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Abstract—There are relatively few conventions followed in
reinforcement learning (RL) environments to structure the action
spaces. As a consequence the application of RL algorithms to
tasks with large action spaces with multiple components require
additional effort to adjust to different formats. In this paper we
introduce Conditional Action Trees with two main objectives: (1)
as a method of structuring action spaces in RL to generalise
across several action space specifications, and (2) to formalise a
process to significantly reduce the action space by decomposing
it into multiple sub-spaces, favoring a multi-staged decision
making approach. We show several proof-of-concept experiments
validating our scheme, ranging from environments with basic
discrete action spaces to those with large combinatorial action
spaces commonly found in Real Time Strategy (RTS) style games.

Index Terms—action spaces, reinforcement learning, factorised
policies, multi-agent, real-time strategy, actor-critic methods.

I. INTRODUCTION

Training reinforcement learning agents to solve environ-
ments with large, complex action spaces is a notoriously
difficult task [1]. Several methods have been proposed to try
to either reduce the space of actions by re-using model outputs
for different action types [2], [3], provide side information to
facilitate the exploration of large numbers of possible actions
[4]–[6], or simplify the manipulation of the action spaces
through action embeddings via mechanisms such as attention
and graphs networks [7]–[9]. In this paper we propose a
Conditional Action Tree as a paradigm to generalise several
of these methods. Conditional Action Trees can be used
to describe action spaces in a way that naturally reduces
the required policy model output size whilst also allowing
action parameterisation and action reduction using invalid
action masking. We show how many of the action spaces
frequently found in single, multi-agent and Real Time Strategy
(RTS) games can be described using Conditional Action Trees.
We also show that agents that have access to Conditional
Action Trees as part of their state observations can learn high
performing policies. We present several experiments where
we purposefully modify the action space of a game environ-
ment to include several increasingly more complex features,
whilst keeping the observation space and game mechanics
consistent. In these experiments we show that agent operating

with Conditional Action Trees maintains the performance of
those operating with common action space constructions while
significantly compressing the number of outputs, or logits,
required to furnish the policy distribution.

In addition to these experiments we also perform several
ablation studies to show various possible modifications to the
Conditional Action Tree formulation and how they can affect
training.

The results suggest that the Conditional Action Trees could
offer an alternative to generically handle complex combina-
torial action spaces with multiple components. As part of
this work, Conditional Action Trees are made available for
all environments in the Griddly Framework [10].

II. BACKGROUND

In a discrete action setting, reinforcement learning (RL) has
typically been adapted to environments with simple and small
action spaces. Accordingly the implications that the size could
have for the agent have been relatively overlooked. Let us
start by considering a single actor-critic agent with a small
repertoire of actions that consists in motion operations (e.g.
up, down, left and right). In this setting, a policy will provide
a probability distribution weighting each of the four directions.
The agent then can sample this policy to select which action
to apply to the environment. However these small manageable
action spaces tend to be confined to either simple games
or toy environments. The situation changes as we move to
tasks requiring combinatorial actions such as in robotics [11],
finance [12] and games that involve action spaces with several
moving parts and interdependent components. For the latter,
RTS games provide instances of actions spaces that can be
particularly complicated. To consider a few examples, Star-
Craft II [3], µRTS [13] and BotBowl [14] allow control of
multiple individual units either by selecting their locations
and then issuing commands to those units. Some of the units
can perform certain types of actions that are not accessible
to other units. Furthermore, some of those actions in turn
require additional parameters. For instance, selecting a combat
unit that can target several potential locations in the game
requires to specify them. Moreover, the particular type of
combat actions might be tied or dependent on the unit selected.
Several techniques have been proposed to handle this kind of978-1-6654-3886-5/21/$31.00 ©2021 IEEE



action spaces. [1] proposes several ways of shaping actions
spaces and their relative advantages and disadvantages across
several games. For the rest of this section we briefly review
two strategies for action space shaping that have been recently
proposed in the literature.

