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Abstract—Integrating of subject matter onto serious games is
an important problem that has been shown to impact the learning
potential of serious games. A novel approach, inspired by peer-to-
peer (P2P) networks, towards designing and deploying a series of
problems in game scenarios is described. Given a set of problems
involving a set of concepts the proposed approach automatically
generates a problem network graph akin to P2P network that
can then traversed by a player to collect all the concepts that
are necessary to learn a topic of interest. A network traversal
algorithm is described, which identifies the relevant problems and
produces an efficient route through the network for learning the
topic. We also describe an algorithm for mapping the problem
network graph onto a game scenario by identifying groups of
problems that can be placed in a single location of the game like
the level of a building, arcade, or a room, physical barriers that
separate, and the conditions for passing through these barriers.
The proposed approach has been validated through a quantum
cryptography game QuaSim and has been played by over 100
students to learn quantum cryptography basics and cryptography
protocols.

Index Terms—Serious games, game design, peer-peer networks,
quantum cryptography, quantum computing

I. INTRODUCTION

Serious games have achieved impressive progress in aiding
engaged learning in diverse areas involving complex and
subtle concepts. The field of cybersecurity has specially ben-
efited from serious games where often complex cybersecurity
concepts can be modeled as competitions or attack/defend
scenarios [1]–[3]. The integration of subject matter in serious
games have enabled players to master concepts in a hands-
on manner with a high degree of engagement. However, the
design of instructional activities (problems) and their layout
in a game scenario has usually been somewhat adhoc relying
mostly on feedback from players. Not much attention has
been devoted to systematically integrating problems onto game
scenarios.

Systematic design of such game scenarios is a challenging
problem since problems involving a reasonable number of
coherent concepts must be designed and they must be inte-
grated so that players can learn a topic of interest by solving
a reasonable number of problems in the game. Further, the
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problems must be physically distributed in a game scenario so
that the players are able to discover problems easily without
getting frustrated by having to attempt problems that are
unrelated to the topic that they are trying to learn.

In this paper, we propose a systematic approach to design,
order and distribute problems in a game scenario that enables
players to achieve proficiency in a topic by efficiently locating
and solving a series of problems in the scenario. Our proposed
approach is inspired from the design of peer-to-peer (P2P)
networks whose nodes correspond to the problems and there
is an edge between two problems if the player can move
from one problem to another in the scenario. The concepts
underlying a problem are mapped to the resources available
at a node and a player can navigate the network, discovering
nodes and collecting resources at each node until sufficient
resources are collected to achieve proficiency in a topic of
interest.

The proposed approach analyzes the given dependencies
among a set of concepts to automatically generate a P2P
network of problems. Groups of problems in the network are
identified and mapped to locations in a game scenario such as
levels in a building, arcade or a room, and the physical barriers
in a game scenario such as walkways, stairs, or elevators
separating these groups are also identified. These serve as
design specifications to designers who can then implement
problems in game scenarios optimized for layout and usability.

Given a game scenario with a problem network, players are
expected to traverse this network solving problems that involve
concepts that are necessary to learn a certain topic. Since the
problem network is designed to allow learning of multiple
topics, it allows players a lot of flexibility in moving between
problems. Many of these problems may not be relevant to
the topic being learnt and hence attempting such problems
is not very fruitful to the task at hand and may also cause
unwanted frustration in players. We describe an automatic
network traversal algorithm to address this problem. Given
a topic of interest, our algorithm identifies the learning gain at
each node in the problem network and chooses a route based
on maximizing the learning gain among viable neighbor nodes
at each point in the route. The algorithm enables players to
learn a topic by minimizing their attempts at solving problems
to the topic.

978-1-7281-1884-0/19/$31.00 ©2019 IEEE



The proposed system has been used to design problems in
the serious game QuaSim [4]–[6], a gamified virtual education
platform. QuaSim has been played by over 100 undergraduate
and graduate students who successfully used the implemented
problem network and the traversal algorithm to learn several
aspects of quantum computing and quantum cryptography. Our
results about user learning and experiences in using QuaSim
are reported in [4]. In this paper, we focus on the approach
used to design and implement the problem network.

