
Estimates for the Branching Factors
of Atari Games

Mark J. Nelson
American University

Washington, DC, USA
mnelson@american.edu

Abstract—The branching factor of a game is the average
number of new states reachable from a given state. It is a
widely used metric in AI research on board games, but less
often computed or discussed for videogames. This paper provides
estimates for the branching factors of 103 Atari 2600 games,
as implemented in the Arcade Learning Environment (ALE).
Depending on the game, ALE exposes between 3 and 18 available
actions per frame of gameplay, which is an upper bound on
branching factor. This paper shows, based on an enumeration of
the first 1 million distinct states reachable in each game, that the
average branching factor is usually much lower, in many games
barely above 1. In addition to reporting the branching factors,
this paper aims to clarify what constitutes a distinct state in ALE.

Index Terms—branching factor, Atari, Arcade Learning Envi-
ronment

I. INTRODUCTION

Atari 2600 games have been a popular challenge domain for
artificial intelligence research since the 2012 release of the
Arcade Learning Environment (ALE). ALE wraps the Atari
emulator Stella in a framework familiar to AI researchers:
agents observe and take actions in an environment, sometimes
receiving positive or negative reward as a result [1]. As of this
writing, ALE supports 104 games.

Each supported game has been manually instrumented by
the ALE developers. For example, ALE provides rewards
to agents by reading changes in score from game-specific
locations in the Atari RAM. Part of this instrumentation is
the minimal action set, the set of actions that have any effect
in the game. Currently supported games have minimal action
sets as small as 3 and as large as 18. For example, in Breakout
there are four actions: no-op (no input), left, right, and fire.
The maximum 18 are: no-op, the fire button, the 8 directions
that can be registered by the Atari joystick, and each of those
8 directions while also pressing the fire button.

A game’s minimal action set is an upper bound on its
branching factor, the number of new states that can be reached
from a given state. Atari AI research – and other videogame
AI research, for that matter – does not normally give much
weight to (or even compute) branching factors. But they are
commonly discussed in AI board-game playing. The difference
in branching factors is cited as a reason that computer chess is
harder than checkers, shogi harder than chess, and go harder
than the other three [2], [3]. Multi-game engines such as Ludii
also compute branching factor as an informational measure [4].

Does it give useful information for video games? A first step
in investigating that question is to compute it.

A game’s branching factor can be less – often significantly
less – than its minimal action set, for two reasons. The first
is that the state space of many games forms a graph, not a
tree, so some distinct input sequences result in an identical
state. For example, in Tetris, rotating a piece twice clockwise
will often result in the same state as rotating it twice counter-
clockwise. And in Breakout, there are many ways the player
can move when the ball is in the air that will result in the
same contact once the ball comes back down.

The second reason that the average branching factor can be
smaller than the size of the action set is that Atari games may
simply ignore some or all input at various times. For example,
once the player initiates a jump in Q*bert, all input is ignored
for a number of frames while the jump animation plays out.
And in Space Invaders, the fire button has no effect when the
player already has a laser-cannon shot in the air, since the
game rules only allow one shot in the air at a time.

This paper provides average branching factor estimates for
103 of the 104 games supported by ALE.1 These estimates
are computed by exhaustively enumerating the first 1 million
distinct states reachable in each game. The primary result is
therefore Table II.

As a necessary prerequisite for enumerating those 1 million
distinct states, this paper also clarifies what constitutes a “dis-
tinct state” in ALE, in the sense of state meant by game-tree
search and Markov decision processes (MDPs). As discussed
in Section II-A, existing literature has tended to either under-
or over-specify state. In fact, a precise state for 6 of the games
(those that use the Atari paddle controller) is not retrievable
from the public API of ALE.

Finally, some lingering issues with determinism in ALE
(a longstanding problem) are uncovered by the experiments
here. They only impact the branching factor estimates of two
games in a non-negligible way, but point to potential issues
with reproducibility.

II. METHODOLOGY

The main results of this paper are the estimated branching
factors given in Table II. This table is computed by enumer-
ating the first 1 million distinct states in the games supported

1One is omitted because its initial state is broken; see Section II-D.



Fig. 1. The two Atari input devices emulated by ALE: Joystick on the left,
and paddle controller on the right. (Photographs by Evan Amos; released into
the public domain.)

by ALE, and using those counts to estimate branching factor.2

Carrying out this task requires: a definition of what constitutes
a distinct state, a method for estimating branching factor, and
a deterministic emulator. All three of these are surprisingly
tricky to pin down.

A. Atari state

Tree search and reinforcement learning algorithms both have
a concept of state. A state for such algorithms is enough
information to uniquely determine an environment’s future
dynamics. Given the same state, the same action sequence will
produce the same sequence of successor states if the environ-
ment is deterministic; or it will produce the same distribution
over state sequences if the environment is stochastic.

