
Make your programs compete and watch them play
in the Code Colosseum

Dario Ostuni
Department of Computer Science

University of Verona
Verona, Italy

dario.ostuni@univr.it

Edoardo Morassutto
Department of Electronics, Computer Science
and Bioengineering, Politecnico di Milano

Milan, Italy
edoardo.morassutto@mail.polimi.it

Romeo Rizzi
Department of Computer Science

University of Verona
Verona, Italy

romeo.rizzi@univr.it

Abstract—Games have a role in many aspects of science,
technology, and society. Also, games attract humans’ interest and
offer unique learning opportunities. Indeed, the role of games in
education has a long tradition.

In this paper we introduce Code Colosseum, a platform that
takes competitive programming in the direction of games, instead
of problems. By taking this direction, we aim to create a more
engaging environment for students to compete in. The platform
allows programs written by the contestants to compete in a real-
time multiplayer game. The platform also allows to spectate the
matches between the programs. The design and implementation
of Code Colosseum has been kept as simple as possible, to
facilitate participation, maintenance and setup.

To assess the effectiveness of the approach, we organized
a tournament with 16 students, from both high schools and
universities, as a pilot experience for Code Colosseum. In this
tournament they created programs to play the Royal Game of
Ur, a board racing game. The feedback from the students about
the experience was positive, and the suggestions received will be
implemented for future experiences.

Index Terms—Game-based learning, Computer science educa-
tion, Competitive programming, Educational technology

I. INTRODUCTION

With the rise of STEM1 education, Computer Science has
become one of the central subjects to be incorporated inside
the curricula of secondary, and also primary, education systems
around the world.

While the secondary education systems transit towards a
more scientific-focused teaching of Computer Science, one
way to give students an insight of it is through extracurric-
ular activities [13]. One such example is competitive pro-
gramming, which has a long history of being used as an
educational tool [14]. Many competitions in this field have
an interest in fostering Computer Science education, such
as the International Olympiad in Informatics [1], which is
more competition-oriented and for high-school students only,
the Kangourou of Informatics [15], which is more didactic-
oriented and also open to middle school students, and, recently,
Codeforces [16], the leading web platform for programming
contests.

1Science Technology Engineering Mathematics

The role of competitive programming in Computer Science
education has multiple facets: students not only get interested
in various topics in Computer Science, but also group up in
school-level, national, or even international communities. The
social aspect value is confirmed by the attention it receives
in web platforms such as the American TopCoder [2], the
Indian CodeChef [3], the Japanese AtCoder [4] and the Italian
CMSocial [5]. Such communities strengthen students’ interest
in competitive programming and Computer Science. They also
offer a place where knowledge and competence is emphasized
and where students which might not find it at their schools can
seek for it.

While competitive programming fills an ever-expanding
niche, many students might feel a bit discouraged, seeing it
merely as a competition for the best of the best. Furthermore,
competitive programming might not be as engaging for out-
siders, because the knowledge requirement to appreciate it is
quite high.

In this paper we present Code Colosseum, a platform to
expand competitive programming using games as its primary
feature. Using games as a mean to rise engagement and
motivation has proved effective in Computer Science educa-
tion [17].

There already exist other platforms that offer similar fea-
tures. For instance, CodingGame [6] and CodeCombat [7]
are web platforms that let students learn programming with
games; here, their programs can be developed in the platform
web environment and are run on the platform server. One of
the main technical differences with Code Colosseum is that
the students’ programs are developed and run solely on their
machines.

The paper is organized as follows: in Section II we give an
overview of our motivations for proposing Code Colosseum
and our goals for it, in Section III we provide details on the
implementation of Code Colosseum, in Section IV we discuss
the pilot experience we organized with Code Colosseum and in
Section V we lay down our conclusions and future directions
for the project.