The rest of the paper is organized as follows. Section II
discusses related work. Section III defines terms and describes
the algorithms to generate a P2P problem network and map-
ping of this network to game scenarios. In Section IV, we
show how the proposed algorithm are applied to generate
game scenarios with problems in QuaSim and how topics can
be learnt efficiently by using our network traversal algorithm.
Section V concludes the paper.

II. RELATED WORK

Game-based learning plays a crucial role in cybersecurity
education where games such as capture the flag or the red and
blue teams of cyber attackers and defenders are commonly
used to learn security constructs in a hands-on manner [1]–
[3].

A. Quantum Education Games

The inherent interdisciplinary nature of quantum computing
and quantum cryptography involving concepts from quantum
physics, computer science, mathematics and cybersecurity
pose a formidable challenge for students wanting to learn
these areas. In recent years, there have been some novel
attempts to develop games that teach the laws of quantum
physics and quantum mechanics to students [7]–[15]. Other
approaches include interactive tutorials [16] for teaching non-
intuitive quantum physical concepts. Most of the games that
have been developed are aimed at teaching quantum mechanics
to Physics students or to K-12 group of students. Further,
these games are traditional two dimensional games ranging
from Mario type simulations to puzzles that require moving
game board pieces. The amount of instructional support is
quite limited in these rudimentary games and often solely
focus on quantum principles and not on their application to
cybersecurity or quantum computing. Further, the games do
not adapt to observed player behavior in order to maximize
learning and engagement.

QuaSim is, however, an adaptive serious game that is
focused on teaching quantum mechanical principles needed for
quantum cryptography and the implementation of quantum key
distribution protocols [4]–[6]. QuaSim consists of a variety of
instructional tools such as videos, quizzes, audio narrations,
gaming missions, chats, and web browser within a media rich
3D virtual environment built on Unreal Engine 4.

B. Serious Games for Learning

Advances in game-based learning technologies have led to
tremendous increase in interest in serious games that combine

pedagogical techniques and video games [17]–[21]. Arnab
et al. [17] propose a model for integrating educational and
gaming elements into serious games along with a criteria for
designing and evaluating learning objectives in serious games.
A methodology to integrate subject matter and game design
principles using game mechanics, conditions for gamification
based on pedagogical levels, and implementation and eval-
uation of the gamified application is discussed in [18]. The
importance game design plays in learning of subject matter
objectives and its effect on the gaming experience is discussed
in [21]. Slimani et al. [22] classify video game elements based
on their suitability for serious games and describe how to
design these elements.

Bayesian Knowledge Tracing (BKT) is a popular approach
to modeling and predicting student performance in an Intelli-
gent Tutoring System (ITS) [23]. It builds and updates a model
for the knowledge gained by a student as they apply the skills
they’ve acquired previously (through readings and lectures)
while solving problems [24]. Although related, this is different
from the proposed game-based approach where completing
challenges in the game itself is the means to acquire skills.
Therefore, unlike BKT, there is no prior learned/unlearned
state for a skill that is fed into the system. BKT may, however,
be used as a alternative navigation guidance algorithm to the
one described here.

Researches have studied the impact that serious games have
on the learning of subject matter and student’s engagement
in the subject matter [19], [25]–[28]. For example, Hamari
et al. [19] have defined the concepts of engagement, flow
and immersion and examined the effect these have on the
learning of subject matter in a game-based virtual learning
environment. Smith et al. [26] highlight the key challenges
in designing and developing games for STEM discipline.
Sung et al. [28] studied the effect of student behavior on
learning in a game-based learning activity for elementary
students. They conclude that the high performers showed deep
thinking and reflective behavioral patterns when compared to
low performing students.

