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Abstract—To which degree can abstract gameplay metrics
capture the player experience in a general fashion within a game
genre? In this comprehensive study we address this question
across three different videogame genres: racing, shooter, and
platformer games. Using high-level gameplay features that feed
preference learning models we are able to predict arousal
accurately across different games of the same genre in a large-
scale dataset of over 1,000 arousal-annotated play sessions. QOur
genre models predict changes in arousal with up to 74% accuracy
on average across all genres and 86% in the best cases. We also
examine the feature importance during the modelling process
and find that time-related features largely contribute to the
performance of both game and genre models. The prominence of
these game-agnostic features show the importance of the temporal
dynamics of the play experience in modelling, but also highlight
some of the challenges for the future of general affect modelling
in games and beyond.

Index Terms—general modelling, player modelling, affective
computing, preference learning, arousal

I. INTRODUCTION

Artificial general intelligence and artificial psychology de-
fine two critical long-term goals of artificial intelligence (AI).
The intersection of the two would enable artificial systems
to perform affect-based interactions in general settings. While
games (board or digital) define the dominant application area
for the study of general Al, limited emphasis has been given
to the ways general Al systems are possible in games beyond
the task of gameplaying [1], [2], including systems that create
or even model player experience in a general fashion [3]. Ar-
guably, studying general models of player experience—which
aim at predicting the experience of play in a game-independent
way—is still in its infancy. The handful of examples in this
vein are limited by ad-hoc game testbeds, and experience
models that are built on small-scale corpora [4]-[6].

Motivated by the lack of a comprehensive study on general
player experience modelling, this paper explores the degree
to which player experience can be modelled across games of
the same genre in a general fashion. We assume that there
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Fig. 1. Genre-based modelling pipeline for modelling arousal across different
games of the same genre as presented in this study. Both genre-specific and
general features are extracted from the raw telemetry. Models are trained
on data from two games and tested on an unseen game within the genre.
Preference learning is applied by using a Pairwise Transformation, in which
the ranking problem is reformulated as binary classification of pairwise labels
(see Section IV-A for more details).

exist features of play that are able to transfer aspects of player
experience across games of the same genre. We also assume
that such features can be used to build accurate models of
player experience in a general fashion within a genre.

To test our hypothesis, we first design features specific to
each genre that can predict player experience within a game
with high accuracy. Then we examine whether certain ad-
hoc designed features that contain general information about
gameplay can act as reliable general predictors of player
experience across games of the same genre. We use the
Affect Game AnnotatloN (AGAIN) dataset [7], which includes
telemetry and annotations of arousal for almost 1,000 play
sessions of nine different games across three different genres



(Racing, Shooter, and Platformer). We employ random forests
for preference learning in order to build models that predict
arousal both in a specific game and across unseen games of
each genre (see Figure 1). Viewing player arousal modelling
as a relational learning problem [8], we test the capacity of the
models to predict the change in arousal in a short time-frame
compared to the previous session history. The key results show
that the ad-hoc designed general features manage to predict the
change of arousal with up to 74% accuracy on average across
all genres and 86% in the best cases within shooter games.
The core findings of the paper suggest that we can design
general features that can predict player experience across
unseen games of the same genre with high accuracy. More
importantly, such features perform equally well compared to
features that are tailored to predict player arousal within the
same game that they were trained on.

To the best of our knowledge, we examine genre-based gen-
eral modelling of player arousal through game telemetry for
the first time. Only one similar study examined general arousal
modelling [6]. However, here we take a more systematic ap-
proach and examine our results in the context of three different
videogame genres: racing, shooter, and platformer games. We
also reexamine ad-hoc gameplay features through an analysis
of feature importance, explaining the results and process of our
machine learning models. Our results highlight the importance
of a similar temporal dynamic between games. This revelation
puts previous general affect modelling approaches into context
and foreshadows future challenges in the field.

