Training a Reinforcement Learning Agent based on
XCS 1n a Competitive Snake Environment

Johannes Biittner
Games Engineering
University of Wiirzburg
Wiirzburg, Germany
johannes.buettner @uni-wuerzburg.de

Abstract—In contrast to neural networks, learning classifier
systems are no ‘“black box” algorithm. They provide rule-based
artificial intelligence, which can easily be analysed, interpreted
and even adapted by humans. We constructed an agent based
on such a learning classifier system and trained it to play
in a competitive snake environment by utilizing reinforcement
learning and self-play methods. Our preliminary experiments
show promising results that we plan to extend on in the future.

Index Terms—Extended Classifier System, Game-playing Al,
Reinforcement Learning, Snake

I. INTRODUCTION

In recent years, game-playing artificial intelligence (AI) has
in many games achieved super-human levels of competency,
that were previously impossible. Deepmind’s AlphaZero [1]
uses a deep neural network to learn a policy used in Monte
Carlo tree search and was able to beat a world-champion
program for the games of chess, shogi, and Go each. To
achieve this, it was trained solely by reinforcement learning
(RL) with self-play.

While the feats achieved by artificial neural networks used
in deep reinforcement learning have been impressive, there
are multiple problems still to be solved to improve our
understanding and the efficiency of Al. An inherent problem of
artificial neural networks lies in them being a “black box”, as
even their designers cannot explain why the Al has come to a
specific decision. The complex nature of deep neural networks
has even led to a whole research field about the question why
an Al made a specific decision, called “explainable AI” [2].
Other machine learning methods do not have these issues but
are designed as transparent and interpretable algorithms. Alas,
the research regarding them has been miniscule compared to
deep neural networks. Another problem of the current state-of-
the-art RL algorithms lies in the time consuming process. Even
though the final results are exceptional, the initial version of
the AI has no knowledge about the rules of a given game and
takes very long to even get to an amateur’s competency. For
example, OpenAl Five was trained for 180 days, where each
day consists of 180 years worth of games, before competing
against and beating human players [3], [4]. By providing Al
with knowledge about the game and basic correct behavior,
the learning process could be kickstarted and the time to reach
exceptional levels drastically reduced. While the name might

Sebastian von Mammen
Games Engineering
University of Wiirzburg
Wiirzburg, Germany
sebastian.von.mammen @uni-wuerzburg.de

be a rather confusing term nowadays, a “learning classifier sys-
tem” is a rule-based machine learning algorithm, that has been
originally proposed in 1978 [5]. The rules used by a learning
classifier system are of a simple /F' — THEN form and
can easily be analysed by humans. Furthermore, these rules
cannot only be read but also be written by humans. This way,
learning classifier systems can be given rules that were crafted
by domain experts, even before the training process started.
Thus, the initial part of learning basic rules and strategies could
possibly be reduced significantly. Therefore, our research
aims to improve and we focus on learning classifier systems,
which provide a rule-based, human-understandable machine
learning framework that can be used for both supervised and
reinforcement learning.

In this paper we present our approach on using reinforce-
ment learning with self-play on an agent utilizing a learning
classifier system for a competitive snake game.

The remainder of this paper is structured as follows. In Sec-
tion II we provide relevant works regarding typical approaches
to Al in snake games, the extended classifier system (XCS)
and an improved variant of it, and previous usages of the XCS
in games. In Section III we describe the learning environment
and the reinforcement learning approaches we used. In Section
IV we present experiments we conducted to evaluate different
configurations of our system. We present the corresponding
results in Section V. Finally, we conclude with a summary of
the provided work and possible future work in Section VI.

II. RELATED WORK

In this section we first describe the XCS framework. Second,
a variant of the XCS using inductive reasoning is presented.
Finally, we present relevant works using an XCS-based Al in
games.

A. Extended Classifier System

The XCS [6] is built to receive input about an environment’s
state through detectors and return an action to change the
environment’s state (see Fig. 1). This action is then rewarded,
which updates the inner mechanisms of the XCS. Original
implementations of the XCS used binary strings as input.
As real-world problems often need to be represented by real

Environment

1
input 1 ﬂ\
presniies e reward 1

Z A 4
% updated [A] updating
o [P] - === TR E
Genetic operations
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)
new imatching X
classifiers action
action selection R
> M] —> [A]

—>» Performance = =) Reinforcement - » Discovery

Fig. 1. Architecture of an XCS, adapted from [10].

values, there has since been a lot of research to enable such
a representation in the XCS [7]-[9].

