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Abstract—The standard for Deep Reinforcement Learning in
games, following Alpha Zero, is to use residual networks and
to increase the depth of the network to get better results. We
propose to improve mobile networks as an alternative to residual
networks and experimentally show the playing strength of the
networks according to both their width and their depth. We
also propose a generalization of the PUCT search algorithm that
improves on PUCT.

Index Terms—Monte Carlo Tree Search, Deep Learning, Com-
puter Games

I. INTRODUCTION

Training deep neural networks and performing tree search
are the two pillars of current board games programs. Deep
reinforcement learning combining self play and Monte Carlo
Tree Search (MCTS) [1], [2] with the PUCT algorithm [3] is
the current state of the art for computer Go [4], [5] and for
other board games [6], [7].

MobileNets have already been used in computer Go [8].
In this paper we improve on this approach evaluating the
benefits of improved MobileNets for computer Go using
Squeeze and Excitation in the inverted residuals and using
a multiplication factor of 6 for the planes of the trunk. We
get large improvements both for the accuracy and the value
when previous work obtained large improvements only for the
value.

Some papers only take the accuracy of networks and the
number of parameters into account. For games the speed of
the networks is a critical property since the networks are used
in an anytime search engine. There is a trade-off between the
accuracy and the speed of the networks. We experiment with
various depth and width settings of networks and find that
when increasing the size of the networks there is a balance to
keep between the depth and the width of the networks.

We are also interested in improving the Monte Carlo Tree
Search that uses the trained networks. We propose Generalized
PUCT (GPUCT), a generalization of PUCT that makes the best
constant invariant to the number of descents.
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The remainder of the paper is organized as follows. The
second section presents related works in Deep Reinforcement
Learning for games. The third section describes the Gener-
alized PUCT bandit. The fourth section details the neural
networks we trained. The fifth section gives experimental
results.

II. PREVIOUS WORK
A. Zero Learning

Monte Carlo Tree Search (MCTS) [1], [2] made a revolution
in Artificial Intelligence applied to board games. A second
revolution occurred when it was combined with Deep Rein-
forcement Learning which led to superhuman level of play in
the game of Go with the AlphaGo program [3].

Residual networks [9], combined with policy and value
heads sharing the same network and Expert Iteration [10] did
improve much on AlphaGo leading to AlphaGo Zero [4] and
zero learning. With these improvements AlphaGo Zero was
able to learn the game of Go from scratch and surpassed
AlphaGo.

There were many replication of AlphaGo Zero, both for Go
and for other games. For example ELF/OpenGo [11], Leela
Zero [12], Crazy Zero by Coulom and the current best open
source Go program KataGo [5].

The approach was also used for learning a large set of games
from zero knowledge with Galvanise Zero [13] and Polygames

[7].
B. Neural Architectures

AlphaGo used a convolutional network with 13 layers and
256 planes.

Current computer Go and computer games programs use
a neural networks with two heads, one for the policy and
one for the value as in AlphaGo Zero [4]. Using a network
with two heads instead of two networks was reported to bring
a 600 ELO improvement and using residual networks [9]
also brought another 600 ELO improvement. The standard for
Go programs is to follow AlphaGo Zero and use a residual
network with 20 or 40 blocks and 256 planes.

An innovation in the KataGo program is to use Global
Average Pooling in the network in some layers of the network
combined with the residual layers. It also uses more than two
heads as it helps regularization.

Polygames also uses Global Average Pooling in the value
head. Together with a fully convolutional policy, it make



Polygames networks invariant to changes in the size of the
board.

C. Mobile Networks

MobileNet [14] and then MobileNetV2 [15] are parameter
efficient neural network architectures for computer vision.
Instead of usual convolutional layers in the block they use
depthwise convolutions. They also use 1x1 filters to pass from
a small number of channels in the trunk to 6 times more
channels in the block.

MobileNets were successfully applied to the game of Go
[8]. Our approach is an improvement on this approach using
Squeeze and Excitation and a 6 fold increase in the number
of channels in the blocks. We also compare networks of
different width and depth and show some possible choices for
increasing width and depth are dominated and that it is better
to increase both width and depth when making the networks
grow.

III. IMPROVING THE SEARCH
A. PUCT

The Monte Carlo Tree Search algorithm used in current
computer Go programs since AlphaGo is PUCT: a bandit that
includes the policy prior in its exploration term. The bandit
for PUCT is:

N(s)

V(s,0) = Qls,a) + e x P(s,a) x =5y

where P(s,a) is the probability of move a to be the best
moves in state s given by the policy head, N(s) is the total
number of descents performed in state s and N(s,a) is the
number of descents for move a in state s.