II. BACKGROUND

This section highlights related work on modelling players’
affective states (Section II-A), and our ordinal approach to
emotion modelling (Section II-B).

A. Player Affect Modelling

The field of games user research can generally be divided
between static profiling and dynamic modelling [3]. While the
former focuses mostly on high-level data aggregation [9] and
pattern discovery [10], the latter involves predictive modelling.
These modelling tasks can be further broken down into be-
havioural (i.e. what the player does) and affective (i.e. how
the player feels) approaches. Examples for the former include
behaviour [11] and churn prediction [12], while examples
for the latter include experience [13], [14], motivation [15],
and affect modelling [6], [16]. Since most of these studies
rely on supervised machine learning, their main limitation is
their data needs. Many studies focus on ad-hoc testbeds and
game-dependent models. While the resulting models are useful
for understanding how players interact with already published
games, these models do not generalise well to unseen ones.

To answer this issue, general affect modelling [2] aims to
create pre-trained models which can be applied to unseen
games. If successful, such models can reduce the data needs
of new projects. While research has begun in this field, studies
in the literature are still rather sparse. For instance, Shaker et
al. investigated manual [4] and automated feature mapping [5]

through the use of transfer learning. While transfer learning
offers a robust approach, interestingly, other studies have been
just as successful in applying domain knowledge to hand-craft
high-level general features of gameplay. Camilleri et al. used
game-agnostic features such as playtime and encoded valence
as goal oriented and goal opposed events to model arousal
across games [6] with moderate success. Similarly, Bonometti
et al. used activity count and diversity to abstract gameplay and
model general engagement across six games [17]. However, a
general limitation of these studies is the ad-hoc set of testbed
games, which are often limited in scope or fall too far from
each other. In this paper, we take a more structured approach to
general modelling and investigate the robustness of domain-
specific general features created in a top-down manner. As
opposed to previous studies, which used ad-hoc setups, we
investigate the proposed approach in three different genres,
over nine different games.

B. Ordinal Player Modelling

Ordinal affect modelling aims to capture the relative pro-
cesses behind emotional responses [8], [18]. Human cognition
is prone to temporal biases [19] such as anchoring [20],
habituation [21], adaptation [22], and other recency effects
[23]. Therefore, focusing on the relative differences rather than
absolute judgements can lead to more reliable observations
and more robust predictions [8]. In the field of games user
research, several papers contribute to a growing body of
research proving the effectiveness of this approach; see [8],
[24]-[28] among many. This approach evidently increases the
inter-rater reliability and consistency of data annotations [25],
[26], and yields models that have a higher generality across
affective corpora [28] and dissimilar videogames [6].

A common issue with ordinal affect modelling is the lack of
sufficiently labelled datasets. Because collecting pairwise com-
parisons through forced-choice surveys can be labour intensive
(due to the number of comparisons growing quadratically
when new options are introduced), most studies focus on
traditional rating methods such as Likert scales. While absolute
ratings can be converted to ordinal labels [8], bounded scales
come with their own limitations [26]. A good compromise is
to collect unbounded ratings, which can still be interpreted
in an ordinal fashion but preserves the relative relationship
between data points [18]. Inspired by the studies of Lopes
et al. [29] and Camilleri et al. [6], we collect arousal in an
unbounded continuous fashion and via the mean value within
a time window to predict changes in arousal.

III. THE AGAIN DATASET

This study employs the AGAIN dataset!, which was de-
signed to provide a diverse and robust database for general
affect modelling in the domain of videogames [7]. The raw
dataset includes 1,116 playthroughs; after cleaning and pre-
processing, the clean dataset (used in this paper) includes 122
participants and 995 playthroughs. More information on the
games, the cleaning process, and the dataset are found in [7].

IThe full dataset is available at https://again.institutedigitalgames.com/



Fig. 2. The 9 games of the AGAIN dataset, one genre per row. Top row is
racing games, mid row is shooter games and bottom row is platformer games.