Knowledge and learning space theories [29] provide a
framework to represent and assess a body of knowledge
acquired by a student. These theories have been extensively
applied in many universities and schools because they are able
to predict what a student is ready to learn. However, there is
still a need to combine the knowledge elements with game
design because research has indicated that game design and
proper integration of subject matter with gaming elements is
crucial to maximize learning. In the following sections, we
describe a systematic approach to distribute challenges in the
game and manage the location and player navigation through
user feedback.

III. PROBLEM NETWORK MODEL

In this section, we describe a simple procedure to create a
model network of problems given a concept hierarchy graph.
The problem network model is an undirected graph whose
nodes are problems. A navigation procedure over this network



and the mapping of the network and the procedure onto a
serious game are subsequently described.

A. Preliminaries

Let C be the set of all the concepts and ci, i = 1 to m
denote the individual concepts. A concept hierarchy, CH is
a directed acyclic graph, whose nodes are individual concepts
and an edge (cu, cv) indicates that to learn concept cv , a player
must learn the concept cu. Concept cv depends on concept cu,
if edge (cu, cv) belongs to CH . Otherwise, concepts cu and
cv are independent.

A topic Tj is a subset (non-empty) of the concept set C.
A learning problem, Pi, consists of k mutually indepen-
dent, distinct concepts. A game comprises of N problems,
P1, P2, . . . , PN , each consisting of a unique combination of
concepts.

Designing individual problems entails significant domain
expertise since coherent concepts must be identified and mean-
ingful problems involving these concepts must be formulated.
Further, certain concepts are best learned together in the
context of others whereas others are best learned in isolation.
Also, designing problems with too few concepts may lead
to long play sessions whereas loading up problems with
concepts may lead to overly difficult problems. In view of
these challenges, we assume that a set of N problems and
the underlying concepts are pre-designed by domain experts
and available. Without loss of generality, we assume that each
problem uses the same number of k underlying concepts. We
choose k to be the maximum number of the concepts used over
all the problems and problems using lesser than k concepts
are extended using a default concept true (value 1) that every
player is assumed to be proficient in.

We define three additional terms that are used in the our
navigation procedure that allows players to achieve proficiency
in a topic by solving a series of related problems.

Concept Tuple (Ct): It is a tuple of size |C|. This keeps
track of all the acquired concepts at any point during the
game (akin to player status). A 1 in position i denotes that
the concept ci has been acquired and a 0 indicates otherwise.
Initial state of the concept tuple is all 0s.

Target Tuple (Tp): This tuple is also of size |C| and with
concepts listed in the same order as the concept tuple. A 1 in
the ith position indicates that the concept must be acquired in
order to learn topic Tj . Remaining positions have 0s in them.

Node Tuple (Nt): This tuple lists concepts in the same
order as the other two tuples above with 1s in the positions
that the current problem/node covers.

Learning Gain (Lg): It is defined as Lg=
HammingWeight[(Nt OR Ct) AND Tp]. We want to
maximize the learning gain at every hop.

We assume that all the tuples consist of binary values
and, therefore, either the player acquires a concept of not.
However, more general tuples with non-binary values may also
be considered.

B. Designing Problem Network Model
To design problem networks in game scenarios, we intro-

duce game nodes denoting game artifacts like a walkway,
stairs, or an elevators etc. A game node is a connection element
(like a switch) between problems. A game node becomes
enabled by solving one or more problems. A game node when
enabled allows a player to access additional learning problems
to which it connects.

Given concept hierarchy CH over the concept set C and
N problems each involving k concepts from C, a problem
network model, PN is an undirected graph whose nodes are
the N input problems along with one or more game nodes.
The labeled edges of PN are either navigation edges or game
edges. Problem nodes are connected using navigation edges.
Game nodes and problem nodes are connected using either a
game edge or a navigation edge but not both. Game nodes are
not connected to other game nodes.

A navigation edge between two problem nodes allows a
player to move between these problems without any restric-
tions. A game edge allows a player to pass through only if
it is enabled. A game node is enabled only when the player
has solved all the problem nodes connected to the game node
using a game edge. Hence a player can move between two
problem nodes connected through a game node only when the
latter has been enabled.