A. Parameterised Actions

Parameterised action spaces commonly take the form of an
action a made from two components c0, c1 where the first
component is a type of action and the second is a parameter.
In [2], this action space shaping strategy was applied in the
RoboCup 2D Half-Field-Offense environment to beat the state-
of-the-art hard-coded bots. The first action component defines
whether the agent will dash, turn, tackle or kick. The second
component defines continuous parameters for each of these
actions. Four sets of parameters are used, however only one
of them is used at each time-step depending on the action type
selection. In larger environments such as RTS games, requiring
parameters for every action quickly becomes infeasible as the
number of action types increases. To contextualise the effect
this can have for the size of the policy representation consider
the example of BotBowl. The game contains 17 action types
that require an x and y position parameter. If we proceeded to
parameterise the action space, 17 sets of x,y positions would
need to be predicted at each time step. From the point of view
of an RL agent, the problem is exacerbated if we consider that
the policy would have to specify each combination of x and y
position. In a traditional BotBowl map (25×5) this would lead
to a policy that requires to output 17+ 17× 25× 15 = 6, 382
logits (i.e. unnormalised scores) to parameterise these actions.
The number grows exponentially with the map size, a 30×30
map for example, would require 17+ 17× 30× 30 = 15, 317
logits.

B. Autoregressive Policies

The curse of dimensionality and the combinatorial explo-
sion faced in certain action spaces renders the typical action
selection approach highly impractical. An alternative comes
from reflecting on the structural relations that exist in complex
action spaces. For example, when comparing among all the
potential actions that an agent could choose to enact, not all
of them will belong to the same level of abstraction. Some
actions will be more self-contained, whereas others may need
a group of actions to be properly contextualised. Actions can
also manifest to an agent as affordances, that is, arising from
its coupling with the environment at a particular moment.
Moreover, some actions also exert some degree of influence
on each other, for instance mutual exclusivity or forming other
types of associations.

It is possible to capture some of these notions more con-
cretely by representing a policy in a more expressive manner.
In [3] the authors suggest an autoregressive model of the form:

π(a|s) = π(c0, . . . , ck|s) =
K∏
k=0

π(ck|c<k, s) (1)

c1c0 ck

s

· · ·

Fig. 1: An autoregressive policy can be graphically represented
as a directed acyclic graph where we can illustrate the depen-
dency of a component ck on the previous components c<k.

to decompose the action space into a sequence of sub-
spaces. Instead of obtaining a in the full action space, an agent
samples multiple sub-actions or components ck that depend on
the previous c<k choices (illustrated in Fig. 1). [3] explores the
usage of conditional policies within the context of StarCraft
II. However they relax the constraints imposed by the autore-
gressive model opting for a policy π(a|s) =

∏K
k π(ck|s). In

[15], the approach is extended substantially as the architecture
considers a conditional policy that captures the context of
previous actions through different embeddings. The action sub-
space decomposition is facilitated by an invalid action masking
scheme to prevent the agent from selecting actions that are
invalid or cannot be performed in the current state, where a
function identifier c0 determines the number of subsequent
function arguments c1 . . . ck. From the point of view of the
implementation and the capacity required by a policy, this form
of decomposition implies a significant reduction in the number
of actions that are effectively considered. Here we also take
an approach that places an invalid action masking scheme as a
crucial component to tackle the issue of policy decomposition
and describe it in more detail in Section III-C.

III. CONDITIONAL ACTION TREES

Conditional action trees (CAT) offer a generalisation of
discrete action spaces to provide an interpretation of action
selection as the process of traversing along a chained sequence
of action components with different levels of dependency. To
complete the characterization of a Conditional Action Tree we
first need to define three main elements: Action Trees, Valid
Action Trees, and finally Conditional Masking.

A. Action Trees

We start by formulating a single action as a list of a fixed
number of components a = {c0, c1...cn}, where ck ∈ Ck.
That is, each component takes a value from a set of pos-
sible elements. Actions in the same component level are
mutually exclusive. For example, move left and move right
must be options within a single component Ck. The possible
values of Ck are determined first, by the specification of
environment, and second by the values of previous selections
Ck = f(c0, c1, ..., ck−1).

