They propose to develop an “always on”
game-playing agent, that learns from experience, continuously
getting better and interacting with the world. The framework
proposed in this paper aims to extend the state-of-the-art in
this direction.

The rest of the paper is structured as follows. First, Section
II gives a formal definition of the search problems that the
proposed framework will address. Next, an overview of the
structure and components of the framework is given in Section

III. Section IV discussed the challenges that developing such
framework brings about, mentioning possible methods that can
be used to address them. Subsequently, Section V argues that
games are the ideal test bed for the framework, and Section VI
discusses the relevance and potential impact of the proposed
research on AGI, the game industry and other real-world
applications. Finally, Section VII concludes the paper.

II. SEARCH PROBLEM DEFINITION

The search problems that this research is aiming to address
can be defined by the following components:

• A set of m actors I = {1, ...,m}, that can make decisions
in the search problem.

• A set of all the possible states of the problem S.
• For each actor i ∈ I , a set with all the actions that the

actor can perform in any state of the problem, Ai.
• An initial state s0.
• An actions function that given a state s ∈ S and an actor
i ∈ I returns all the actions that i can perform in s:
Actions(s, i) : S × I → P(Ai), where P(Ai) indicates
the power set of Ai.

• A successor function that given a state s and an action
for each actor, ~a = 〈a1, ..., am〉, returns one of the
possible next states according to the probability distribu-
tion over all the possible next states: Successor(s,~a) :
S × Actions(s, 1) × ... × Actions(s,m) → S. For
deterministic problems this function will always return
the same state.

• A goal function that determines if state s is a goal (thus,
the search is over): Goal(s) : S → {true, false}.

• A function that given a state s returns the payoff obtained
by each actor in such state: Payoff (s) : S → Rm.

The framework proposed in this paper will be able to
address any search problem for which the above components
are defined. Note that it is not essential for the framework to
have access to the complete set of states S and the sets of
available actions for each player, {A1, ..., An}, as long as it
has access to the actions and successor functions. This means
that the framework must have access to a forward model of
the problem. However, in the future it could be extended with
a mechanism that learns the forward model [22], so that any
approach used by the framework can still be applicable.

The above definition also implies that the problems are
addressed with discrete time steps, and that each actor has
to make a decision in each time step. However, this definition
enables us to model problems where not all actors perform
an action at each time step, by introducing a nil action that
has no effect on the state. This is the same approach that
is often used to define games in GGP. We also assume that
both the state and action spaces are discrete. However, the
framework is applicable to problems with continuous aspect
after appropriate discretization.

III. OVERVIEW OF THE FRAMEWORK

This paper proposes to create a framework that can au-
tonomously address a wide variety of search tasks, adapting

��������

��	
��

�
�����

���������������	
��
����	�
��������������������

���������������

��������������

������������������

���������

����������������

���������������������

���������������

���������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��������
���������

����������������� ��������

���

	���
�����

��������

	���
�����

��������
	���
�����

�
��	�������
��	�������

��������

	���
����

����
	����

������

�
�
�
��
��
�
	

��

�

��	
��

�
�����

��������

�	�
����

�����	
�������
����� ��������

��������

��	
��
�
�����

�����

Fig. 1. Overview of the adaptive general search framework

its approach to each new task automatically. The main inno-
vation is that such framework is based on the combination
of algorithm portfolios [23] with automatic algorithm selec-
tion [24] and automatic algorithm generation [25]. Research
into combining algorithm portfolios with automatic algorithm
generation is now possible thanks to previous work in both
areas, which we can combine and extended towards domain-
independent approaches.

Figure 1 shows the overview of the proposed framework.
Because there is no single search algorithm that performs best
on every search task [23], the framework selects for each task
a good enough search algorithm from a portfolio and generates
new ones when existing ones do not give good results.

The framework includes a portfolio of algorithms for which
statistics on past performance are memorized. To make the
framework independent of specific programming languages,
algorithms in the portfolio are coded in a predefined formal
language. When a new search problem is presented, the Selec-
tor looks in the portfolio to find a suitable algorithm depending
on the available statistics. If it deems no algorithm to be
promising for the task, the Selector will query the Generator to
create new algorithms for the portfolio. The Generator might
also use existing algorithms as starting point for the generation.