The XCS holds a population [P], that consists of classifiers.
These classifiers are made of a condition and an action and
save multiple variables, which are updated periodically. These
values include:

« the prediction, which represents the expected reward,

« the prediction error, that holds information about the
difference between the prediction and the actual reward,

o and the fitness, which represents the accuracy of the
prediction.

After an input is given to the XCS, the match set [M] is
constructed from all matching classifiers. If [M] is empty, a
covering mechanism generates a classifier for this situation
proposing a random action. By comparing the average of the
classifiers’ predictions weighted by their fitness, a best action
is found. Each classifier proposing this action is added to the
action set [A] and the action is returned to the environment.
By receiving an according reward from the environment, all
classifiers in the action set are then reinforced. Additionally,
a genetic algorithm selects classifiers based on their fitness as
parents and uses them to create more fitting classifiers.

B. XCS with Rule Combining

Traditional XCS approaches use a darwinian genetic algo-
rithm to produce new and improved rules. In contrast, the
XCS with rule combining (XCS-RC) uses inductive reasoning
instead (see Fig. 2), which does not include random processes.
Thus, the XCS-RC also introduces new hyperparameters:

« the combining period (Tcomb) describes after how many
learning cycles the rule combining mechanism will be
applied,

« the prediction tolerance (predTol) defines the maximum
difference with which two classifiers can be combined

o and the prediction error tolerance (predErrTol) indi-
cates inappropriate combining which can lead to the
deletion of a rule.

Experiments have shown that the XCS-RC can learn correct
behavior faster and with a smaller rule population than the

traditional XCS. For more information about the differences
between XCS and XCS-RC, and the aforementioned experi-
ments, see [10].

C. XCS in Game Environments

There have been a few attempts to utilize a learning classi-
fier system for a game-playing Al. Reference [11] details an
approach to an Al playing Starcraft by learning with an XCS.
Therein, multiple agents were trained and evaluated against
each other. The agent with the highest win rate is constructed
of multiple XCS instances, one for each unit type. Reference
[12] proposes an Al agent that learns to play Othello using an
XCS. The XCS agent was evaluated against and outperformed
an agent based on the minimax algorithm and human players.
Reference [13] proposes an algorithm that combines the XCS
with opponent modeling for concurrent reinforcement learners
in zero-sum Markov Games. Compared to neural network
based algorithms, the XCS has a similar learning performance
and the advantage of easily interpretable action selection rules.

While relatively little research has been done in this direc-
tion, the referenced publications show promising results on
which further research can be built.

III. METHOD

In this section we first describe the game environment. Sec-
ond, we detail the used methods and parameters for training
the XCS agent.

A. Description of the Environment

The content of this paper is based on the “Al Snakes 2021”
competition [14]. The competition’s environment is that of a
classic game of Snake. The player or agent controls a snake
in a two-dimensional world, trying to eat as many apples as
possible. Only one apple is available on the map at any time
and after eating one apple, the next one appears on a random
free field. By eating an apple, the snake increases its length
by 1, starting with a length of 3. The game ends when the
snake crashes either into the edge of the world or itself. In
this competitive version of the game, a second snake is added
to the environment. One snake is declared winner of a match

Environment

input 1 ﬂl
inpul reward :

A 4
[A] updating

updated

=)
=
=
o
>
Q
o

=] Cycle counting

: execute

combining results
,,,,,,,,,,,,,,,,,,,,,,,,,,,, N o OB Sl [
new matching .
classifiers action
action selection
o v > (A
—>» Performance - =» Reinforcement - Yy Discovery

Fig. 2. Architecture of an XCS-RC, adapted from [10].

either if the opposing snake crashed into any snake or the
edge of the world, or after 3 minutes, if it ate more apples
than the opposing snake. While training our agent we used a
map size of 14x14 fields. An example of the game’s interface
can be seen in Fig. 3. While the environment provides four
actions an agent can take — one each for moving up, down,
left and right — we simplified them due to the fact that moving
backwards always results in an immediate loss. Therefore, the
three actions our agent can take are moving forward, turning
left and turning right. The environment provides information
about the current position of the agent itself, the opposing
snake, the size of the map and the current coordinates of the
apple. Using these values we calculate a series of 14 booleans
that is then given to the agent as input. These values describe
whether the agent can move freely forward, left or right;
whether an apple is directly in front, left or right of the snake’s
head; whether the apple is generally in front, behind, left or
right of the snake’s head; and whether the opponent’s head
is generally in front, behind, left or right of the snake’s head.
Since all of the input values are relative to the snake’s position
and direction only and no information about the map is given,
the resulting behavior can be used on any map, regardless of
size or shape.