A. Games

The AGAIN dataset includes 9 games in total; 3 games
for each of the racing, shooter, and platformer genres (see
Fig. 2). The games were designed as casual representations of
popular contemporary and classic games. Because the games
had to fit into a 2-minute playtime, they are simplified and
resemble a mobile game experience rather than console or PC
gameplay. Nevertheless, the games were designed to provide
a more realistic testbed with more contemporary aesthetics.

1) Racing: The AGAIN dataset includes three car-racing
games, where players have to navigate in a closed-loop track
until the timer runs out. In the order that they appear in Fig. 2,
the three games in this set are: TinyCars, a retro top-down
racing game; Solid, a rally game; and ApexSpeed, an arcade-
like speed racer. All of these games feature three opponents
who race against the player. The control scheme of the games
is quite consistent; ApexSpeed stands out as the car moves
automatically on a preset track with lane swapping mechanics.

2) Shooter: The set of shooters includes games where the
goal is to eliminate opponents using projectile weapons. In
the order that they appear in Fig. 2, the games in this set
are Heist!, a first-person shooter with health regeneration
mechanics; TopDown, a retro top-down shooter with unlimited
ammo and health pick-ups; and Shootout, an arcade shooter.
All of these games involve mouse-aim; however Shootout
stands out as in this game, the player has no health and is
not able to move; the game is only played for score.

3) Platformer: In the platformer games of AGAIN, players
have to navigate in a 2D environment, eliminate or evade
opponents, and solve light spatial puzzles. In the order that
they appear in Fig. 2, the set includes Endless, an endless
runner; Pirates!, a classic Mario-clone; and Run’N’Gun, a
retro shoot-em up. Platform games are the most diverse in the
dataset, with Endless featuring automatic forward movement
(like ApexSpeed) and Run’N’Gun featuring weapon aiming.

TABLE I
THE GENERAL GAMEPLAY FEATURES OF AGAIN

Feature | Description

Time Passed
Player Score
Input Intensity
Input Diversity
Player Activity
Player Movement
Bot Count

Bot Movement
Bot Diversity
Object Intensity
Object Diversity
Event Intensity
Event Diversity

Time since the start of the recording
Points earned by the player

Number of key presses

Number of unique key presses

Time spent pressing controls
Distance travelled and reticle moved
Number of bots visible

Bot distance travelled

Number of unique bots visible
Number of objects of interest
Number of unique objects

Number of events

Number of unique events

B. Dataset

The clean AGAIN dataset consists of 122 players playing
995 sessions of 2-minute games [7]. The gender distribution of
the participants skews towards men. One participant identified
as non-binary, 43 as female, and 78 as male. The average
age of participants was 33, ranging from 19 to 55. Most
respondents were from the USA (100 participants); other
countries were Brazil (10 participants), Italy (3), Canada (2),
India (2), Czech Republic (1), Germany (1), and Romania (1).
Most of the participants (114) are self-described gamers (either
hard-core or casual) and play videogames daily or weekly.
Most participants had either a PC, gaming console, or both
and played a wide variety of game genres, including shooters,
platformers, and driving games.

While the dataset includes both video footage and telemetry
data, we focus on the latter in this study. The dataset contains
genre-specific telemetry features, which are largely shared
across games within the same genre. AGAIN provides 33, 35,
and 42 genre-specific features for racing, shooter, and plat-
former games, respectively. Genre-specific features describe
events, interactions, and states from the player’s perspective;
i.e. only bots and objects visible to the player are logged.
Specific features encode the gameplay context, player status,
bot status, and events both controlled by the player and
controlled by the game; more details can be found at [7].
Some games lack gameplay features that other games have,
even within the same genre. In case of a missing feature, we
fill the missing values with zeroes; i.e. a large loop in the
track is a central feature in Solid but missing from TinyCars,
subsequently features referencing the loop have a constant
value of zero in TinyCars.