II. DESIGN, MOTIVATIONS AND GOALS

We believe that creating a program (bot) that plays a game
and letting it compete against other bots within a shared and978-1-6654-3886-5/21/$31.00 c©2021 IEEE

observable arena makes for an engaging environment. For
games where optimal play is out of reach or where there
is a well balanced component of luck, the matches can be
interesting and instructive to observe and the competition
offers opportunities for social interactions. When the outcomes
are not entirely predictable in advance, people can discuss on
the strengths and weaknesses of the bots and their strategies.
This is even more so if the design and making of the bots
is a team activity. Also, a match is engaging not only for
insiders, who have a direct interaction with their peers and
share with them the same language and mental space, but
also for outsiders, who can be interested in just watching the
matches, making enough sense of what is actually happening
even without any prior Computer Science knowledge. In fact,
this is very close to the idea behind RoboCup [18], which
is a very successful competition where teams of high-school
students assemble and program some robots to make them
compete in a physical soccer-like game against those of other
teams.

We propose Code Colosseum, a framework for the creation
and deployment of real-time multiplayer games meant to
be played by bots. The game could be a classic one, like
checkers or any known card game, it could be a variant of
a classic game, or it could be a completely new game. Both
collaborative and competitive games are possible.

Code Colosseum is implemented as a client-server architec-
ture, where the server manages the ongoing matches and the
clients connect the players’ bots to the server communicating
over the net. Some of the main traits of Code Colosseum are:

• the server acts as the central and trusted hub for each
match and has always complete information on the state
of the game. To play a match, the clients need to connect
only to the server;

• the server offers a lobby from where to create or join
a match. When creating a match, one sets the number
of players and how many of them should be covered by
server-provided bots;

• the server can only manage a certain set of games.
This set can be extended by implementing the rules and
communication protocol for a new game;

• the player’s bot can be any program, as such it can offer
an environment from which a human might directly play
or assist an AI playing it;

• all matches can be publicly spectated.

The fact that the player’s bot runs on their machine has
several and profound implications, among these:

• each participant can use their preferred programming
languages, libraries, and tools without bearing on what
is available on the server;

• during the matches, bots can make use of precomputed
information and can leverage available hardware like
GPUs;

• since each bot runs on the player’s machine, standard
debugging tools and techniques can be used to debug its
logic and protocol implementation;

• bots do not add to the load of the server in terms of
computing resources;

• it lifts the sandboxing requirement that would be oth-
erwise needed for security reasons. This also helps in
keeping a low complexity of design and implementation;

• since the client-server communication happens over the
net, each participant needs a stable internet connection;

• the computational resources available to different players
might wildly differ. The server cannot limit nor have
knowledge of such resources;

• in team games, the server has no control over the intra-
team communication. For instance, in 2v2 card games
where no intra-team communication should be allowed
the bots could privately communicate through other chan-
nels. Note however that Code Colosseum is still suitable
for managing team games where the players of the same
team can fully share their knowledge.

In our opinion, the following features of Code Colosseum
are very important and require to be further explored and
developed.

A. Visualization

Spectating the game might be a way to get or feel involved
and to prove interest or participation in the competition.
Even a team coach without technical preparation might offer
suggestions, opinions or encouragement based on the matches
they have seen. This sharing adds recognition and meaning
while helping in promoting a positive environment of interest
and participation. Also, for peers and classmates, spectating
the game might be the first step to then getting involved.
For these reasons, supporting the visualization of ongoing
matches in an accessible way is an important feature that
deserves further development. Unlike with usual competitive
programming competitions, with games and in tournaments
there is an unparalleled opportunity to obtain meaningful
and immediately accessible visualizations that should certainly
contribute in engaging and motivating all participants and
spectators.

B. Tournaments

If the goal is to further foster STEM education then we
must first comprehend the proper forms that make a proposal
truly inclusive for a wider range of students. In particular,
the social dimensions require to be addressed since they
relate to profound motivations. Tournaments fill that space and
offer a powerful opportunity to catalyze the interest of both
contestants and the wider community that might gather around
them in a high-school or university setting.