This interaction might repeat multiple times, until the Selector
finds a good enough algorithm for the problem or until a
given time budget expires. At this point, the most suitable
algorithm found so far is given to the Executor, which will
run it, return a solution, and memorize in the Portfolio the
statistics about the algorithm’s performance. To be in line with
the goals of AGI, the framework should be easy to use with
external frameworks that encode search problems of different
nature (e.g. GGP frameworks). For this reason, an interface is
offered, that defines the format for the model and the solution
of a search problem that external frameworks should adhere to,
in order to be usable with the system. This model includes the
components of the problem mentioned in Section II. Finally, a
user can interact with the framework in two ways. (i) S(he) can
provide a problem specification and can query the framework
for a solution, adhering to the given interface. (ii) S(he) can
contribute to the portfolio by encoding new search algorithms.
Note that the last interaction is optional, as the framework is
able to generate new algorithms autonomously. The human
can enrich the knowledge of the system, but it is not anymore
essential for its design.

IV. CHALLENGES

From the description of the system, we can identify the
following three main research challenges:

• Developing a formal language to encode search algo-
rithms.

• Developing methods that decide how to select good
enough search algorithms to address each given task
without using any domain-specific information.

• Developing methods that automatically generate new
search algorithms.

Subsections IV-A, IV-B and IV-C discuss each of the tree
aspects, respectively, giving an indication of feasible methods
that can be used to address them.

A. Algorithm Representation

The framework requires a language that encapsulates all the
concepts that are necessary to define search algorithms, and
that restricts the search space to such algorithms only (or to
a reasonably large subset of such algorithms). The following
properties are desirable for this language:

• Simplicity: algorithm descriptions should be easy to cre-
ate and modify. Thus, they should not require too many
tokens to be encoded.

• Clarity: algorithm descriptions should be easy to un-
derstand by humans, to prevent generated algorithms
from becoming black boxes. This property is particularly
relevant considering the interest in explainable AI, and,
more recently, in explainable search [26].

• Generality: the language should be general enough to
enable the encoding of as many search algorithms as
possible.

• Extensibility: it should be easy to extend the language
to include more functionality, so that the set of search
algorithm that can be represented can increase.

• Evolvability: the language should facilitate the creation
of new algorithms by evolving existing ones. It should
ensure a high probability that the generated algorithms
are reasonable.

• Efficiency: the language should facilitate the efficient
execution of the encoded algorithms.

Defining the language using a class grammar [27] could sat-
isfy these requirements. A class grammar is a formal grammar
that maps to the class hierarchy of the underlying code, offer-
ing the same functionality, but abstracting the implementation
details. This means that any object-oriented programming
language can be used to implement the underlying code. This
approach would also make the language easily extensible to
include algorithms beyond search. A class grammar has also
been successfully used to define game descriptions for the
Ludii General Game Playing framework [28], and for games
it has been shown to provide the same properties mentioned
above.

To give an idea of how the description of an algorithm
would look like using a class grammar, the following is
a possible partial description of an instance of the MCTS
algorithm:1

(SearchAlgorithm "MCTS"
(ActionSelection "UCT"

(Condition inTree)
(Select max)
(ValueFunction

UCB1 (s, a) = Q̄(s, a) + C ∗
√

ln(n(s))
n(s,a))

)
(ActionSelection "random"

(Condition outTree)
(Select max)
(ValueFunction RND(s, a) = random(0, 1))

)
...

(ActionSelection "maxAvg"
(Condition final)
(Select max)
(ValueFunction Q̄(s, a))

)
)

Different action selection strategies are defined. The first
is the one used during the selection phase of MCTS, which
is used in the tree built so far by the algorithm and uses the
popular UCB1 value function [29]. The second is the one used
during the playout phase of MCTS. The third is the one used
at the end of the search to choose the final action to perform.
For each action selection strategy the description specifies
a condition that has to be satisfied to use such strategy, a
function that computes the value of each action in the current

1This description is meant to illustrate how we envision the general structure
of the language. A more extensive study to formally define the grammar
behind the language is object of future research.

state, and the criterion used to select an action based on the
value function. In this case, all action selection strategies are
choosing the action for which the value function returns the
maximum value. Also note that formulas may have parameters,
such as the exploration constant C in the UCB1 formula.
The framework will also be able to set the values of such
parameters, creating multiple instances of the same algorithm.

B. Algorithm Selection

Algorithm portfolios have been extensively used to address
scenarios in which there is no single algorithm performing
optimally on all the given problems [23]. Portfolios have been
applied to many combinatorial search problems [24]. Notably,
they have been successful at efficiently finding solutions for
instances of the SAT problem [30]. Particularly in GGP,
portfolio approaches and automatic algorithm selection have
been applied to general video game playing, showing the
benefits of relying on a combination of different algorithms
[18], [31]–[33].