Beyond these specific features, the AGAIN dataset also
provides 13 general features [7]. Table 1 shows these general
features and their short descriptions. These features describe
the game on a higher level without introducing substantial
domain knowledge to the data. Most general features are trivial
to create, with the exception of object intensity and object
diversity. What constitutes an object in each game varies, but
in most cases, this includes passive elements the player can
interact with (e.g. destructible elements and power ups).



Fig. 3. Continuous, unbounded arousal annotation with the RankTrace method
through PAGAN [7]. The figure shows the Run’N’Gun platformer game.

AGAIN offers continuous, unbounded arousal annotations
of each gameplay session recorded with the PAGAN anno-
tation tool [30] (see Figure 3). The interface shows the full
history of the annotation process and does not limit the value
range of the affect label. Due to these properties, the collected
annotation trace preserves the subjective and ordinal nature
of the player experience [8] and makes the dataset optimal for
modelling through preference learning (see Section IV-A).

C. Preprocessing

This paper uses the preprocessed, cleaned dataset from the
AGAIN database, from which unresponsive participants and
outliers have already been removed [7]. Because the collected
data is irregularly spaced due to the online collection protocol,
the dataset has also been resampled at 250ms intervals [7],
[30]. In this section, we discuss the additional preprocessing
steps we took for this paper. As windows of 250ms are
not meaningful intervals in terms of human attention due to
reaction time, we process the data into 3-second time windows.
As presented in Section II-B, we derive the mean of annotation
windows. Finally, we apply a 1-second annotation lag (shifted
back compared to other features) to account for reaction
time. Mariooryad and Busso suggest that although an optimal
annotation lag can be found algorithmically, an ad-hoc value
between 1 and 3 seconds is practically a good compromise
when it comes to similar annotation tasks [31]. Through a
preliminary experiment, we determined that an annotation lag
of 1 second is sufficient to correct for the participants’ reac-
tion. Figure 4 illustrates the annotation metrics and how the
annotation lag is applied. After this 1-second lag correction,
the dataset consists of 40,836 datapoints.

IV. METHODS

In this paper, we use preference learning (PL) to construct
models of arousal. In this section we describe the core aspects
of PL (Section IV-A) and the particular algorithm used for our
experiments: i.e. random forests (Section IV-B).
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Fig. 4. The aggregation of 3-second time windows. The figure shows an
example of comparing the highlighted Time Window 3 to the average of the
Session History (Time Window 1 and Time Window 2).

A. Preference Learning

Preference learning is a supervised learning paradigm in
which an algorithm learns to distinguish between datapoints
in an ordinal manner [32]. The name of the method stems
from early applications involving recommender systems and
actual user preferences [33], but PL is directly applicable to
any supervised learning task in which the target outputs can
be treated as ordinal data. The core of the method is the
transformation of the data by discarding the output labels
but conserving the relationships they describe. The algorithm
then learns to predict this relationship instead of any actual
label of the data. Some PL techniques derive a ranking score,
which can be used for pointwise predictions. PL by pairwise
comparison has proven to be more robust, providing more
stable predictions when the distribution of the labels is not
normal or unknown [34], [35].

Formally, in pairwise PL for every pair of datapoints
(x,2’) € X and label (A, \;) € L we create two new points
(x—2') and (2’ — x) and two new labels, y and y’. In case of
Az = Ay (z is preferred to 2’) we assign y = 1 to (z — 2’)
and y' = —1 to (' — x), indicating the preference relation.
During the A\, >~ A\, comparison a Preference Threshold (P;)
parameter can be applied. P, takes a value between 0 and 1
and controls the required difference between two labels to be
considered a preference. While the previously published base-
line of the dataset [7] used consecutive time windows during
the pairwise transformation, this paper compares datapoints
to data averaged over all previous datapoints within a session.
This processing method emphasises the temporality of the data
by considering datapoints in relation to the session history. The
pairwise transformation is applied to each query, i.e. within
each play session separately. The reformulated problem can
be solved by any binary classifier. Moreover, by keeping two
observations per pair, the baseline of the transformed dataset
is always 50%.