These restrictions naturally allow the components to form a
tree structure, where a path from the root node to any leaf
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Fig. 2: An action tree consisting of nine possible actions and
two components C0 = 3 and C1 = 4. The possible action are
move or attack in any of the four directions, attack in any of
the four directions and finally to use a food item. Move, Attack
and Use cannot be performed at the same time.

forms the action. An example of an action tree is shown
in Fig. 2. Note that under this specification an environment
requiring the agent to specify a single atomic action at each
time step results in an action tree with a single component,
a = {c0}. Parameterised action spaces that contain an action
type and a discrete action parameter can also be described by
action trees with two components, a = {c0, c1}.

Previous work has touched upon the idea of using trees
as a formalization of action spaces with multiple components
such as in [16], where the tree structure is referred to as
a Hierarchical Action Space. Other works have used action
spaces that are similar to those used in this paper as examples
of action trees. The Global Action Space in [17] for example
can also be described as an action tree.

B. Valid Action Trees

We define a valid action tree as a sub-tree of an action tree
at a particular environment state, where the nodes of the sub-
tree correspond to possible actions in that state. For example,
consider the tree in Fig. 2, an agent in a state where there
are no enemies surrounding it and does not have food in its
inventory has a valid action tree only consisting of the left-
most move branch and its children.

In the context of reinforcement learning, a valid action tree
is provided by the environment at each time step. Valid action
trees are then used to construct the Invalid Action Masks which
are described next in Section III-C. These masks index the
child nodes that are available in the full action tree.

C. Invalid Action Masking

Invalid action masking (IAM) [13] is a technique used
to stop agents from sampling actions that are invalid in a
particular game state. IAM is useful in environments where
the action space is large, and some of the actions are only
available in certain states. For example in RTS games [3],
[4], [15], the agent’s action may consist of selecting a unit or
units from a large list, and then issuing commands to those
units. The commands sent to those units can also be unique to
particular unit types. This results in a large number of options
in the action space that are invalid. In policy gradient and
actor critic methods in deep RL, IAM is applied to the logits,
l ∈ Rn, produced by a neural network by replacing the logits
corresponding to invalid actions with large negative numbers.

This forces the probability of selecting those actions to tend
towards 0.

For instance, let us assume a compound policy consti-
tuted by K independent components, such that π(a|s) =∏K
k π(ck|s). This type of action policy could be described

by:

π(a|s) = [π(c0|s), π(c1|s), . . . , π(ck|s)] (2)

For each of the components in equation 2, a value is selected
following a softmax sub-policy. We can create a mask to
modify the logits to assign large negative numbers to actions
deemed as non-viable or inaccessible. The modified logits
result in l̂ = l + m where −∞ < mi � 0. It then follows
that the masked logits alter the probability of a value of ci of
being sampled:

π(ci|s) =

{
0 if mi −→ −∞
eli∑N
j elj

if mi = 0

In PySC2 [3], µRTS [5] and BotBowl [14] action masks can
be constructed from lists of available actions that are provided
by the environment implementations, however, these action
masks do not take into account that the masking of some sub-
actions can depend on the sampled values of others. As an
example, in an environment with units that are selected by
coordinates and the set of available actions for each unit is
disjoint, the mask for the available actions is dependent on the
selection of the unit. Masks that are naively constructed using
these lists can still lead to select actions that are not available,
as the list does not take into account the selection of the
unit. [18] introduces a two-step method for generating masks
where the unit location is selected using masked logits and
then a second mask is generated based on that selection. This
significantly improves training as the mask for unit actions is
dependent on the selected unit.

D. Conditional Masking

The two-step method of masking in [18] can be generalised
to an n-step masking method when the environment provides
a valid action tree as described in Section III-B. We refer
to this generalization of action selection and masking as a
Conditional Action Tree (CAT).