Notably, choosing the best algorithm for a given task is
one of the main challenges of portfolio approaches. Usually,
portfolios are composed manually, or by automatically select-
ing in a restricted algorithm space. The framework we are
envisioning aims to go beyond this limitation, by letting the
program search in the space of all reasonable search algorithms
to generate new ones. In addition, algorithm selection mecha-
nisms usually exploit domain-specific features to determine
which algorithm is most suited for a problem, while our
approach will look for general features that are applicable
independently of the problem’s domain.

One of the most common solutions to the algorithm selec-
tion problem consists of the following three steps [34]:

1) Find task features that are representative of algorithm
performance.

2) Evaluate the available algorithms on a subset of tasks
with different features.

3) generate a model that predicts algorithm performance as
a function of the features.

A similar approach will be investigated in the context of
the proposed framework, with the main difference being the
need to define and extract general features, thus domain-
independent. These features could be defined by looking at
the search problem structure and characteristics, rather than
by looking at the problem domain. For example, by having
access to the forward model of the problem, the framework
could extract information about the branching factor of the
search space, the number of agents or the number of available
actions. It could also try to analyze the payoff landscape.

Another difference with the approach proposed by Leyton-
Brown et al. [34] is that our framework will repeatedly
perform steps (2) and (3), improving over time the quality
of the algorithms in the portfolio and increasing the amount
of statistics collected for each algorithm. This introduces other
challenges for developing such mechanism. First, we have to
find a suitable mechanism to decide which algorithms to keep
in the portfolio. The more algorithms are in the portfolio, the

higher the chance that one of them is suitable for a given task.
However, at the same time, it becomes more time consuming to
compute a performance prediction model. Second, we have to
decide which statistics to memorize, because there are multiple
aspects that define algorithm performance. For example, we
could look at the payoff obtained by each algorithm, or at the
running time.

C. Algorithm Generation

Clune [25] argues that the creation of AI-generating algo-
rithms should be considered as a new, independent scientific
grand challenge, and might be the key to finding true AGI.
Research on automatic generation of search algorithms that
can perform many heterogeneous tasks without human inter-
vention contributes to addressing this new grand challenge.

Automatic generation has been investigated to different
extents and with different levels of generality for data pro-
cessing algorithms [35], reinforcement learning [36], [37], and
distributed algorithms for multi-agent systems [38]. However,
not much work has been performed on automatic generation
of search algorithms, despite the wide variety of real-world
applications that might benefit from it [3], [4], [6]. Auto-
matic generation has been explored also at a higher level.
For example, to synthesize generic programs by searching
in the space of all programs that can be coded in a given
programming language [39], and also to generate programs by
induction [40] (i.e. using given input-output combinations to
automatically discover programs that are capable to generalize
to previously unseen inputs). The approach proposed in this
paper, although similar to program synthesis, initially focuses
on search algorithms. This restriction enables us to model
more complex behaviors [39] and generate advanced search
algorithms. Moreover, the proposed system uses a high-level
algorithm representation language that is independent from
any programming language. After having generated a new
algorithm in this language, it can be mapped to any object-
oriented language.

In this paper, we propose to create a method that au-
tonomously searches in the space of search algorithms in
order to generate new ones. This idea originated during a
Dagstuhl seminar on Artificial and Computational Intelligence
in Games [41]. Research on algorithm generation is rather lim-
ited. However, approaches that seem reasonable to tackle this
problem come from the field of Evolutionary Computation.
Evolutionary algorithms are powerful approaches for problems
with large search spaces, given their exploratory nature [42].
This makes them promising to be applied to the large space
of possible search algorithms. A search algorithm could be
considered as an individual and all the concepts expressed
in the algorithm description language presented in Section
IV-A could be considered as genes. Moreover, the hierarchical
structure of the language enables us to identify genes at
different levels, and evolve algorithms with different levels
of granularity. Looking at the description of the MCTS algo-
rithm given in Subsection IV-A, we could consider to change
an entire strategy, or change only some of its components.

Moreover, it would be possible to also evolve functions, such
as the ones that evaluate actions. For instance, by following
an approach similar to the one proposed by Bravi et al. [43]
to evolve variants of the UCB1 formula.

Deep learning approaches could also be investigated to
generate search algorithm, due to their ability to generate new
reasonable artifacts, after being trained on a set of examples
[44]. However, they might be more suitable at a later state
of the project, because they require a massive volume of data
to train on. At the start of the project, we might not have
a sufficient variety of available search algorithm to give as
example, even if we would manually encode existing search
algorithms.