B. Random Forests

As explained above, through the pairwise transformation,
the task of PL is reformulated as binary classification. In this
paper, we use a Random Forest (RF) classifier as it provides



a robust method for modelling arousal. An RF is an ensemble
learning method used for classification and regression. As the
name suggests, RFs operate by constructing a multitude of
randomly initialised independent decision trees during training
and use the mode of their individual predictions as the meta
output. Decision trees themselves are simple yet powerful
machine learning algorithms for predictive modelling [36];
they operate by constructing an acyclical network of nodes,
which splits the features of the given dataset into simpler
decisions [37]. For our experiments we rely on the Scikit-
learn Python library [38]. Scikit-learn implements decision
trees through an optimised Classification And Regression Tree
(CART) algorithm first proposed by Breiman [39]. The CART
method uses a generalisation of the binomial variance to
evaluate the impurity (and thus splitting criterion) of nodes
[40]. It also relies on a process of “overgrowing” and pruning
trees [37] to minimise training errors without overfitting. We
set the number of estimators to 100 and the maximum depth of
each tree to 10 for all experiments. Because RFs are stochastic,
we repeat each experiment 20 times and present the average
results of all runs.

V. RESULTS

This section presents the key results of our experiments and
is structured as follows. First we discuss the parameter tuning
protocol (Section V-A) while in Section V-B we present the
performance of game models, i.e. models trained and validated
on the same game. Finally, in Section V-C we introduce and
test genre models, i.e. models tested on an unseen game while
trained on other games of the same genre. Figure 1 shows an
example of our pipeline when it comes to genre models.

Reported significance is measured by two-tailed Student’s
t-tests with o = 0.05, adjusted with the Bonferroni correction
where applicable.

A. Cross Validation and Parameter Tuning

We use 10-fold cross-validation to test our results. The
cross-validation folds are defined between subjects. Because
122 subjects cannot be divided evenly, each fold encompasses
either 12 or 13 players. To make our results comparable to
each other, the same cross-validation strategy is maintained
with both game models and genre models. This means that in
the former case, we train models on specific games and test
them on unseen players of the same game, and in the latter
case, we train models on two games in a given genre and test
it on the unseen players of the unseen game.

During parameter tuning, we focus on the P; parameter (see
Section IV-A), which determines which changes of arousal
should be discarded as marginal. In particular, we seek the
best P, parameter value between 0 and 0.5 with steps of
0.05. Increasing P; generally leads to higher accuracies (as
the separation between preferred and non-preferred classes is
clearer), but there is a trade-off in the amount of discarded
data. We pick the best P; given that at least 50% of the
available comparisons is maintained in the dataset. Extensive

TABLE II
TESTING ACCURACIES (%) OF MODELS TRAINED AND TESTED ON THE
SAME GAME. MOST ACCURATE MODELS ARE IN BOLD.

Game | Specific | General | All

TinyCars 64.8+1.2 | 643109 | 64.4+1.1
Solid 71.8+04 | 73.2+0.7 | 72.7+0.6
ApexSpeed | 70.5+1.1 | 71.94+1.3 | 70.8%1.1
Heist! 79.4+0.6 | 79.4+0.7 79.8+0.7
TopDown 82.8+1.1 83.341.1 83.5+1.1
Shootout 85.8+0.8 | 85.840.8 | 85.840.8
Endless 69.5+1.8 | 69.1£1.8 | 68.9+1.7
Pirates! 69.5+1.6 | 689+1.7 | 70.0+1.7
Run’N’Gun | 79.5+£1.8 | 79.8+£19 | 79.8+1.9

empirical experiments show that P, = 0.15 yields the most
accurate models.