A CAT is constructed by adding a mask at each node of a
valid action tree, defining which child nodes of the complete
action tree are available. An action is constructed by starting
at the root node of the valid action tree and selecting a child
node from the masked distribution. This child node contains
the mask to use for the next component. Thus, first the mask
is obtained as mk+1 ∼ p(mk+1|ck), to produce a masked
sub-policy to sample a component ck+1 ∼ p(ck+1|mk+1, s).
This process continues until all action components have been
sampled. The full compound policy, as illustrated in Fig. 3, is
factorised as:

π(a|s) = p(m0)

K∏
k

p(mk+1|ck)p(ck|mk, s) (3)
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Fig. 3: A graphical model representing the policy as a joint
distribution of masks m and components c. In a CAT, a
component c0 is sampled from the options allowed by the
mask m0. The next mask m1 depends on c0 which in turn
constrains the next possible component c1. The process is
repeated until all ck have been sampled.

IV. ACTOR-CRITIC WITH CONDITIONAL ACTION TREES

A. IMPALA

The description of the action spaces provided by CAT is
naturally agnostic to the choice of the RL algorithm. We
examine this perspective within the context of IMPALA, an
actor-critic based framework introduced in [19]. Unlike A3C
[20] or other similar distributed approaches where the agents
share their gradients, IMPALA considers the acting and the
data collection as independent from the learning step. That is,
it separates the learners who are in charge of computing the
gradients and sharing the most recent parameters, from the
actors whose role is to execute a policy, only sharing back
with the learners the observations gathered during an episode.

B. V-trace and masking

As an actor-critic, IMPALA learns Vθ(s) parameterised
by θ to be used as part of the baseline, and a policy πφ
parameterised by φ. Each actor executes their own policy µ by
retrieving the latest policy π from the learner. Meanwhile the
learner updates continuously the parameters θ and φ. As the
process occurs in parallel and in a decoupled manner, there
will be a discrepancy between the policy µ from an actor and
π. Namely, the trajectories (st, at, rt . . . ) collected by an actor
come from a policy µ that has become obsolete with respect to
π. IMPALA proposes to address these off-policy corrections
by introducing a v-trace target,

vt = V (st) +

t+n−1∑
i=t

γi−t
( i−1∏
j=t

uj
)
δiV (4)

where δiV corresponds to a temporal difference term,

δiV = ρi(ri + γV (si+1)− V (si))

the v-trace adjusts the weight of the contributions provided
by the actors through the presence of two truncated importance
sampling weights ρi = min(ρ, πµ ) and uj = min(u, πµ ). Thus

the second part of v-trace target acts as a correction term.
For example assuming p and u ≥ 1, if µ > π the learner
would downweight the observations and actions followed by
the actor. Intuitively, if this ratio tends towards a low number
it indicates that the policies have diverged significantly. The
extent to which more recent δiV affect the update of a previous
V is captured by the product of ut:i−1 where u serves as a
hyperparameter controlling the convergence speed towards V .
In turn, ρ determines to which V we converge. A ρ close
to 0 leads convergence towards a V µ as the correction term
becomes negligible in the v-trace target.

It is important to note that for CAT we do not just consider a
single set of importance sampling weights {ρ, u} but instead
we must account for multiple corrections dependent on the
various sub-policies such that ρk,i = min(ρ, π(ck|mk,s)

µ(ck|mk,s)
) and

uk,j = min(u, π(ck|mk,s)
µ(ck|mk,s)

) for a sub-policy k. Moreover, we
must synchronize the masks applied to ck in both π and µ.
Similarly, for updating the policy parameters φ we adapt,

ρk,i∇φ log πφ(ck|mk, s)(rt + γvt+1 − Vθ(xt))

to consider the inclusion of the masks and to propagate the
gradients to all sub-policies.

V. EXPERIMENT SETTING

A. The "Clusters" Game

We perform our experiments in the Clusters environment
provided by Griddly [10]. Clusters1 is a game in which
coloured boxes must be clustered together in specific locations
defined by the environment level. The environment contains
five levels with a set of movable coloured boxes and a single
fixed-position block of each colour. The agent receives a
reward of +1 each time it pushes a coloured box against a
fixed location block of the same colour. When a coloured box
is pushed against its respective block, it becomes a block itself.
If all boxes are converted to blocks the episode is completed
successfully. Some levels also contain spikes which give the
player a negative reward (-1) and terminate the episode if the
agent or any boxes collide with them.