One final challenge to consider when generating new search
algorithms is how to evaluate their fitness. It is not trivial
to evaluate an algorithm. As we discussed for algorithm
selection, we could look at the win rate of the algorithm or
at its running time. However, for newly generated algorithms
past performance statistics will not be available. Therefore, a
different fitness evaluation is necessary. A possibility could be
to evaluate the generated algorithm on the search problem that
is being considered, while trying to solve it. Thus, not looking
at the overall performance but at the quality (e.g. payoff) of
the states it visits. Additionally, statistics of existing algorithms
could be used to estimate how certain algorithm components
might perform. For example, if the new algorithm is using
an action selection strategy that is part of other algorithms
in the portfolio, statistics could be combined to estimate the
performance of such strategy.

V. GAMES AS TEST ENVIRONMENTS

Games can model a wide variety of computationally hard
problems, while still providing a controlled and well-formed
environment for testing [45], [46]. We can consider games as
a reasonable subset of all the search problems that we would
like our framework to address. Therefore, we see them as a
suitable test environment for this project.

Moreover, due to the renewed interest in GGP research in
the past 15 years, we now have an abundance of search prob-
lems (games and video games) that can be used to test such
approaches. Numerous GGP frameworks are openly available,
providing large sets of games of different nature. For example,
the Stanford GGP framework [13], [47] provides access to
numerous abstract games, by generating their forward model
from their rules. Another example is the Ludii framework [28],
[48], which, to date, offers around 700 abstract and historical
games, and is continuously being extended with more games.
Real-time arcade-style video games with non-determinism are
offered by the General Video Game AI (GVGAI) framework
[49], [50]. Finally, research in GGP is continuously expanding
and new frameworks are being developed, extending to other
types of games. For instance, the Stratega framework [51], [52]
has been recently proposed as a GGP framework for real-time
strategy games.

VI. RELEVANCE AND IMPACT OF THE RESEARCH

The proposed research has multiple stakeholders. It has the
potential to have impact on the AGI research field (Subsection
VI-A, on the game industry (Subsection VI-B, and in general
on many real-world problems (Subsection VI-C).

A. Artificial General Intelligence

For many years, research in Artificial Intelligence (AI) has
largely focused on “narrow AI”. However, the interest is now
extending to AI programs that can autonomously adapt to
perform many heterogeneous tasks, and the field of AGI is
attracting more and more attention. From a scientific perspec-
tive, the outcomes of this project will contribute to expand the
state-of-the-art of AGI approaches. Although used to represent,
select and generate search algorithms, the methods that will be
developed as part of this project will be domain-independent.
This means that they can have an impact on other research
areas, where they could be applied to develop adaptive systems
based on different types of algorithms. For example, the
same approach could be used to automatically generate other
machine learning algorithms. Moreover, the framework that
this proposal aims to develop has the potential to generate new
search algorithms, which might enable researchers to solve
problems for which no existing algorithm can find a good
enough solution.

Finally, AGI aims to combine multiple capabilities, of which
search and planning are only a subset. The proposed frame-
work has the potential to be integrated in AGI frameworks
that provide modules that implement other capabilities (e.g.
communication, emotion, creation, reasoning, etc. [2]). Such
a framework may enable machines to perform tasks that were
not feasible in the past, by combining multiple competences.

B. Gaming Industry

The outcome of the project presented in this paper has
the potential to create value for the gaming industry. Video
games are getting more and more realistic and sophisticated,
demanding smarter AI characters that are able to deal with
increasingly complex environments. Moreover, if AI characters
show unrealistic behaviors, the interest of the players in the
game will decrease and the game will lose its entertainment
value. Search algorithms can be used to model believable AI
characters in commercial applications, and there have been
already some successful examples of this. In the Spades mobile
phone game by AI Factory MCTS has been used to create
engaging AI opponents and allies [53], and has later been
improved to emulate human play [54]. Moreover, MCTS has
been used in the development of the AI system for the on-
line turn-based strategy game Prismata, by Lunarch Studios
[55], and in the development of the AI system of Total War:
Rome II, a strategy game developed by Creative Assembly
and published by Sega [56].

Potential applications of the proposed research to games are
not only limited to the development of AI characters for the
game industry. Search algorithms can also be useful during
the process of game design and game content generation.

A possibility is to use them evaluate generated games. For
instance, Browne [57] computes game evaluation metrics using
the performance of UCT-based search on such games. Other
approaches apply MCTS to directly generate games or game
content. For example, it has been used to generate initial
tile placements for Pentominoes puzzles [58] and to generate
Sokoban puzzles [59]. In addition, it has been applied to
automatically generate narratives [60], which could be used
in virtual environments or in video games to dynamically
generate new plot lines.