B. Game Models

Table II shows the test accuracies of models trained and
tested on the same games. To measure the robustness of
general features, we compare the genre-specific and general
feature sets to each other and models using all available
features. In 5 out of 9 games, a combined feature set of genre-
specific and general features leads to the highest accuracies.
Notably, shooter and platformer games benefit from these
combined feature sets. Interestingly most racing games models
based on general features outperform models based on both the
combined and genre-specific feature set. While overall general
features lead to better predictions than specific features, there
are exceptions in TinyCars and Endless.

It should be noted that differences between game models
with different inputs are not significant and often marginal.
The best performing models are trained and tested on shooter
games (average accuracy of 83%) followed by platformers,
then racing games (average accuracy of 73% and 70% re-
spectively). The lack of significant difference between feature
sets shows the robustness of general features in capturing
the complexity of gameplay within each genre. The lack of
significant performance increase when combining the feature
sets is possibly due to redundancies between genre-specific
event telemetry and features such as Event Intensity and Event
Diversity (see Table I) that accumulate gameplay events.

C. Genre Models

After acquiring a baseline performance of game models,
we move on to genre-based modelling. Each genre model is
trained on two games and tested on the remaining one within
the genre; e.g. the model for TinyCars on Table III shows the
results of a model trained on Solid and ApexSpeed and tested
on TinyCars (see Figure 1). We are referring to models based
on the test game in this section.

Table III shows the performance of our genre models.
Results reveal the robustness of general features in comparison
to genre-specific ones. In 6 out of the 9 games (all except
TinyCars, Endless, and Pirates!), models trained on genre-
specific features perform significantly worse than ones trained
on feature sets containing general features. In these cases,



TABLE III
TESTING ACCURACIES (%) OF MODELS TRAINED ON TWO GAMES AND
TESTED ON AN UNSEEN GAME IN THE SAME GENRE. MOST ACCURATE
MODELS ARE IN BOLD.

Genre Models Game Models

Game Specific | General | Al Best

TinyCars 66.3+1.6 | 66.2+1.5 | 66.9+1.7 64.8+1.2
Solid 70.64+0.6 | 72.2+0.5 | 72.3£0.6 73.240.7
ApexSpeed 67.24+1.0 | 71.9+1.4 | 69.9+1.2 71.9+£1.3
Heist! 64.2+0.5 | 79.3+£09 | 79.2+0.9 79.8+0.7
TopDown 76.3+£1.0 | 83.5+1.1 | 83.7+1.1 83.5+1.1
Shootout 74.340.6 | 85.840.8 | 85.5+£0.8 85.84+0.8
Endless 67.4+14 | 70.0+2.0 | 69.8+1.8 69.5+1.8
Pirates! 66.2+1.2 | 69.5+£1.7 | 69.6+1.7 70.0+£1.7
Run’N’Gun | 62.1+£0.9 | 74.6+t14 | 78.0+1.7 79.8+1.9

models trained on the specific features have an average of
—9% drop in accuracy. The effect is most prominent in games
that feature enemy projectiles and some form of shooting
mechanics (—12% on average). Interestingly, Run’N’Gun—
while it includes shooting—does not feature mouse controls,
suggesting that the reason for the performance difference
between genre-specific and general models is not the different
control scheme but the shooter and shooter-like gameplay
dynamics. The difference in racing games is marginal (—2%
on average) but still significant.

There is no significant difference between models trained on
general, genre-specific and combined features. Furthermore,
there is no significant difference between these models and the
best game models of Section V-B (included on Table III). The
average performance of the best genre models is the same as
the game-specific models (70%, 83%, and 73% for the racing,
shooter, and platformer games, respectively). Interestingly,
models trained on Solid and ApexSpeed perform better on
TinyCars than game-specific TinyCars models. While not
significantly better, when predicting TinyCars, genre models
show an average of +2% improvement across all feature sets,
and the best fold from models trained on general features is
+11% higher (up to 86%) than the best fold of the corre-
sponding game model. A reason for this improvement could
be that the fixed isometric view of TinyCars is interfering with
the player experience, and the more conventional first- and
third-person cameras of Solid and ApexSpeed provide a more
consistent coupling between telemetry and arousal. Similarly,
genre models tested on ApexSpeed, TopDown, and Endless
also outperform game models trained and tested on these
games, however in these cases the improvement is marginal
(less than +1% on average).