The observation space of the agent consists of a 5× 5 grid
where the agent itself is situated at the center-bottom of the
grid as shown in Fig. 4. Each cell of the 5×5 grid contains 10
binary values describing whether an object is present in each
cell. The 10 objects are as follows: three (red, green, blue)
coloured boxes and three associated blocks, walls, spikes, the
agent and finally a broken box which only appears in the final
state of an episode if a coloured box is pushed against spikes.

B. Action Space Variations

By default, the agent’s movement is restricted to moving
forward one position, or rotating ±90 degrees every step.
Boxes are "pushed" by the agent when the agent attempts to
move into the cell occupied by the box.

1https://griddly.readthedocs.io/en/latest/games/Clusters/index.html



(a) Global

(b) Agent

Fig. 4: An example of a level in the Clusters game, showing
(a) the entire game and (b) the viewpoint of the agent.

In our experiments, we modify these action spaces to
make it increasingly more complex whilst keeping the game
mechanics, observation space and reward scheme consistent.
This allows us to test the Conditional Action Tree formulation
on different action spaces with minimal influencing factors.
The only significant change we make to the environment
across experiments is when we remove the avatar and allow
the agent to move boxes independently by selecting their x
and y coordinates. These action space variations are explained
below:

1) Move (M): The first action tree variation is the default
action space provided by the Clusters environment. The action
space consists of rotate left, right and move forward. As
mentioned in Section III-A, this is equivalent to an Action
Tree with a single component a = {c0}, with c0 ∈ 0, 1, 2, 3.

2) Move + Push (MP): Next we modify the action space
to consider that the agent can no longer push boxes by simply
moving into the location occupied by them. We define a
separate push action that must be performed in order to move
any of the boxes. The push action has no effect unless there
is a box directly in front of the agent. The move action is
left unmodified, other than the fact that it can no longer
be used to push boxes. As the move and push actions are
mutually exclusive they are confined to the first level in the
tree C0 = {0, 1}, whilst the second component C1 contains
either the three move parameters or the single push parameter.

3) Move + Push + Separate colours (MPS): This action
space configuration contains the same modifications as the
MP variant, however it splits the push component into three
to account for the separate colours. The agent must select
the correct push action, depending on which colour box it
is pushing (i.e. push green, push blue, push red). Similarly
to MP, the action space consists of two components, but the
first one now contains the three different push actions instead
of one, that is C0 = {0, 1, 2, 3}. The second component C1

remains the same.
4) Move - Agent (Ma): To make the action space sig-

nificantly larger we remove the agent and the associated
ego-centric partial observability. Thus the input consists of
the entire 13 × 10 grid with the same 10 binary digits per
cell. The boxes are now moved first by selecting their x
and y coordinates and then by issuing the direction where
to move it. This action space has three components: C0 =

|C0| |C1| |C2| |C3| Total Logits
M 3 3
MP 2 3 5
MPS 4 3 7
Ma 13 10 4 27
MSa 13 10 4 3 30

Depth-2
M 3 3
MP 4 4
MPS 6 6
Ma 130 4 134
MSa 130 12 142

TABLE I: This table shows the number of action components,
their sizes in term of number of logits and the total logits
needed in the policy output for the action space variations
described in Section V-B. We also show the number of logits
that are required in the Depth-2 model.

{valid x coordinates}, C1 = {valid y coordinates} and C2 =
{0, 1, 2, 3} referring to the movement directions up, down left
and right.

5) Move + Seperate colours - Agent (MSa): The final
and largest action space we consider starts with the same
formulation as Ma, but separates the colour components in
the same way as done in MPS. This results in an action space
with four components: x, y, action type and action parameters.
An example of a conditional action tree for this space is shown
in Fig. 5

C. Baselines

For each of the variations of the action space described in
the previous section, we compare against two baselines which
are designed to show the benefits and limitations of the CAT
paradigm. The baselines modify only the way that the model
interacts with the action space in terms of number of logits
required. The number of actions and mechanics of the game
are consistent.