B. Generalized PUCT

We propose to generalize PUCT replacing the square root
with an exponential and using a parameter 7 for the exponen-
tial. The Generalized PUCT bandit (GPUCT) is:

eTX log(N(s))

“T¥ N(s,a)

This is a generalization of PUCT since for 7 = 0.5 this is
the PUCT bandit.

V(s,a) = Q(s,a) + ¢ x P(s,a)

C. Experimental Results

We experimented with various constants and numbers of
evaluations for the PUCT bandit. We found that for small
numbers of evaluations the 0.1 constant was performing well.
In order to make the experiments stable we made PUCT with
numbers of evaluations starting at 16 and doubling until 512
and a constant of 0.1 play 400 games against PUCT with the
same number of evaluations but varying constants. The result
are given in Table I. The last line of the table is the average
winning rate. On average the 0.15 constant is the best and the
following constants have decreasing average.

TABLE I
EVOLUTION OF WIN RATES WITH THE CONSTANT AND THE NUMBER OF
DESCENTS. AVERAGE OVER 400 GAMES AGAINST THE 0.1 CONSTANT.
THE NUMBER OF DESCENTS IS d AND THE CONSTANT IS c.

< € (2.0;2.5)
d\c 005 0I5 020 025 030 035
16 5775 5025 4725 4650 43.50  44.00
2 4875 5400 4850 4875 5250  49.50
64 4525 5675 5500 5025 4775 44.25
128 33.50 49.00 5025 4750 48.00 47.25
256 3475 5025 5675 5150 4500 44.75
512 3550 5950 5675 6600 6125 60.25
avg 4258 5329 5242 5175 4967 4833

It is clear from this table that there is a drift of the best
constant towards greater values. We repair this undesirable
property with Generalized PUCT. In order to find the best 7
for Generalized PUCT we used the following algorithm:

Txlog(d) O‘5><log(d)|)
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where d is the budget (the first column of Table I), ¢4 is
the best PUCT constant for budget d (for example 0.15 for
d = 32).

Given the data in Table I the best parameters values we
found are 7 = 0.737 and ¢ = 0.057.

In order to verify that these values counter the drift in the
best constants of PUCT, we made PUCT with different budgets
and constants play against Generalized PUCT with 7 = 0.737
and ¢ = 0.057 and the same budget as PUCT. The results are
given in Table II. For small budgets the PUCT algorithm with
a constant of 0.2 is close to GPUCT but when the budget
grows to 1024 or 2048 descents, GPUCT gets much better
than PUCT. This is also the case for PUCT with the 0.1 and
a 0.15 constants.

TABLE II
COMPARISON OF PUCT WITH CONSTANTS OF 0.1, 0.15 AND 0.2 AGAINST
GPUCT WITH 7 = 0.737 AND ¢ = 0.057. 400 GAMES. THE NUMBER OF
DESCENTS IS d AND THE CONSTANT IS c. % € (2.0;2.5)

d 0.1 0.15 0.2
16 57.75 51.50 61.25
32 57.00 48.50 54.75
64 56.00 45.25 48.50
128 48.75 49.50 45.00
256 59.50 55.00 55.00
512 55.00 61.25 53.00
1024 73.75 63.00 53.75
2048 67.00 65.50

Our findings are consistent with the PUCT constant used in
other zero Go programs. For example ELF uses a 1.5 constant
[11] for much more tree descents than we do. Our model fits
this increase of the value of the best constant when the search
uses more descents.

We did not try to tune the constants for GPUCT and still
get better results than PUCT. Some additional strength may
come from tuning the constants instead of only using the two
constants coming from optimizing on the data of Table 1.



Note that having the same constant for different budgets can
also be useful for programs that use pondering or adaptive
thinking times since in these cases the number of playouts
is not fixed in advance. Moreover, always using the same
constant is also more convenient for tuning the constant.

IV. IMPROVING THE MODEL

In this section we start describing the dataset we built. We
then detail the training and the inputs and labels. We also
explain how we have added Squeeze and Excitation to the
MobilNets and how we experimented with various depth and
width of the networks. We finally give experimental results for
various networks.

A. The KataGo dataset

KataGo is the strongest available computer Go program.
It has released the self-played games of 2020 as sgf files.
We selected from these games the games played on a 19x19
board with a komi between 5.5 and 7.5. We built the KataGo
dataset taking the last 1,000,000 games played by KataGo.
The validation dataset is built by randomly selecting 100,000
games from the 1,000,000 games and taking one random state
(i.e. one random board position) from each game. The games
of the validation set are never used during training.