B. Reinforcement Learning with Self-play

In reinforcement learning, an agent uses the information
about the current state provided by the environment to decide
which action to take. Depending on the outcome the agent
receives a positive or negative reward and uses it to reinforce
its behavior. Specifically in the field of learning to play games,
RL is used extensively and specific methods like self-play
have emerged. This method, where an agent learns by playing
against itself, has proven very successful [15]. Therefore we
used a general reward of 100 for winning a match and -100
otherwise. Additionally we used small rewards to improve the
initial learning rate and reduce the time to learn basic game
rules:

o +1 if the agent moves closer to the apple’s position, -1

otherwise and

o +10 for eating an apple.

All rewards are propagated backwards through the previous
actions with a discount factor of v = 0.71 to enable learning

Fig. 3. The game’s interface.

of sequences of multiple steps. This rather unusual value for
~ was adopted from the original proposal of the XCS [6].

IV. EXPERIMENT

To find a good set of hyperparameters, we trained and
evaluated different configurations of the XCS-RC using a
combination of these values:

« maximum population size (maxPop): 200, 800, 2000

e Tcomb: 0, 10

o predTol: 10, 20

o predErrTol: 5, 100

Each configuration was trained by self-play for 5 iterations
of 2500 learning games and 100 test games, where one agent
was learning and the other used the current best set of rules.
After winning 55% of the test games, the current best set of
rules was replaced by the newly learned ruleset.

After the training completed, we tested all agents against
each other to evaluate their strength. The results of the
tournament can be seen in Table I. The set of hyperparameters
to achieve the highest mean win rate used these values:

« maxPop: 2000

e Tcomb: 10

e predTol: 20

« predErrTol: 100

Further training of an agent with this configuration revealed
the tendency to walk in circles. This way the agent would
not die and beat their opponents most of the time, since
running into a wall instantly loses the game. We theorize
that after training against such an agent for a long enough
time, exploration would lead to enough positive rewards after
eating apples and not running into any obstacles and thus

TABLE 1
RESULTS OF AGENT TOURNAMENT. BEST AGENT MARKED IN GREY.
Agent | Mean Win
Index | Rate in %
0 16,1
1 13,0
2 17,8
3 18,7
4 48,7
5 37,8
6 50,0
7 10,9
8 36,5
9 37,8
10 46,5
11 38,7
12 58,7
13 63,5
14 66,1
15 66,5
16 69,1
17 72,6
18 63,9
19 67,4
20 76,1
21 72,6
22 70,4
23 80,4

winning the game, to improve the agent’s Al and change its
behavior to a more advanced one. However, to reduce the
time required, we adjusted the reward function. Since one
wrong action can instantly lead to a loss, we changed the
reward of a loss to only be -10, which lets the Al explore its
actions more freely. After these results, we used the previously
acquired overview of sensible hyperparameters to manually
test promising configurations and found these values to work
well:

« maxPop: 2000
e Tcomb: 0

o predTol: 20

o predErrTol: 100

This configuration was then further trained in self-play.

V. RESULTS

The resulting Al could reliably find the shortest way to the
apple. It learned to not run into walls, itself or the other snake.
However, in very rare cases this can still happen. The agent
has no possibility to simulate the game. Thus, it can easily
get into situations where the next action does not directly lead
to a loss but to a situation where no further actions can lead
to a win, e.g. by being backed into a corner by the opponent.
For the same reason, both snakes often run heads on into each
other, resulting in a draw.

As can be seen in Fig. 4, the average prediction error over
all rules is decreased by training. The average fitness over all
rules (see Fig. 4) shows a general increasing tendency, which
indicates an improving prediction accuracy. Interestingly, a
great decrease in the average fitness and a great decrease in
the average prediction error happened at the same time. These
two facts seem to contradict each other at first, but could be
explained by the fact that a new rule set was created that could
make better predictions than previous rule sets. The initial
fitness value of these rules had not yet been adjusted, but
steadily increased afterwards.