Also, tournaments bring a focus and a shared interest on
matches and players. This is particularly true for elimination
tournaments where the last matches are naturally followed by
more spectators. Indeed, players have a natural curiosity to see
how the best players perform and learn from their strategies.
Also, players can group up in watching and commenting
together the live matches. This offers further opportunities to
socialize and exchange ideas and enthusiasm.

C. Simplicity

In the design and first implementation of the Code Colos-
seum platform we adopted a minimal approach striving for
simplicity. The importance of this point cannot be underesti-
mated. Our aim is to get a system that can be used with ease
not only to play matches but also to develop a new game. In
the long term, communities around this platform might form
in high school or university settings. These communities will
first be attracted by playing available games, but might later
make an effort to produce their own games.

III. IMPLEMENTATION DETAILS

Code Colosseum is a framework to build and play multi-
player games over a network. It has a client-server structure
and it is designed towards simplicity of setup and use. Both the
server (cocod) and the client (coco) are written in Rust [19].
Code Colosseum is free software, released under the Mozilla
Public License 2.0, and can be found on GitHub [8]. A graph-
ical overview of the architecture can be found in Figure 1.

Both cocod and coco are written using the Tokio [9]
asynchronous runtime. This allows the cocod server to be able
to handle many concurrent connections efficiently, making it
suitable for hosting hundreds of matches simultaneously.

Code Colosseum provides no user authentication by design,
to keep its codebase and setup as simple as possible. The cocod
server keeps a lobby of waiting-to-start and running matches.
Anyone can create a new match for one of the supported
games, and anyone can join a waiting-to-start match, although
some limitations can be imposed, for instance by providing
a password at the time of creation to restrict participation
access. Once the number of players needed to start the match
are reached, the match automatically begins and the players
start playing. To create, list and join matches the tool used
by the contestants is the coco client. All matches can also be
spectated, even when they are already running or password
protected.

It is possible to add a new game to cocod by expanding it.
In order to do so, a game manager has to be written. This is a
program that, given n bidirectional pipes (for the players) and
an output only pipe (for the spectators), must implement the
game logic and receive/send information from/to the players
and the spectators accordingly. This minimal interface tries to
lower the requirements to write a new game manager. Note
however that this is not a trivial task: special attention is
needed when handling multiple data streams simultaneously,
as some kind of multi-threading or polling is needed, which,
if managed incorrectly, can lead to problems such as dead-
locks or synchronization errors. Moreover, even though both
real-time and turn-based games are possible, the former are
harder to implement, since they need to account for network
latency.

The communication between the coco client and the cocod
server is done using WebSockets [20] and a custom JSON-
serialized protocol. Using WebSockets as the communication
channel has several advantages over plain TCP channels:

• they can pass through HTTP proxies, which are common
in schools and various institutions when the traffic is
monitored and filtered;

• they are message-based rather than stream-based, which
simplifies the handling of our message-based protocol;

• they can be put behind a standard HTTP reverse-proxy
to enable connection security (using HTTPS) and traffic
shaping;

• a WebSocket client can be instantiated inside a web
browser, allowing for a web application to communicate
directly with a cocod server.

When a contestant joins a match using the coco client with
its bot, coco connects to the specified cocod server and waits
until the match starts. When that happens, the coco client
captures the stdin and stdout2 channels of the bot, and virtually
connects them to a bidirectional pipe of the game manager
for that match. This is done using the previously-established
WebSocket communication channel with the cocod server.

Spectators can join a match using the coco client at any
time. The cocod server will send real-time updates of the game
as generated by the game manager. If the spectator joins an
already running match, then the cocod server will first send all
game data from the beginning of the match. The coco client
does not provide a native visualizer for games, hence a custom
program that reads the game data and prints a human-readable
representation of it is needed. It has to be specified to coco,
which will send the game data to its stdin stream.

Both coco and cocod are CLI3 programs. While for cocod
this is not much of a problem, having a graphical client could
be beneficial for tasks such as spectating a match. Note that
coco allows the attachment of an arbitrary program for both
playing and spectating games, opening the possibility of a
GUI4. Since the communication channel is a WebSocket and
most of the implementative burden lies on the server, a web
client could be written to provide most of the functionalities
of the coco client in a graphical and cross-platform way. Also,
by providing additional layers, one could collect statistical
information on the platform usage, like in CMSocial [21].