The KataGo dataset is a better dataset than the ELF and
the Leela datasets used in [8]. KataGo plays Go at a much
better level than ELF and Leela. The networks trained on the
KataGo dataset are trained with better data.

B. Training

Networks are trained with Keras with each epoch containing
1,000,000 states randomly taken in the KataGo dataset.

The evaluation on the validation set is computed every
epoch. The loss used for evaluating the value is the mean
squared error (MSE) as in AlphaGo. However we train the
value with the binary cross entropy loss. The loss for the policy
is the categorical cross entropy loss. We evaluate the policy
according to its accuracy on the validation set.

The batch size is 32 due to memory constraints. The
annealing schedule is to train with a learning rate of 0.0005
for the first 100 epochs, then to train with a learning rate
of 0.00005 for 50 epochs, and then with 0.000005 for 50
epochs, and finally with 0.0000005 for another 50 epochs.
An epoch takes between 3 minutes for the smallest network
and 30 minutes for the larger ones using a V100 card.

All layers in the networks have L2 regularization with a
weight of 0.0001. The loss is the sum of the value loss, the
policy loss and the L2 loss.

C. Inputs and Labels

The inputs of the networks use the colors of the stones, the
liberties, the ladder status of the stone, the ladder status of
adjacent strings (i.e. if an adjacent string is in ladder), the last
5 states and a plane for the color to play. The total number of
planes used to encode a state is 21.

The labels are a O or a 1 for the value head. A 0 means
Black has won the game and a 1 means it is White. For the

policy head there is a 1 for the move played in the state and
0 for all other moves.

D. Squeeze and Excitation

We add Squeeze and Excitation [16] to the MobileNets so
as to improve their performance in computer Go. The way we
do it is by adding a Squeeze and Excitation block at the end
of the MobileNet block before the addition.

The squeeze and excitation block starts with Global Average
Pooling followed by two dense layers and a multiplication of
the input tensor by the output of the dense layers.

We give here the Keras code we used for this block:

def SE_Block(t, filters ,ratio=16):

se_shape = (1, 1, filters)

se = GlobalAveragePooling2D ()(t)

se = Reshape(se_shape)(se)

se = Dense(filters // ratio ,
activation="relu’,
use_bias=False )(se)

se = Dense(filters ,
activation=’sigmoid’,
use_bias=False )(se)

x = multiply ([t,se])

return x

E. Depth and Width of Mobile Networks

In order to improve the performance of AlphaGo Zero their
authors made the network grow from 20 residual blocks of
256 planes to 40 residual blocks of 256 planes.

In this paper we claim that MobileNets with Squeeze and
Excitation give much better results than residual networks
for the game of Go and we also claim that to improve the
performance of a network it is better to make both the number
of blocks (i.e. the depth of the network) and the number of
planes (i.e. the width of the network) grow together.

V. EXPERIMENTAL RESULTS
A. Networks with Less than One Million Parameters

All the networks we test use two heads, one for the policy
and one for the value. The Alpha Zero like network uses fully
connected layers both in the policy and the value head as
in AlphaGo and descendants. When restricted to one million
parameters it is detrimental since it uses a little less than
300,000 parameters only for the two heads. The remaining
of the AlphaZero network is 10 blocks of 44 planes. For
all the networks we optimize the number of parameters so
as to be as close to one million parameters as possible. The
Polygames network use a fully convolutional policy head, with
no parameters in the policy head. It also uses Global Average
Pooling in the value head before a fully connected layer of 50
outputs and then a fully connected layer with one output for
the value. The Polygames network uses 13 residual blocks of
64 planes. The Mobile and the Mobile+SE networks use 17
mobile blocks of 384 planes with a trunk of 64 planes and the
Polygames heads.
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Fig. 2. The evolution of the value validation MSE loss for the different
networks with less than one million parameters on the KataGo dataset.

The evolution of the policy accuracy for the four networks
is given in Figure 1. Polygames architecture gives better
results than the Alpha Zero architecture. Mobile is better than
Polygames and Mobile+SE is better than Mobile alone.

Figure 2 gives the evolution of the MSE validation loss
of the value during training. Again Mobile+SE is better than
Mobile. Mobile is better than Polygames and Polygames is
better than AlphaZero.