The proposed framework could be used to adapt search algo-
rithms to the particular needs of the game developers, possibly
generating new algorithms that better suit their needs, both for
controlling game characters and for generating game content.
Different algorithms could be generated by the framework that
implement different behaviors for the AI characters. Moreover,
the framework will be able to also generate algorithms that
learn from and adapt to different in-game situations. This
means that the algorithms could be used to implement adaptive
game characters.

C. Real-World Problems

AGI programs that are able to cope with tasks of different
nature without needing human intervention are suitable to be
applied in many real-world scenarios. They are potentially
useful for environments in which the type of tasks that the
machine has to face might change over time, but they cannot
be predicted or even imagined by the programmers. Moreover,
such programs might be successful in environments for which
it is too time consuming or even physically impossible to re-
program the machine for each new type of task. For example,
for a robot on a space mission there might be scenarios that
the programmers have not thought about, therefore the robot
should be able to learn by itself how to cope with them and
how to perform the necessary tasks to deal with unforeseen
situations that require planning. Moreover, programmers are
not able to physically access the robot to re-program it once
it has reached space.

Search is a technique that can be applied successfully in
many domains of social and economic interest. Many real-
world domains involve planning, optimization and decision-
making, and there are many examples of successful application
of search algorithms in these domains. There are applications
that range from healthcare [4], [5], [61] to space exploration
[62], [63] and energy management [64]. Various applications
of search algorithms can be found also in logistic [3] and
robotics [65], [66]. Many more examples can be mentioned, in-
cluding structural engineering [6], protecting natural resources
from illegal extraction [67], forecasting financial volatility of
assets [68], managing wildfires [69], improving computer-
aided retrosynthesis [70] and maximizing the performance of
job scheduling heuristics [71]. Many more applications are
being explored every day. A framework that adapts search al-
gorithms to every new task following the direction of AGI has
the potential to be applied to all the above mentioned fields,
without requiring any reprogramming or human intervention.

VII. CONCLUSION

This paper presented our vision for a framework that can
address a variety of search tasks by automatically adapting to
perform each new task that is presented to it. Following the
trend of AGI, we aim to extend the state-of-the-art search al-
gorithms towards more general approaches that do not depend
on domain-specific characteristics and do not require human
intervention to adapt their behavior.

To implement the framework, we proposed to combine
algorithm portfolios with automatic algorithm generation. This
system can select appropriate algorithms for each task and can
adapt them, and even generate new ones, when the existing
ones are not performing well on the given task. To encode
algorithms we proposed to use a high level language that
defines the space where to search for new algorithms. The
research proposed in this paper presents many challenges and
we have discussed some methods that might be applied to
address them. Moreover, we have identified games, and GGP
frameworks in particular, as the ideal test bed for our research.
Finally, we argued that the outcomes of the proposed research
will benefit the AGI research field and the game industry, and
be applicable also to many real-world problems.

The research proposed in this paper is meant to support
and give new tools for the creation of general programs that
present traits of AGI. Initially, we limit the scope of the
framework to search algorithms, and its application to search
problems for which a forward model is provided. However, we
envision the outcomes of this research to provide approaches
and mechanism that can be easily extended to include more
types of algorithms and types of problems. The algorithm
description language that will be developed will be easily
extensible to include constructs for other types of algorithms.
The algorithm selection and generation mechanisms that we
envision, are domain independent, thus should be applicable
to other types of algorithms without the need for major
modifications. Finally, the framework could be extended to
include more components, such as a component that is capable
of learning the forward model of the search problem.

ACKNOWLEDGMENT

The authors would like to thank all the researchers and
colleagues who helped shaping the research proposed in this
paper and those who agreed to support the project. In particu-
lar, we thank the members of the Game AI & Search research
group and of the Dynamic Game Theory research group of
the Department of Data Science and Knowledge Engineering
of Maastricht University for their valuable feedback.

REFERENCES

[1] B. Goertzel and C. Pennachin, Artificial General Intelligence. Springer,
2007.

[2] B. Goertzel, “Artificial general intelligence: concept, state of the art,
and future prospects,” Journal of Artificial General Intelligence, vol. 5,
no. 1, pp. 1–46, 2014.

[3] S. Edelkamp, M. Gath, C. Greulich, M. Humann, O. Herzog, and
M. Lawo, “Monte-Carlo tree search for logistics,” in Commercial
Transport. Springer International Publishing, 2016, pp. 427–440.

[4] C. Laschet, J. op den Buijs, M. H. M. Winands, and S. Pauws, “Service
selection using predictive models and Monte-Carlo tree search,” arXiv
preprint arXiv:2002.04852, 2020.