IV. PILOT EXPERIENCE

We conducted a pilot experience that involved 16 students
with a Computer Science background in a double-elimination
tournament playing the Royal Game of Ur. The students were
also familiar with the Competitive Programming field.

A. Royal Game of Ur

The Royal Game of Ur [22] is a strategy game where two
players play against each other in a racing competition, moving
their tokens in a board according to the result of four 2-faced
dice. This game is of historical importance since it is one of
the oldest known games (it was played in ancient Mesopotamia
in the third millennium BCE), yet it is relatively unknown to
most people.

2standard input and standard output.
3Command-Line Interface
4Graphical User Interface

Fig. 1. Code Colosseum architecture: each contestant writes a bot that runs on their local machine along with an instance of coco. The bot and coco
communicate through the stdin and stdout channels. The coco clients connect via WebSockets to cocod, which runs on the central server. Inside cocod an
instance of the game manager is running.

We selected it as the pilot game for many reasons:
• the game rules are very simple to understand and quite

straightforward to implement in code;
• the strategy component is nicely compensated by some

luck, making it interesting to watch and partially bridging
the gap between seasoned and novice competitors;

• other than the optimal strategy, there are many easier but
well-performing strategies.

B. Double-elimination Tournament
In a double-elimination tournament there are 2 brackets: the

winner bracket and the loser bracket. Initially all the players
are in the winner bracket. They are moved to the loser bracket
when they lose their first match, instead of being eliminated
at their first defeat. This mechanism offers to every player a
second chance to be the winner of the tournament. With a
second chance players can learn from their mistakes, fixing
their programs and improving their strategy.

This types of elimination tournaments have a number of
matches that is a function linear in the number of players,
keeping the total number of matches to a reasonable amount,
especially when there are many players. Note that Code Colos-
seum only manages single matches, therefore the tournament
structure is totally independent from it. In fact, we used
Challonge [10] to keep track of the progress of the tournament.

C. Experience and Feedback
The participants and the organizers met in a Discord [11]

server, and 14 out of the 16 registered players were present.
The game was announced at the start of the tournament. At that
point, participants were provided with the game rules and the
game communication protocol. Players started implementing
their bots using their favorite programming language and
development environment. The bots would exchange text mes-
sages with coco following the game communication protocol.

Players could prepare for the matches by either playing among
them in friendly matches or against a server provided bot.
After 90 minutes the first matches started, and up to two
matches of the same round were held in parallel. Between
rounds the participants were given some time for tweaking
and fixing their programs (from 15 to 45 minutes, depending
on the round).

Using an anonymous survey, at the end of the tournament,
some feedback was collected from the participants and 13
of them answered. The questions were of three kinds: open,
yes/no, and rating from 1 (least) to 5 (most).

Results [12] showed that none of the participants knew
the game before the tournament, and all of them “enjoyed
participating”, rating it at least 3 with more than half of them
rating it 5 (see Figure 2). All of them expressed the intent to
participate in a second edition.

The game was pretty well accepted, 10 participants graded
it as the chosen game at least 4. On the contrary nearly
half of them would have liked more time for coding and
debugging their programs; a couple of them preferred less
time between the rounds for a nicer spectating experience.
The students generally didn’t find it hard to use the coco CLI
client, probably due to their background.