B. Training Large Networks

Multiple MobileNets and two Polygames/Alpha Zero like
residual networks were trained on the KataGo dataset. It took
a total of more than 10,000 hours of training using V100 cards.

We trained a 20 blocks and a 40 blocks residual network
with the Polygames heads. The results for these two networks
are given in Table III.

We trained many MobileNets with Squeeze and Excitation
and the Polygames heads. The number of parameters of the
networks according to their width and depth are given in Table
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Fig. 4. Networks dominated by the accuracy Pareto front.

IV. The GPU speed of the networks are given in Table V.
The CPU speed of the networks are given in Table VI. The
accuracy reached on the validation set at the end of training
are given in Table VII. The MSE validation loss of the value
is given in Table VIIIL.

Figure 3 gives the Pareto front of the networks accord-
ing to GPU speed and accuracy. Figure 4 gives the net-
works that are dominated by other networks. The domi-
nated networks are residual.20.256, residual.40.256, se.16.192
,5€.16.224, se.32.224, se.48.64, se.48.96, se.64.64, se.64.96,
se.80.64, se.80.96. We can see in this list that networks that
are either to shallow and too wide or to deep and too narrow
are dominated. It means that there is a balance to keep between
the depth and the width of the networks. Networks that are
shallow and wide or networks that are deep and narrow are
dominated. The optimal ratio fj;gfz seems to lie somewhere
between 2.67 and 6.00. But we have not enough data to assess
whether it stays in the same range for greater depth and width.

The accuracy of our MobileNets are much better than the
accuracy previously reported for MobileNets that were close to




TABLE III
PROPERTIES OF RESIDUAL NETWORKS.

Network Parameters ~ Accuracy MSE  GPU Speed with Batch=32  CPU Speed with Batch=1
residual.20.256 23,642,469 55.12 0.1667 21.30 6.04
residual.40.256 47,266,149 55.21 0.1680 13.54 3.42
TABLE IV
PARAMETERS ACCORDING TO WIDTH AND DEPTH.
w\ d 16 32 48 64 80
64 908,197 1,811,365 2,714,533 3,617,701 4,520,869
96 1,958,213 3,908,933 5,859,653 7,810,373 9,761,093
128 3,405,541 6,801,125 10,196,709 13,592,293
160 5,250,181 10,487,941 15,725,701 20,696,901
192 7,492,133 14,969,381 22,446,629 29,923,877
224 10,131,397 20,245,445
TABLE V
SPEED ACCORDING TO WIDTH AND DEPTH. NUMBER OF BATCHES OF SIZE
32 PER SECOND ON GPU (RTX 2080 Tr).
w\ d 16 32 48 64 80 96 0175 J
64 28.17 2528 1939 1830 1620 14.13
96 26.61 2165 1656 1351 11.62 9.90
128 2525 17.65 1332 10.71 9.07 7.71 0.170 4 se.16.64
160 21.82 1437 10.44 8.18 6.87 5.94
192 19.78  12.33 9.02 6.97 5.60 4.81 *
224 1593 1033 739 569 466  3.83 0165 4 * ge1e9e
256 14.08 8.15 6.26 4.81 3.95 3.32 § ’ ggg:qga
se.16.160
TABLE VI 0.160 % gegroggua o
e, 838128
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64 2553 1557 1279 983 793 o - " - -
96 19.80  11.57 939 754 5091 Speed
128 14.48 8.85 6.89 549
160 6.86 4.37 3.83
192 5.87 3.61 2.52 1.88 Fig. 5. The value Pareto front.
224 5.57 3.70

the accuracy of residual nets for similar speeds [8]. MobileNets
that have the same GPU speed as the 20 blocks residual
network have an accuracy close to 57% whereas the residual
net is close to 53%. Moreover the KataGo dataset has better
quality games and is more elaborate than the datasets used in
[8]. It is even better when comparing the 40 blocks residual
network to MobileNets with the same speed.

Figure 5 gives the value Pareto front. Figure 6 gives the
networks dominated by the value Pareto front. The domi-
nated networks are residual.20.256, residual.40.256, se.16.224,
se.32.224, se.48.64, se.64.96, se.80.64 and se.80.96. Again we
see that shallow and wide networks as well as deep and narrow
networks are dominated.

The residual networks are largely dominated by squeeze and
excitation MobileNets both for the accuracy and for the value.

C. Extrapolation of the Accuracy

In order to extrapolate the accuracy of the bigger networks
we made a regression on a formula to estimate the accuracy
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Fig. 6. Networks dominated by the value Pareto front.