Overall, it can be seen that using reinforcement learning on
an Al using the XCS-RC improves its capabilities of playing
a competitive version of snake. However, the Al converges at
an average prediction error between 60 and 65. Thus, possible
advancements of the implementation are discussed in the next
section.

o
o v

T T T
Average fitness ------

VY ----- Average prediction error - 85

o

Average fitness
N

wwo s oo,
I

|
(o]
o
Average prediction error

0 20000 40000 60000 80000 100000 120000 140000

Games played

Fig. 4. Average fitness and prediction error of each rule

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the usage of learning
classifier systems as reinforcement learning components for
game-playing Al and shown their general suitability through
a series of experiments. The resulting behavior lead to efficient
movement towards the apple while mostly dodging obstacles.
Problems included the inability to plan ahead, since all infor-
mation given regarded the current game state and the agent
had no ability to simulate further steps.

The presented work represents the first step towards using
the XCS in game-playing Al and shows that the XCS is able
to learn how to play a turn-based strategy game. At this point,
the Al we developed only uses the current state of the game
and does not utilize any search mechanisms, thus the resulting
Al is far from perfect. Next steps could include implementing
a simulation mechanism such as Monte Carlo tree search with
an XCS learning the used policy to further improve our results.
Thus, the agent would be able to plan multiple steps ahead
and significantly improve its performance. Additionally, one
of the described qualities of learning classifier systems is the
possibility to analyse their rules and insert additional rules
crafted by domain experts. This factor has not been used to
its full extent yet and the possibilities to improve the Al and
its training process by rule inspection need to be researched
further in this context.

REFERENCES

[1] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play,” Science, vol. 362,
no. 6419, pp. 1140-1144, 2018.

[2] A. Adadi and M. Berrada, “Peeking inside the black-box: A survey on
explainable artificial intelligence (xai),” IEEE Access, vol. 6, pp. 52138-
52160, 2018.

[3] OpenAl, “Openai five.” https://blog.openai.com/openai-five/, 2018.

[4] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Jozefowicz, S. Gray,
C. Olsson, J. W. Pachocki, M. Petrov, H. P. de Oliveira Pinto, J. Raiman,
T. Salimans, J. Schlatter, J. Schneider, S. Sidor, 1. Sutskever, J. Tang,
F. Wolski, and S. Zhang, “Dota 2 with large scale deep reinforcement
learning,” ArXiv, vol. abs/1912.06680, 2019.

[5] J. H. Holland and J. S. Reitman, “Cognitive systems based on adaptive
algorithms,” in Pattern-directed inference systems, pp. 313-329, Else-
vier, 1978.

[6] S. W. Wilson, “Classifier fitness based on accuracy,” Evol. Comput.,
vol. 3, p. 149-175, June 1995.

[71 S. W. Wilson, “Get real! xcs with continuous-valued inputs,” in Learning
Classifier Systems (P. L. Lanzi, W. Stolzmann, and S. W. Wilson, eds.),
(Berlin, Heidelberg), pp. 209-219, Springer Berlin Heidelberg, 2000.

[8] C. Stone and L. Bull, “For real! xcs with continuous-valued inputs,”
Evol. Comput., vol. 11, p. 299-336, Sept. 2003.

[9]1 N. Fredivianus, K. Kara, and H. Schmeck, “Stay real! xcs with rule
combining for real values,” in Proceedings of the 14th Annual Confer-
ence Companion on Genetic and Evolutionary Computation, GECCO
12, (New York, NY, USA), p. 1493-1494, Association for Computing
Machinery, 2012.

[10] N. Fredivianus, Heuristic-based Genetic Operation in Classifier Systems.
PhD thesis, University of Karlsruhe, 2015.

S. Rudolph, S. V. Mammen, J. Jungbluth, and J. Hihner, “Design and
evaluation of an extended learning classifier-based starcraft micro ai,”
in EvoApplications, 2016.

S. Jain, S. Verma, S. Kumar, and S. Aggarwal, “An evolutionary
learning approach to play othello using xcs,” in 2018 IEEE Congress
on Evolutionary Computation (CEC), pp. 1-8, 2018.

(11]

[12]

[13]

[14]

[15]

H. Chen, C. Wang, J. Huang, J. Kong, and H. Deng, “Xcs with oppo-
nent modelling for concurrent reinforcement learners,” Neurocomputing,
vol. 399, pp. 449-466, 2020.

L. J. P. de Araujo, J. A. Brown, and A. Grichshenko, “Al Snakes 2021.”
https://agrishchenko.wixsite.com/aisnakes2021, 2021.

A. Plaat, Learning to Play: Reinforcement Learning and Games.
Springer Nature, 2020.