[5] J. Van Eyck, J. Ramon, F. Guiza, G. Meyfroidt, M. Bruynooghe, and
G. Van den Berghe, “Guided Monte Carlo tree search for planning
in learned environments,” in Asian Conference on Machine Learning
(ACML), ser. JMLR Workshop and Conference Proceedings, C. Ong
and T. Ho, Eds., vol. 29, 2013, pp. 33–47.

[6] L. Rossi, M. H. M. Winands, and C. Butenweg, “Monte Carlo tree search
as an intelligent search tool in structural design problems,” Engineering
with Computers, pp. 1–18, 2021.

[7] J. von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior. Princeton, NJ, USA: Princeton University Press, 1944.

[8] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,”
Artificial Intelligence, vol. 6, no. 4, pp. 293–326, 1975.

[9] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[10] N. Sturtevant and M. Buro, “Partial pathfinding using map abstraction
and refinement,” in Twentieth National Conference on Artificial Intelli-
gence (AAAI 2005), M. M. Veloso and S. Kambhampati, Eds., vol. 5,
2005, pp. 1392–1397.

[11] B. Abramson, “Expected-outcome: A general model of static evalua-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 12, no. 2, pp. 182–193, 1990.

[12] C. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
2012.

[13] M. Genesereth, N. Love, and B. Pell, “General game playing: Overview
of the AAAI competition,” AI Magazine, vol. 26, no. 2, pp. 62–72, 2005.

[14] H. Finnsson, “Simulation-based general game playing,” Ph.D. disser-
tation, School of Computer Science, Reykjavik University, Reykjavik,
Iceland, 2012.

[15] C. F. Sironi, “Monte-Carlo tree search for artificial general intelligence
in games,” Ph.D. dissertation, Maastricht University, Maastricht, The
Netherlands, 2019.

[16] M. Świechowski and J. Mańdziuk, “Self-adaptation of playing strate-
gies in general game playing,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 6, no. 4, pp. 367–381, 2013.

[17] S. M. Lucas, S. Samothrakis, and D. Perez, “Fast evolutionary adaptation
for Monte Carlo tree search,” in European Conference on the Applica-
tions of Evolutionary Computation. Springer, 2014, pp. 349–360.

[18] A. Mendes, J. Togelius, and A. Nealen, “Hyper-heuristic general video
game playing,” in 2016 IEEE Conference on Computational Intelligence
and Games (CIG). IEEE, 2016, pp. 94–101.

[19] C. F. Sironi, J. Liu, and M. H. M. Winands, “Self-adaptive Monte-Carlo
tree search in general game playing,” IEEE Transactions on Games,
vol. 12, no. 2, pp. 132–144, 2020.

[20] C. F. Sironi, D. Ashlock, C. Browne, T. Schaul, H. Wang, and M. H. M.
Winands, “Self-adaptive agents for general game playing,” Dagstuhl Re-
port - Artificial and Computational Intelligence in Games: Revolutions
in Computational Game AI, vol. 9, no. 12, pp. 100–101, December 2019.

[21] R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Project Thyia: A
forever gameplayer,” in 2019 IEEE Conference on Games (CoG). IEEE,
2019, pp. 1–8.

[22] A. Dockhorn and S. Lucas, “Local forward model learning for GVGAI
games,” in 2020 IEEE Conference on Games (CoG). IEEE, 2020, pp.
716–723.

[23] D. Souravlias, K. E. Parsopoulos, I. S. Kotsireas, and P. M. Pardalos,
Algorithm Portfolios: Advances, Applications, and Challenges. Springer
International Publishing, 2021.

[24] L. Kotthoff, “Algorithm selection for combinatorial search problems: A
survey,” in Data Mining and Constraint Programming. Springer, 2016,
pp. 149–190.

[25] J. Clune, “AI-GAs: AI-generating algorithms, an alternate paradigm
for producing general artificial intelligence,” arXiv preprint
arXiv:1905.10985, 2019.

[26] H. Baier and M. Kaisers, “Explainable search,” in 2020 IJCAI-PRICAI
Workshop on Explainable Artificial Intelligence, 2020.

[27] C. Browne, “A class grammar for general games,” in International
Conference on Computers and Games. Springer, 2016, pp. 167–182.

[28] E. Piette, D. J. N. J. Soemers, M. Stephenson, C. F. Sironi, M. H. M.
Winands, and C. Browne, “Ludii - the ludemic general game system,”
in ECAI 2020: 24th European Conference on Artificial Intelligence,
G. De Giacomo, A. Catala, B. Dilkina, M. Milano, S. Barro, A. Bugarı́n,
and J. Lang, Eds., vol. 325, 2020, pp. 411–418.

[29] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2–3, pp.
235–256, 2002.