For one-player Atari games, the state can be completely
specified by the 128 bytes of Atari RAM, plus the current
position of the paddle controller, if the game uses the paddle
controller. To the best of my knowledge, this paper is the first
to use this definition of an Atari game state, which I claim
to be the correct one. Computing it required patching ALE,
since ALE doesn’t expose paddle position in the public API.3

Previous definitions of Atari/ALE game state either under-
or overspecify the state:

1) Underspecified game state: Much existing literature
assumes that the Atari RAM is sufficient to capture the game
state. For example, Machado et al. [5] mention that ALE
allows querying either the current screen image or the current
RAM, and call the RAM the “real state”:

This observation can be a single 210×160 image
and/or the current 1024-bit RAM state. Because a
single image typically does not satisfy the Markov
property, we distinguish between observations and
the environment state, with the RAM data being the
real state of the emulator.

The RAM is in fact sufficient for many Atari games. The
Atari 2600 has no external storage, network interface, etc.,

2More precisely, counting how many distinct states are reachable in n
frames, until the first frame where n ≥ 1, 000, 000.

3The patched version of ALE used in the experiments reported in this paper,
which also applies a determinism fix discussed in Section II-C, is available
at https://github.com/NelsonAU/Arcade-Learning-Environment.

so the only place it can store data across frames is in RAM.
However, it also polls every frame for player input from a
physical controller. And some Atari controllers – one of which
is used by ALE – maintain their own external state.

ALE supports two emulated player input devices: the joy-
stick and the paddle (Figure 1). The joystick does not maintain
external state. It returns one of the 18 possible actions each
frame, with no interaction between frames (at least if we
assume a player with sufficiently fast hands, such as an AI
bot). Therefore the Atari RAM is sufficient to capure state
when using the joystick.

The paddle, though, does maintain external state. It is a
rotating potentiometer – a wheel that sends different voltages
to the console depending on its position. Therefore, when
playing on a real Atari console, the current position of the
paddle in the physical world is part of the game state. The
way ALE implements the paddle is that the actions “left” and
“right” increase or decrease the the paddle’s current rotation
by a compile-time constant, PADDLE_DELTA, up to specified
maximum and minimum values.4 Therefore in the case of ALE
as well, the paddle’s rotation is needed in addition to the Atari
RAM to have a complete game state.

Of the 104 ALE-supported games, 98 use the joystick, and
six use the paddle. The six are: backgammon, blackjack, break-
out, casino, kaboom, and pong. The original ALE paper [1]
makes a point of noting the added complexity posed by paddle
controllers as an example of how ALE captures some of
the messiness of real-world decision-making, but subsequent
papers often ignore them.

2) Overspecified game state: ALE also has a mechanism
for serializing and deserializing state. This captures the entire
state of the emulator and ALE itself. But it is too precise to
correspond to what AI algorithms normally mean by state, and
is therefore also not usable for this paper.

For example, serialized ALE states include the frame num-
ber, so if an otherwise identical game state can be reached at
frame 5, or through a different action sequence at frame 6,
using state serialization as the representation will treat these
as distinct states. That is not normal practice in AI algorithms.
Mechanisms such as discounted reward might prefer reaching
the same state sooner rather than later, but the time a state is
reached is not part of the definition of a state.

B. Branching factor

The term branching factor is used in a several different
ways, all relating to the number of successor states reachable
from a given game state. It can mean the maximum branching
factor, or the average branching factor. Korf [6] also distin-
guishes an edge branching factor (average number of outgoing
legal moves) from a node branching factor (average number
of new states reached through such moves). The difference
amounts to treating the game’s state space as a tree vs.
graph: the node branching factor avoids double-counting states
reachable through multiple paths.

4Paddle constants are defined in src/environment/ale_state.hpp.



TABLE I
MISMATCHES BETWEEN BFS AND ID ESTIMATES

OF BRANCHING FACTOR (TO 10K STATES)

Game BFS ID

pitfall2 5.04 6.48
space war 3.85 4.49
assault 4.51 4.55
solaris 7.61 7.64
ice hockey 1.09 1.09
frostbite 1.10 1.10
seaquest 1.05 1.05
tic tac toe 3d 1.09 1.09
hangman 1.13 1.13
freeway 1.08 1.08

This paper estimates average node branching factors by a
state-counting method. First, exhaustively count the number
of distinct states that can be reached, through any sequence of
actions, by a given frame number.5 Then use this cumulative
count to estimate the branching factor as follows.