D. Impact of individual telemetry features

To better understand our results and the reason behind the
unexpected robustness of general features, we observe the top
five most important features per genre. Feature importance is
calculated as the Mean Decrease Impurity (MDI) [41], which
measures the average amount by which a feature decreases
the weighted impurity across all trees in the forest. The MDI
value is normalised between 1 and 0, the latter meaning the
feature is irrelevant. The ordinal importance of the features

can be observed by ranking them by their corresponding MDI
values. Here, we average the MDI values of features from
different training folds and within a genre to get a bigger
picture. Because there was no significant difference between
the models trained on different feature sets, and to maximise
the number of observed features, we use models trained on all
(specific and general) features.

Table IV shows the top five features in each genre ranked
by their MDI values. Across all models, Time Passed and
Player Score are the most important features. As Player Score
is generally increasing as the game progresses, just like Time
Passed, it is also a time-related feature. The prominence of
these features across the board explains the robustness of genre
models when compared to game models. The importance of
time makes sense in the context of the games included in
AGAIN as they are all designed to be casual and arcade-like.
Games like these are designed with an increasing intensity.
When it comes to genre models, because time-related features
are game-agnostic, the more diverse datasets of two games
combined possibly emphasise these features, filtering out more
specific ones. The higher MDI score of Time Passed and
Player Score for genre models compared to game models
supports this hypothesis.

Analysing Table IV by genre, we can see that features
relating to player action are more prominent in racing games.
This makes sense as the competition is based more on the
individual’s skill than adversary play in these games. In many
cases, the player swiftly overtakes the bots (or is left behind),
limiting their interaction. In shooter games, both game models
and genre models focus more on the bots numbers and types
and the health of either their avatars or the bots. It is surprising
that while for shooters there is a starker disagreement between
game models and genre models in terms of feature importance,
these games produced the most robust models in both cases.
However, on a second inspection, this can be attributed to
the exceptional prominence of time-related features within
this genre. The player’s status and the bot are also important
in platformer games. Unsurprisingly, the health of the bots
(prominent for shooting games) is replaced with the movement
of the bots as anticipating the bots’ position is essential for
winning in this genre.

VI. DISCUSSION

This study presented a robust approach to general affect
modelling in videogames by investigating the generality of
largely game-agnostic features across three different genres.
Our results show that game intensity can be modelled based
on simple general features (such as score and playtime) at an
accuracy comparable to models based on hand-crafted genre-
specific features. These features can be used to create general
models that perform comparatively to game-specific models
of arousal within genres. In quick and casual games—such
as those featured in the AGAIN dataset—the intensity of the
gameplay increases over time to such a degree that a relatively
simple algorithm can achieve up to 86% average accuracy
when predicting the change in player arousal. While games



TABLE IV
FEATURE IMPORTANCE AS DERIVED FROM THE RANDOM FORESTS, AVERAGED ACROSS GAMES OF THE SAME GENRE. FEATURES ARE LABELLED AS
GENERAL (G) OR SPECIFIC (S). FEATURES PRESENT IN TOP FIVE FEATURES OF ALL MODELS ARE SHOWN IN BOLD.