[30] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “SATzilla:
portfolio-based algorithm selection for SAT,” Journal of Artificial In-
telligence Research, vol. 32, pp. 565–606, 2008.

[31] P. Bontrager, A. Khalifa, A. Mendes, and J. Togelius, “Matching games
and algorithms for general video game playing,” in Twelfth Artificial
Intelligence and Interactive Digital Entertainment Conference (AIIDE),
N. Sturtevant and B. Magerko, Eds. AAAI Press, 2016, pp. 122–128.

[32] D. Ashlock, D. Perez-Liebana, and A. Saunders, “General video game
playing escapes the no free lunch theorem,” in 2017 IEEE Conference
on Computational Intelligence and Games (CIG). IEEE, 2017, pp.
17–24.

[33] D. Anderson, C. Guerrero-Romero, D. Perez-Liebana, P. Rodgers, and
J. Levine, “Ensemble decision systems for general video game playing,”
in 2019 IEEE Conference on Games (COG). IEEE, 2019.

[34] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and
Y. Shoham, “A portfolio approach to algorithm selection,” in Pro-
ceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI), vol. 3, 2003, pp. 1542–1543.

[35] M. Kuhner, D. Burgoon, P. Keller, S. Rust, J. Schelhorn, L. Sinnott,
G. Stark, K. Taylor, and P. Whitney, “Automatic algorithm generation,”
November 2002, uS Patent App. 10/097,198.

[36] J. Veness, K. S. Ng, M. Hutter, W. Uther, and D. Silver, “A Monte-
Carlo AIXI approximation,” Journal of Artificial Intelligence Research,
vol. 40, pp. 95–142, 2011.

[37] M. Hutter, Universal Artificial Intelligence: Sequential Decisions Based
on Algorithmic Probability. Springer Science & Business Media, 2004.

[38] S. Van Berkel, D. Turi, A. Pruteanu, and S. Dulman, “Automatic
discovery of algorithms for multi-agent systems,” in Proceedings of
the 14th Annual Conference Companion on Genetic and Evolutionary
Computation, 2012, pp. 337–344.

[39] S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Foundations
and Trends in Programming Languages, vol. 4, no. 1–2, pp. 1–119, 2017.

[40] K. Ellis, C. Wong, M. Nye, M. Sable-Meyer, L. Cary, L. Morales,
L. Hewitt, A. Solar-Lezama, and J. B. Tenenbaum, “DreamCoder: Grow-
ing generalizable, interpretable knowledge with wake-sleep Bayesian
program learning,” arXiv preprint arXiv:2006.08381, 2020.

[41] D. Ashlock, T. Schaul, C. F. Sironi, and M. H. M. Winands, “Rep-
resentation in evolutionary computation for games,” Dagstuhl Report
- Artificial and Computational Intelligence in Games: Revolutions in
Computational Game AI, vol. 9, no. 12, pp. 75–79, December 2019.

[42] D. Ashlock, Evolutionary Computation for Modeling and Optimization.
Springer Science & Business Media, 2006.

[43] I. Bravi, A. Khalifa, C. Holmgård, and J. Togelius, “Evolving game-
specific UCB alternatives for general video game playing,” in Applica-
tions of Evolutionary Computation, ser. LNCS, G. Squillero and K. Sim,
Eds., vol. 10199. Springer, 2017, pp. 393–406.

[44] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press
Cambridge, 2016.

[45] T. Schaul, J. Togelius, and J. Schmidhuber, “Measuring intelligence
through games,” arXiv preprint arXiv:1109.1314, 2011.

[46] G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games.
Springer, 2018.

[47] S. Schreiber and A. Landau, “The General Game Playing base package,”
https://github.com/ggp-org/ggp-base, 2016.

[48] C. Browne, E. Piette, M. Stephenson, W. Crist, and D. J. N. J. Soemers,
“Ludii general game system,” https://ludii.games, 2021.

[49] D. Perez-Liebana, “The GVG-AI competition framework,” https://
github.com/GAIGResearch/GVGAI, 2018.

[50] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and S. M.
Lucas, “General video game AI: a multi-track framework for evaluating
agents, games and content generation algorithms,” IEEE Transactions
on Games, vol. 11, no. 3, pp. 195–214, 2019.

[51] A. Dockhorn, J. Hurtado-Grueso, D. Jeurissen, and D. Perez-Liebana,
“Stratega - a general strategy games framework,” in AIIDE-20 Workshop
on Artificial Intelligence for Strategy Games, 2020.

[52] GAIGResearch, “Stratega,” https://github.com/GAIGResearch/Stratega,
2021.