1) No Masking: For the first comparison we use the same
action components as a CAT but remove the Invalid Action
Masking entirely. This means that the component selections
are made independently of each other and invalid actions can
be selected.

2) Depth-2: The second comparison also uses a conditional
action tree structure, but flattens the action tree to only a depth
of two. The separate x and y components (only available
in MSa and Ma) are flattened into a single xy component.
Additionally the action type and action parameter components
are flattened into a single selection. This flattening process
was also considered in [1] where multi-discrete actions are
flattened into single discrete spaces. Table I shows the number
of logits per-component for all experiments and the equivalent
number of logits required in the depth-2 representation.

D. Masking Ablation

To show that structure of the tree and the resulting condi-
tional masking has an effect on the learning of the policy,
we perform an experiment where we relax the conditional
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Fig. 5: Image of a conditional action tree from a 5x4 Clusters level configured in with the MSa action space as described in
Section V-B. The agent is configured with an action space with 4 components, the agent selects which object to move by its
position and the colour. It then proceeds to choose which direction to move the box. The CAT shown contains the selected
action component ck and the mask mk for each possible valid combination of components.

masking restrictions and compare it against the fully condi-
tional masking. We relax the conditional masking of the tree
by collapsing the masking across the tree breadth-wise, so all
masking is effectively a union of all the possible masks at each
depth. This method is equivalent to applying a single mask to
the entire action space with no consideration for dependencies
between action selections. We refer to the relaxed Collapsed
and full Conditional masking options in further sections as
CAT_CL and CAT_CD respectively.

E. Model Architecture

We keep the model architecture consistent throughout all
experiments as much as possible. The size of the model input
observations differs between partially observable agent-based
environments (M, MP, MPS) and unit-selecting environments
(Ma, MSa). The partially observable environments have a
5 × 5 × 10 observation space, while for the unit-selecting
environments it is 13 × 10 × 10. Additionally, the final layer
in each experiment outputs the number of logits shown in
Table I. The model itself contains two convolutional layers
with padding 1 and kernel size 3 that up-scales the number of
values in each channel to 32 and then 64 respectively, whilst
keeping the width and height the same. After these layers, the
output tensor is flattened and then passed through two linear
layers with 1024 and 512 neurons. We then use a separate actor
and critic head. The actor head contains a further two linear
layers, first to compress to 256 nodes and then a final layer to
output predicted logits. The critic head contains a single layer
which outputs the single predicted value.

VI. RESULTS

In total we run 4 experiments on each variation of the action
space of the Clusters game. The four experiments contain the
two baselines as previously described, and two versions of
masking (CAT_CL and CAT_CD).

The first variation M provides evidence that the formula-
tion of conditional action trees generalise to simple action
spaces. In this environment, all variations of the action space
are almost identical and therefore have similar performance.
Masks in this environment have little effect because only a few
actions are ever invalid. MP and MPS variations begin to show
that the fully conditional tree CAT_CD and the depth-2 action
tree policies learn faster and plateau at high-scoring policies.
Depth-2 action policies in these variations are in fact slightly
better performing than the more hierarchical formulation of the
Conditional Action Tree, in addition of using one less logit in
their policies. The reason for this is that in the MP and MPS
the structure of the associated action tree has a degree of 1 in
all of the push nodes, making the tree structure redundant for
the push actions. In cases like these, where parent nodes have
only single children, it is more efficient to flatten these nodes
into a single set of children.

Conditional Action Trees excel in the variations with the
highest branching factors. Ma and MSa both require the policy
to select an individual unit to perform an action at each
time step. As expected, the depth-2 policy and CAT_CD have
similar performance as they are both CATs, but CAT_CD splits
the x, y selection into separate components, which results in
a greater than 4x reduction in the number of logits required
by the policy, with no loss in performance.
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Fig. 6: The average episode reward during training of the 5 different action space variations as described in Section V-B. For
each of the 5 action space variations, we compare three policies with the same action tree structure, but different masking
methods: No Masking, CAT_CD (conditional) and CAT_CL (collapsed). We also provide a comparison with a model policy
that uses an action tree limited to depth 2 as described in Section V-C2

The results for experiments on all five test environments
with Collapsed (CAT_CL) masks are also shown in Fig. 6. We
can see that with Conditional Action Trees the full Conditional
(CAT_CD) masking strategy is important for efficient training,
as the Collapsed masking strategy performs similarly to the
No Masking Baseline.