Observe that, if a game’s average node branching factor
were b, the cumulative number of distinct game states s
observed by frame f should be approximately:

s ≈
f∑

i=0

bi

This holds exactly if the game tree is uniform, because there
will be exactly bf new states reachable at frame f . Otherwise,
it approaches equality as s grows large. We can rewrite this
equation such that solving for b reduces to finding the (positive
real) root of a polynomial:

(1− s) + b+ b2 + . . .+ bf = 0

Such problems can be solved quickly to high precision by
a number of computational root-finding methods. The results
in this paper use the uniroot method of R v4.1.0.

C. Determinism

In principle, Atari games are deterministic [5], [7]. In
practice, ALE has often not been very deterministic, due to a
mixture of bugs and the complexity of emulation. Bellemare
notes: “ALE determinism has always been brittle at best”.6

The patched version of ALE used in paper includes a
significant patch from Jesse Farebrother that improves ALE’s
determinism.7 It does solve most determinism problems, but a
few games still behaved strangely in preliminary experiments.

To test the reproducibility of estimating branching factor by
exhaustively counting distinct states, I compared the results of
textbook versions of iterative deepening (ID) and breadth first

5The state-counting code used for this paper, along with data and analysis
scripts, is available in the cog2021 branch of https://github.com/NelsonAU/
ale countstates/

6GitHub issue comment, January 12, 2020. https://github.com/mgbellemare/
Arcade-Learning-Environment/issues/291#issuecomment-573483143

7https://github.com/JesseFarebro/Arcade-Learning-Environment/tree/rng

search (BFS) on a validation run counting the first 10,000
distinct states. The two search methods agreed on 93 of 103
games. They disagreed on the 10 games shown in Table I,
sorted from largest to smallest disagreement.

For understanding branching factor specifically, this table is
perhaps not too concerning. Ninety-three games (those not in
the table) have exact agreement between ID and BFS. Of the
ten games that differ, the branching factor difference is below
0.1 in eight, and below 0.01 in six. Two do have noticeably
different estimates: pitfall2 and space_war.

The overall results for those two games are therefore worth
taking with a grain of salt. In addition, though it seemingly
does not pose a large problem for branching factor estimates
specifically, the fact that iterative deepening and breadth-
first searches may produce different results on a deterministic
domain is somewhat worrying for the reproducibility of other
analyses of the Atari state space.

D. Broken initial states

Two games, trondead and klax, have an additional
issue. Both start in a kind of “dead” state: the initial RAM
is not changed by any action (neither game uses the paddle
controller, so RAM is sufficient for state). That would imply
the games have only one total state, the initial one. This seems
to be caused by the emulator not having properly initialized
the RAM yet. The game trondead was fixed by taking one
no-op action before starting the real experimment. The game
klax seems to require more involved fix-up, so was excluded.

III. RESULTS AND DISCUSSION

This paper’s main goal is to compute the branching factor
estimates in Table II. These results are computed by counting
the distinct states reachable in each game from the initial state,
using breadth-first search, until the frame at which the count
exceeds 1 million. The experiments took about 86.5 core-hours
of CPU time on an Intel Xeon E5-2650 v4 @ 2.20GHz (avg.
of about 50 core-minutes per game)

The estimated branching factor is very low in a large number
of games. The median is 1.19, and 79 of 103 games (77%) are
below 2.0. And in a few dozen games, the branching factors
barely exceed 1.0.

Such low branching factors suggest that there may not
be significant decisions to be made every frame. An open
question is what specifically that means. Some existing work
has proposed making decisions less often than every frame,
using a hyperparameter called frame-skip [8]. The results here
suggest frame-skip may be justified, but don’t directly prove it.
Future work might look at whether branching factor correlates
with optimal choice of frame-skip. Alternately, if we first
find the optimal frame-skip for a game, we might recompute
effective branching factors for the slower “real” decision cycle.

A different explanation is that quick-reaction decision-
making is sometimes needed, and so we can’t simply use
a more granular decision-making cycle – but only some-
times. The branching factors reported here are averages; it



TABLE II
ESTIMATED BRANCHING FACTORS (TO 1MM STATES)