Many participants asked for a web-based visualizer, with
a database of the played matches. This would have been
very useful for inspecting opponent’s strategies with the
added benefit of being more user-friendly and very platform-
independent.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented Code Colosseum, a platform to create
and play real-time multiplayer games meant to be played by
programs. We proposed Code Colosseum as a complementary
educational tool, akin to competitive programming but based

Fig. 2. Histograms of the feedback collected after the tournament from 13 participants. Answers were from 1 (least) to 5 (most). (a) How fun was it to
participate? (b) How much did you like the Royal Game of Ur as the game chosen for the tournament? (c) Should the tournament have lasted longer? (d) How
difficult was it to use a terminal interface with respect to a graphical one? (e) In your opinion, would it have been interesting to be a spectator?

on games instead of problems, to foster Computer Science
education to a wider audience. We provided an implementation
of the Code Colosseum concept with the cocod server and coco
client and discussed their implementation details. We then
described the pilot experience we organized, a Royal Game
of Ur double-elimination tournament between 16 students. We
then described and discussed the feedback received from the
students about this experience.

From the students’ feedback we can assess that the pilot ex-
perience was substantially positive: most of the students really
enjoyed participating and all of them would participate again.
The game made them explore concepts from game theory and
statistics. The tournament has enthralled the participants to the
game, so much so that some of them kept refining their bots
for some weeks after the tournament took place.

In the future we plan to host a second tournament. Our
commitment is to improve the experience by implementing
the feedback we received from the participants. In particular,
the following well-defined directions are indeed likely to have
a positive impact:

• add a web interface for spectating the matches;
• add a replay functionality to re-watch past matches;
• rebalance the durations of the various phases of the

tournament. In particular, by increasing the time before
the first match.

ONLINE RESOURCES

[1] International olympiad in informatics,
https://ioinformatics.org/.

[2] Topcoder, https://www.topcoder.com/.
[3] Codechef, https://www.codechef.com/.
[4] Atcoder, https://atcoder.jp/.
[5] Cmsocial, https://training.olinfo.it/.
[6] Codingame, https://www.codingame.com/.
[7] Codecombat, https://codecombat.com/.
[8] Code colosseum,

https://github.com/dariost/CodeColosseum.
[9] Tokio, https://tokio.rs/.

[10] Challonge, https://challonge.com/.
[11] Discord, https://discord.com/.
[12] Feedback results,

https://docs.google.com/spreadsheets/d/1HPgLU-
hNN3vGydThcqcRaFKLox5fkfFfWkNabBURkRM/.

REFERENCES

[13] C. Bellettini, V. Lonati, D. Malchiodi, M. Monga,
A. Morpurgo, M. Torelli, and L. Zecca,
“Extracurricular activities for improving the perception
of informatics in secondary schools,”
in International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, Springer, 2014,
pp. 161–172.

[14] T. Verhoeff, “The role of competitions in education,”
Future world: Educating for the 21st century,
pp. 1–10, 1997.

[15] V. Lonati, M. Monga, A. Morpurgo, and M. Torelli,
“What’s the fun in informatics? working to capture
children and teachers into the pleasure of computing,”
in International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, Springer, 2011,
pp. 213–224.

[16] M. Mirzayanov, O. Pavlova, P. Mavrin, R. Melnikov,
A. Plotnikov, V. Parfenov, and A. Stankevich,
“Codeforces as an educational platform for learning
programming in digitalization,” 2020.

[17] M. Papastergiou, “Digital game-based learning in high
school computer science education: Impact on
educational effectiveness and student motivation,”
Computers & education, vol. 52, no. 1, pp. 1–12,
2009.

[18] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and
E. Osawa, “Robocup: The robot world cup initiative,”
in Proceedings of the first international conference on
Autonomous agents, 1997, pp. 340–347.

[19] N. D. Matsakis and F. S. Klock, “The rust language,”
ACM SIGAda Ada Letters, vol. 34, no. 3,
pp. 103–104, 2014.

[20] I. Fette and A. Melnikov, “The websocket protocol,”
2011.

[21] W. Di Luigi, P. Fantozzi, L. Laura, G. Martini,
E. Morassutto, D. Ostuni, G. Piccardo, and L. Versari,
“Learning analytics in competitive programming
training systems,” in 2018 22nd International
Conference Information Visualisation (IV), IEEE,
2018, pp. 321–325.

[22] I. L. Finkel, “On the rules for the royal game of ur,”
Ancient Board Games in Perspective, pp. 16–32, 2007.