TABLE VII
ACCURACY ACCORDING TO WIDTH AND DEPTH.

w\ d 16 32 48 64 80
64 5398 5594 5698 57.77 58.21
96 5548 57.78 5851 5920 59.62
128 56.52 5856 59.40  60.06
160 57.00 59.26 60.16
192 57.65 59.73 6097 61.28
224 58.01  60.05
TABLE VIII
MSE ACCORDING TO WIDTH AND DEPTH.
w\ d 16 32 48 64 80
64 0.1695 0.1637 0.1614 0.1602  0.1592
96 0.1657 0.1604  0.1580 0.1572  0.1563
128 0.1631  0.1583  0.1566  0.1553
160 0.1615 0.1570  0.1551
192 0.1603  0.1560 0.1536  0.1532
224 0.1595  0.1558

given the depth and the width of the networks. We assume
that the increase in accuracy is logarithmic with the size of
the network and we find the appropriate parameters using this
algorithm:

ar gming, py ps psps (Sdw|Pp—— —— — a4 w —A(d, w) ‘2)
p3 D4

where d is the depth, w the width and A(d,w) the value
of the accuracy in Table VII. The best parameters values we
found are p = 64.2, p; = 70.5, p3 = 1290 and ps = 390
giving a minimal error of 1.39 for the 23 accuracies.

Table IX gives the Pareto front for the extrapolated ac-
curacies and the accuracies we experimentally found. The
extrapolated accuracies are in parenthesis. The non dominated
accuracies according to the speed and accuracies of the other
networks are in bold. We can observe that the trend of
balancing the depth and the width of the networks continues
for extrapolated values.

TABLE IX
EXTRAPOLATION OF THE ACCURACY PARETO FRONT.
w\ d 16 32 48 64 80
64 53.98 55.94 56.98 57.77 58.21
96 55.48 57.78 58.51 59.2 59.62
128 56.52 58.56 59.40 60.06 (60.53)
160 57.00 59.26 60.16 (60.74) (61.02)
192 57.65 59.73 60.97 61.28 (61.36)
224 58.01 60.05 (60.97) (61.37) (61.62)
256 (58.18)  (60.41) (61.18) (61.57) (61.81)

D. Evolution of the Accuracy and of the Value Loss During
Training

Figure 7 gives the evolution of the accuracy of our best
network against the evolution of the accuracy of a state of the
art residual network. We can observe that training starts better
for our network and that it improves more during training.
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Fig. 7. The evolution of the policy validation accuracy for the best SE network
and the 40 blocks residual network on the KataGo dataset.
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Fig. 8. The evolution of the value validation MSE loss for the best SE network
and the 40 blocks residual network on the KataGo dataset.

Figure 8 gives the same evolution for the mean squared
error of the value and again the residual network is largely
dominated.

E. Making the Networks Play

We now make the networks play Go. We first test the
strength of the networks only using the policy to play. Net-
works then plays instantly and still play at the level of high
amateur Dan players. People enjoy playing blitz games on
the internet against such networks. Table X gives the result
of a round robin tournament between the policy networks.
The name of a network is composed of the architecture (’se’
for MobileNet with Squeeze and Excitation and ’residual’ for
residual networks) followed by the number of blocks, the
number of planes in the inverted residual block and the number
of planes in the trunk. For example se.64.1152.192 means
a MobileNet with 64 blocks of 1152 planes and a trunk of
192 planes. For residual networks, residual.40.256 means a
residual network of 40 blocks and 256 planes. As expected



TABLE X
ROUND ROBIN TOURNAMENT BETWEEN POLICIES.

Network Winrate ﬁ
se.64.1152.192 0.833 0.054
se.48.1152.192 0.812 0.056
$€.48.960.160 0.792 0.059
s€.64.576.96 0.729 0.064
se.32.1344.224 0.688 0.067
s€.64.768.128 0.688 0.067
s€.48.768.128 0.646 0.069
se.32.1152.192 0.604 0.071
5€.80.576.96 0.562 0.072
5€.48.576.96 0.542 0.072
se.64.384.64 0.542 0.072
se.16.1344.224 0.542 0.072
$e.32.960.160 0.521 0.072
se.16.1152.192 0.500 0.072
$€.32.768.128 0.458 0.072
se.80.384.64 0.417 0.071
residual.40.256 0.375 0.070
$€.32.576.96 0.375 0.070
se.48.384.64 0.375 0.070
s€.16.960.160 0.354 0.069
se.32.384.64 0.292 0.066
se.16.768.128 0.271 0.064
s€.16.576.96 0.229 0.061
residual.20.256 0.229 0.061
se.16.384.64 0.125 0.048

the se.64.1152.192 network, the one with the best accuracy has
the best winning rate and the residual networks have results
much worse than the best MobileNets.