[53] D. Whitehouse, P. I. Cowling, E. J. Powley, and J. Rollason, “In-
tegrating Monte Carlo tree search with knowledge-based methods to
create engaging play in a commercial mobile game,” in Ninth Artificial
Intelligence and Interactive Digital Entertainment Conference (AIIDE),
G. Sukthankar and I. Horswill, Eds. AAAI Press, 2013, pp. 100–106.

[54] H. Baier, A. Sattaur, E. J. Powley, S. Devlin, J. Rollason, and P. I.
Cowling, “Emulating human play in a leading mobile card game,” IEEE
Transactions on Games, vol. 11, no. 4, pp. 386–395, December 2019.

[55] D. Churchill and M. Buro, “Hierarchical portfolio search: Prismata’s
robust AI architecture for games with large search spaces,” in Eleventh
Artificial Intelligence and Interactive Digital Entertainment Conference
(AIIDE), A. Jhala and N. Sturtevant, Eds. AAAI Press, 2015, pp. 16–22.

[56] T. Thompson, “Revolutionary Warfare — the AI of Total War (part
3),” https://www.gamasutra.com/blogs/TommyThompson/20180212/
314399/Revolutionary Warfare The AI of Total War Part 3.php,
2018.

[57] C. Browne, “Elegance in game design,” IEEE Transactions on Com-
putational Intelligence and AI in Games, vol. 4, no. 3, pp. 229–240,
2012.

[58] ——, “UCT for PCG,” in 2013 IEEE Conference on Computational
Inteligence in Games (CIG). IEEE, 2013, pp. 137–144.

[59] B. Kartal, N. Sohre, and S. J. Guy, “Data driven Sokoban puzzle genera-
tion with Monte Carlo tree search,” in Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE), N. Sturtevant and
B. Magerko, Eds. AAAI Press, 2016, pp. 58–64.

[60] B. Kartal, J. Koenig, and S. J. Guy, “User-driven narrative variation
in large story domains using Monte Carlo tree search,” in 2014 Inter-
national Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), 2014, pp. 69–76.

[61] M. A. Pinheiro, J. Kybic, and P. Fua, “Geometric graph matching using
Monte Carlo tree search,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 11, pp. 2171–2185, 2017.

[62] D. Hennes and D. Izzo, “Interplanetary trajectory planning with Monte
Carlo tree search.” in Twenty-Fourth International Joint Conference on
Artificial Intelligence (IJCAI), Q. Yang and M. Wooldridge, Eds. AAAI
Press, 2015, pp. 769–775.

[63] A. Arora, R. Fitch, and S. Sukkarieh, “An approach to autonomous
science by modeling geological knowledge in a bayesian framework,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2017, pp. 3803–3810.

[64] F. Golpayegani, I. Dusparic, and S. Clarke, “Collaborative, parallel
Monte Carlo tree search for autonomous electricity demand manage-
ment,” in 2015 Sustainable Internet and ICT for Sustainability (Sus-
tainIT), 2015, pp. 1–8.

[65] A. Goldhoorn, A. Garrell, R. Alquézar, and A. Sanfeliu, “Continuous
real time POMCP to find-and-follow people by a humanoid service
robot,” in 14th IEEE-RAS International Conference on Humanoid Robots
(Humanoids). IEEE, 2014, pp. 741–747.

[66] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Dec-
MCTS: Decentralized planning for multi-robot active perception,” The
International Journal of Robotics Research, vol. 38, no. 2-3, pp. 316–
337, 2019.

[67] Y. Qian, W. B. Haskell, A. X. Jiang, and M. Tambe, “Online planning
for optimal protector strategies in resource conservation games,” in
2014 International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), 2014, pp. 733–740.

[68] T. Cazenave and S. B. Hamida, “Forecasting financial volatility using
nested Monte Carlo expression discovery,” in 2015 IEEE Symposium
Series on Computational Intelligence (SSCI). IEEE, 2015, pp. 726–
733.

[69] D. Bertsimas, J. D. Griffith, V. Gupta, M. J. Kochenderfer, and V. V.
Mišić, “A comparison of Monte Carlo tree search and rolling horizon
optimization for large-scale dynamic resource allocation problems,”
European Journal of Operational Research, vol. 263, no. 2, pp. 664–678,
2017.

[70] M. H. S. Segler, M. Preuss, and M. P. Waller, “Learning to plan chemical
syntheses,” Nature, vol. 555, no. 7698, pp. 604–610, 2018.

[71] F. Wimmenauer, “Monte-Carlo search for leveraging performance of
unknown job shop scheduling heuristics,” Master’s thesis, Department
of Data Science and Knowledge Engineering, Maastricht University,
Maastricht, The Netherlands, 2019.