Game Actions Branching factor

haunted house 18 7.70
solaris 18 7.40
double dunk 18 7.15
zaxxon 18 5.01
boxing 18 3.92
assault 7 3.61
video pinball 9 3.42
yars revenge 18 3.17
road runner 18 3.17
laser gates 18 3.11
gravitar 18 3.11
darkchambers 18 3.10
sir lancelot 6 2.98
trondead 18 2.87
space war 18 2.86
enduro 9 2.66
word zapper 18 2.66
pitfall2 18 2.63
jamesbond 18 2.60
asteroids 14 2.42
robotank 18 2.32
private eye 18 2.32
tennis 18 2.18
centipede 18 2.14
earthworld 18 1.95
bank heist 18 1.88
basic math 6 1.88
air raid 6 1.81
backgammon 3 1.61
adventure 18 1.59
crossbow 18 1.59
entombed 18 1.58
skiing 3 1.58
berzerk 18 1.54
phoenix 8 1.49
asterix 9 1.48
montezuma revenge 18 1.45
donkey kong 18 1.41
carnival 6 1.41
pitfall 18 1.39
miniature golf 18 1.39
journey escape 16 1.38
human cannonball 18 1.35
elevator action 18 1.35
breakout 4 1.30
demon attack 6 1.30
alien 18 1.25
tutankham 8 1.24
fishing derby 18 1.24
keystone kapers 14 1.22
superman 18 1.20
atlantis2 4 1.19

Game Actions Branching factor

atlantis 4 1.19
lost luggage 9 1.19
up n down 6 1.17
riverraid 18 1.16
chopper command 18 1.13
frostbite 18 1.12
mario bros 18 1.11
ice hockey 18 1.11
galaxian 6 1.11
venture 18 1.10
krull 18 1.10
videocube 18 1.10
hero 18 1.10
battle zone 18 1.09
surround 5 1.08
seaquest 18 1.08
kaboom 4 1.08
hangman 18 1.07
othello 10 1.07
pacman 5 1.07
space invaders 6 1.07
flag capture 18 1.07
tetris 5 1.07
defender 18 1.06
pong 6 1.06
videochess 10 1.06
time pilot 10 1.06
et 18 1.05
video checkers 5 1.04
turmoil 12 1.04
bowling 6 1.04
wizard of wor 10 1.04
kangaroo 18 1.04
star gunner 18 1.04
beam rider 9 1.04
pooyan 6 1.03
amidar 10 1.03
mr do 10 1.03
ms pacman 9 1.03
kung fu master 14 1.03
qbert 6 1.03
crazy climber 9 1.03
name this game 6 1.03
frogger 5 1.02
casino 4 1.02
blackjack 4 1.02
freeway 3 1.02
king kong 6 1.01
koolaid 9 1.01
gopher 8 1.01
tic tac toe 3d 10 1.01

is likely that some games have significantly more frame-to-
frame variation in the branching factor than others. Future
work might look at additional ways of summarizing the state
space. Average branching factor is a single-number summary
of the rate of growth of a game’s state space. Other measures
might look at variability or asymmetry of growth.

Finally, the relationship between branching factor and dif-
ficulty is open. In board game AI, higher branching factor is
often taken to mean a more complex game (at least for AI!). Is
this true for videogames? My intention is to put forward some

numbers as a way of starting a discussion on that question.

ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation under Grant IIS-1948017. Computing resources were
provided by the American University High Performance Com-
puting System, which was funded in part by the National
Science Foundation under Grant BCS-1039497.

Thanks to Amy Hoover, David Dunleavy, and the anony-
mous reviewers for helpful suggestions.



REFERENCES

[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling,
“The arcade learning environment: An evaluation plat-
form for general agents,” Journal of Artificial Intelligence
Research, vol. 47, pp. 253–279, 2013.

[2] J. Schaeffer, “Checkers: A preview of what will happen
in chess?” ICCA Journal, vol. 14, no. 2, pp. 71–78, 1991.

[3] H. Matsubara, H. Iida, and R. Grimbergen, “Natural
developments in game research: From chess to shogi to
go,” ICCA Journal, vol. 19, no. 2, pp. 103–112, 1996.

[4] D. J. N. J. Soemers, E. Piette, M. Stephenson, and
C. Browne, Ludii User Guide, version 1.1.13, 2021.
[Online]. Available: https : / / ludii . games / downloads /
LudiiUserGuide.pdf.

[5] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Ve-
ness, M. Hausknecht, and M. Bowling, “Revisiting the
arcade learning environment: Evaluation protocols and
open problems for general agents,” Journal of Artificial
Intelligence Research, vol. 61, pp. 523–562, 2018.

[6] R. E. Korf, “Depth-first iterative-deepening: An optimal
admissible tree search,” Artificial Intelligence, vol. 27,
no. 1, pp. 97–109, 1985.

[7] M. J. Hausknecht and P. Stone, “The impact of deter-
minism on learning Atari 2600 games,” in Proc. AAAI
Workshop on Learning for General Competency in Video
Games, 2015, pp. 19–20.

[8] A. Braylan, M. Hollenbeck, E. Meyerson, and R. Miikku-
lainen, “Frame skip is a powerful parameter for learning
to play Atari,” in Proc. AAAI Workshop on Learning for
General Competency in Video Games, 2015, pp. 10–11.