The se.64.1152.192 network played games on the internet
Kiseido Go Server (KGS) using only the policy to play and
playing its moves instantly. Many people play against the
network making it busy 24 hours a day. It reached a strong 6
dan level and it is still improving its rating, winning 80% of
its games. It is the best ranking we could reach with a policy
network alone, the previous best ranking was 5 dan with a
mobile network [8].

We now make the networks play using GPUCT and 32 de-
scents per move. All networks play a round robin tournament.
Table XI gives the results for all networks. The se.64.1152.192
is again the best network and the residual networks are better
than the smallest MobilNets but still far behind the best
MobileNets.

In the last experiment we make all the networks use the
same thinking time of 10 seconds per move on CPU. Large and
slow networks make less descents than small and fast networks
in this experiment. So there is a balance between the gain of
accuracy of the policy and the improvement of the value due
to increasing the size of the network and the slowdown due
to the increased time for a forward pass. Results are given
in Table XII. Interestingly the se.64.1152.192 network is not
the best network anymore. The residual networks are still way
behind. We observe the impact of the balance between the size
of the network and its speed.

TABLE XI

MAKING ALL NETWORKS PLAY A ROUND ROBIN TOURNAMENT WITH 32

DESCENTS AT EACH MOVE.

Network Winrate
se.64.1152.192 0.812
$¢.48.960.160 0.812
se.48.1152.192 0.792
5¢.80.576.96 0.771
se.64.768.128 0.708
se.32.1344.224 0.667
se.32.1152.192 0.646
$€.32.960.160 0.646
se.48.576.96 0.646
$e.64.576.96 0.625
se.48.768.128 0.604
se.32.768.128 0.521
se.64.384.64 0.521
se.80.384.64 0.521
se.16.1152.192 0.396
$e.16.960.160 0.375
se.16.768.128 0.333
$e.32.576.96 0.333
se.48.384.64 0.333
se.16.1344.224 0.333
residual.40.256 0.271
residual.20.256 0.250
se.32.384.64 0.250
se.16.576.96 0.229
se.16.384.64 0.104

TABLE XII

N

0.056
0.056
0.059
0.061
0.066
0.068
0.069
0.069
0.069
0.070
0.071
0.072
0.072
0.072
0.071
0.070
0.068
0.068
0.068
0.068
0.064
0.062
0.062
0.061
0.044

MAKING ALL NETWORKS PLAY A ROUND ROBIN TOURNAMENT WITH 10

SECONDS OF CPU AT EACH MOVE.

Network

se.48.768.128
se.64.384.64
se.64.576.96
se.32.768.128
se.48.960.160
$¢.80.576.96
se.32.1344.224
se.64.1152.192
se.32.1152.192
$e.32.960.160
se.16.960.160
$e.48.576.96
se.80.384.64
se.48.1152.192
se.32.384.64
se.16.1152.192
$e.32.576.96
se.48.384.64
se.64.768.128
se.16.1344.224
se.16.768.128
se.16.576.96
se.16.384.64
residual.20.256
residual.40.256

Winrate

0.688
0.646
0.625
0.604
0.604
0.604
0.583
0.583
0.562
0.562
0.562
0.542
0.542
0.521
0.521
0.521
0.500
0.500
0.500
0.500
0.479
0.333
0.229
0.104
0.083

o

N

0.067
0.069
0.070
0.071
0.071
0.071
0.071
0.071
0.072
0.072
0.072
0.072
0.072
0.072
0.072
0.072
0.072
0.072
0.072
0.072
0.072
0.068
0.061
0.044
0.040



VI. CONCLUSION

We proposed a generalization of the PUCT bandit of Al-
phaGo and Alpha Zero so as to make it invariant to the number
of descents. Experimental results show it is less sensitive to the
budget than usual PUCT. We also proposed improvements to
MobileNets and show that they give much better results than
the commonly used residual networks. We made a detailed
analysis of the balance between the depth, the width and the
speed of MobileNets. We also made the networks play in order
to evaluate their strengths.

In future work we plan to use MobileNets with Squeeze
and Excitation in a Deep Reinforcement Learning framework,
using the Expert Iteration algorithm to train the networks. We
also plan to use Expert Iteration combined with GPUCT and
MobileNets for various games and optimization problems.
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