Game Models (averaged) Genre Models (averaged)
Genre

Feature [ Score Feature [ Score

G | Time Passed 0.089 G | Time Passed 0.116

o G | Player Score 0.085 G | Player Score 0.110
S S | Player Gas Pedal 0.062 S | Player Gas Pedal | 0.066
~ G | Player Activity 0.045 G | Player Activity 0.038
S | Bot Score 0.033 S | Bot Collision 0.038

G | Time Passed 0.167 G | Time Passed 0.225

8 G | Player Score 0.126 G | Player Score 0.162
8 S | Bot Health 0.054 S | Bot Reloading 0.042
7 G | Bot Count 0.051 S | Player Health 0.040
G | Bot Diversity 0.050 G | Bot Diversity 0.037

- G | Time Passed 0.106 G | Time Passed 0.137
g G | Player Score 0.104 G | Player Score 0.132
§ S | Player Damaged 0.039 S | Player Damaged 0.046
= G | Bot Movement 0.037 S | Player Death 0.035
A~ G | Player Movement | 0.035 G | Bot Movement 0.032

with shooting mechanics were easier to predict, some models
leave substantial room for improvement. The least successful
general models only reached up to 65% when predicting the
racing game TinyCars.

Unlike earlier studies [4], [6], we presented a systematic
approach to the study of general affect modelling in games,
investigating almost 1,000 gameplay sessions across nine
games and three genres. Results presented in this paper show
a promising path forward for general affect modelling in
videogames but also highlight the challenges ahead. Sub-
sequent analysis of our results showed the prominence of
time-related features, which could inform future applications.
Normative datasets used for research into game-playing Al use
arcade-type games [1], similar to the ones included in AGAIN
and used in this study. Augmenting game-playing Al with
affective models could help produce more human-like agents
and believable characters [42], [43]. Similarly, general models
of affect can be used in dynamic adaptation systems, and
procedural content generation in an affective loop [3], without
having to build specialised models. The surprising robustness
of the models also means that the method can possibly be
extended to other domains as well, outside of game research.
Time-related features can be used to build general models of
any user experience with a strong temporal dynamic. Future
research should focus on applications of general models of
affect in other human-computer interaction applications. While
this study only focused on within-genre affect modelling,
future studies should explore truly general approaches across
different genres. We used top-down, hand-crafted features but
the extraction of general features can be enhanced or auto-
mated by leveraging unsupervised feature extraction; transfer
learning [5] could be useful in this direction. Since AGAIN
also includes gameplay videos [7], the former can be achieved
using deep learning, and pixel-to-affect modelling [13].

However, the study also highlights a disconnect between
contemporary commercial console and computer games and
arcade-type games used in different fields of game research.

The observed trend between time and the average value of the
annotation within a time window suggests a relatively easy
task. As AGAIN only includes short, casual games, it is un-
likely that the same results would hold for commercial games
played over long periods. The models’ reliance on time-related
features could mean that the presented robustness is only
applicable to similarly structured experiences and would not
hold up across different contemporary industrial applications.
Future studies should aim to verify the results observed here on
longer games with a shifting level of intensity. An alternative
avenue for research could be on other game-agnostic features
and new processing methods for the output of the models,
such as the average gradient of the annotation [6] as it is
time-independent and subsequently likely to be more robust
under longer periods of play.

VII. CONCLUSIONS

This paper examined an approach towards general player
experience modelling in a large-scale study of almost 1,000
play sessions. Experiments focused on general models within
the Racing, Shooter, and Platformer genres. Results show that
general features describing the player’s input, the bots’ actions,
and the gameplay context on a high level are robust predictors
of player arousal. Through two series of experiments, we
created baseline game models based on genre-specific and
general feature sets and genre models which pool data from
two games and predict arousal of unseen players on an unseen
game. Our best general models reached up to 74% accuracy on
average across all genres and 86% at best within the shooter
genre. The core findings of this paper suggest that there exist
general in-game features that can predict player experience
reliably and can be transferred to games of the same genre with
high accuracy. The subsequent analysis of feature importance
in the presented study highlights the prominence of time-
related features in the machine learning models of player
arousal. This result shows the importance of the temporal
aspects of the player experience.
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