VII. DISCUSSION

Trees are a useful data structure across many fields of
computer science, and can provide a natural representation for
action spaces. Although the formulation and the experimental
setting focused on discrete action spaces, we hypothesize that
in principle the formulation can be extended to continuous
spaces by implementing a similar parameterisation to structure
the action components associated to specific densities. To the
best of our knowledge this direction has not been explored.

It is important to note that the degree of subtrees in a CAT
should be taken into consideration when deciding on parts of
the tree that could be flattened, as this can lead to unnecessary
increase in policy size.

The current work presented the CAT formulation in five toy
scenarios intended to recreate, with different levels of com-
plexity, the conditions frequently exhibited in various single,
multi-agent and RTS games. Further work will be required
to analyse the behavior of the CAT in more complex domains
such as µRTS or BotBowl. Part of the current limitation resides
in adapting these and other environments to provide Valid
Action Trees. With a Conditional Action Tree the parameterised
part of BotBowl’s action space could be reduced from 6392
logits to 25 + 15 + 17 = 57

Other relevant research on how to handle large action spaces
has applied techniques such as evolutionary algorithms [6],
[21]. These proposals have also been tested in scenarios that
require multiple actions per time-step. A naive approach to
work with CATs within this context would be to recursively
append the tree to its own leaf nodes, resampling until a
condition specifying the required number of actions is fulfilled.

In its current form a CAT makes specific assumptions about
the conditional dependencies between actions (Section III-D).
Following [15], a potential future research avenue is to explore
the possibility of modelling more complex dependencies.
Namely, by contextualizing further the selection of a ck with
with an encoding learned from previous components c<k.

A. Entropy reduction

The process by which an agent acquires a policy in re-
inforcement learning is essentially an exercise in reducing
its behavioral uncertainty. Although it remains important that
the agent maintains a level of flexibility that can support an
adequate generalization [22], [23]. It must effectively has to
be able to discriminate the actions that are beneficial from
those that are not in a particular state. We can interpret this
procedure of action discrimination as a process of entropy
reduction, as an initial high entropy policy is transformed
by redistributing the probability mass or density to weight
those actions that have been identified as more favorable. For
large action spaces it is evident that this process becomes
more complex as the behavioral possibilities explode. The
view posited by CAT is that it is possible to exploit the
structure of the action space to facilitate the acquisition of



behaviorally relevant policies as we can state that for two
arbitrary segments of the action space, Ci and Cj , the mutual
information between them is I(Ci;Cj) ≥ 0. This implies
that there can be information to be gained by using existing
relationships between actions. To express it differently, condi-
tioning guarantees us that H(Ci|Cj) ≤ H(Ci) with equality
iff p(ci, cj) = p(ci)p(cj). Thus constructing an action tree
becomes a tool that contributes to the process of entropy
reduction at the level of the policy as it decomposes what
is potentially a large flat action space into multiple smaller
sub-spaces.

VIII. CONCLUSION

In this paper we have proposed a formalisation of a tree
structure for representing discrete action spaces with any
number of components. We have provided the required steps
to adapt already existing action spaces to conform to a Condi-
tional Action Tree. From a technical perspective, a side effect
of imposing a structure to the action space is the reduction of
the elements considered by a policy. The experiments showed
that this modification does not reduce the sample efficiency
during training and achieves comparable performance while
resulting in significantly smaller models with less parameters.

As part of the this work, Griddly [10] implements built-
in functionality for generating Valid Action Trees and we
provide all reproducible examples in a github repository 2.
We also provide all training parameters, statistic and videos
using Weights and Biases 3.

We encourage the developers of reinforcement learning en-
vironments, especially those with large discrete action spaces
to provide Valid Action Tree observations in their environ-
ments.
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