For example, given four problems P1 = {c1}, P2 = {c2},
P3 = {c3}, and P4 = {c4}, some of the possible concept
hierarchies and their corresponding problem network models
are depicted in Figure 1. The navigation edges are shown as
dashed lines whereas the game edges are solid lines.

In the first pair of graphs at the top where the concepts are
mutually independent (indicated by the absence of edges in
CH , depicted on the left). In this case, a player can solve the
problems in any order (indicated by the fully interconnected
PN on the right). For the middle pair of graphs, the serial
dependencies among the concepts in CH (shown on the left)
result in a game nodes g1-g3 connecting the problems in PN
(shown on the right) enforce the concept dependencies.

In the lower pair of graphs, the dependency of C2 on
concepts C1 and C3 results in the two game edges between the
problems P1 and P3 and the game node g2 that is connected
to problem P2 through a navigation edge. The game node g2
is enabled only when the problems P1 and P3 are solved, and
then allows the player to move to problem P2. Note that there
is no path between problems P2 and P4 in PN , even though
the concepts C2 and C4 are independent. This is because C4

depends on C3 and hence a player can attempt problem P4

only after P3. Note however that we can add a navigation edge
from P2 to g3 indicating that a player can reach g3 after solving
P2 but they can progress further only if they have solved P3.
These edges can then be used by designers to optimize the
design layouts of problems in a game scenario as discussed
later in Section 3.

The following algorithm constructs the problem network
graph given concept hierarchy CH and a set of problems P
= {P1, · · · , Pn} as inputs. We assume that all the concepts



Fig. 1. Concept Hierarchy and Problem Network Model Graphs

in P appear in CH , and that the problems involve a unique
combination of concepts that are mutually independent.

A problem Py belongs to the dependency set of a problem
Px if some concept Cx in Px depends on a concept Cy in Py

(there is an edge from Cy to Cx in CH). If Py belongs to
D(Px) then Px can be attempted only after solving problem
Py . The dependency set, D(Px) of problem Px is the set
of all the problems on which the problem Px depends. We
start with all problems as nodes in PN and an empty edge set.

Algorithm: Problem Network Construction
1) Compute the dependency set, D(Px) for each problem

Px using the concept hierarchy CH .
2) Add a navigation edge between two problem nodes Px,

Py in D(Px) = D(Py).
3) Given problem Px, for each problem Py in D(Px), if

there is a navigation edge between some game node
g and Px, then add a game edge between g and Py .
Otherwise, add a new game node g to PN and add a
game edge between Py and g and a navigation edge
between g and Px.

The dependency levels in the concept hierarchy CH deter-
mine the connectivity and the number of hops (problem that
need to be solved) between any two problems in the problem
network. In the worst case, the number of hops between two
problems Px and Py equals the maximum path length between
the concepts underlying Px and Py in CH . Further, a player
can learn a topic Ti using at most M hops where M is the
longest distance among two problems including the concepts
in Ti. The upper bound on the number of problems that a
player needs to solve to learn a group of topics is given by

the sum of problems required to learn topic and this occurs
when the topics are mutually disjoint.

C. Mapping a Problem Network on a Game Scenario

The problem network is mapped on a game scenario by
identifying groups of problems that can be placed on a
single location in the game like a room, corridor, or a single
level where a player can freely move between the problems
attempting one after another. The groups of problems are
separated from each other by barriers such as doors, elevators,
walkways, and stairs and these barriers can be crossed only
after groups in the problems can be solved.

Let E(g) be the enabling set of problem nodes that need
to be solved to enable the game node g. The following
mapping procedure takes the problem network graph and the
dependency sets of the N problems, as its two inputs. Its two
outputs are: i) a partition of problems and ii) the enabling
sets for each game node in PN .

Algorithm: Problem Network Mapping
1) Construct the graph PNminusG by deleting all game

nodes and the associated edges from PN . Identify the
maximal cliques CL1, · · · , CLv including trivial cliques
(single nodes) in PNminusG. Collect the problem
nodes in each clique and add them to the output par-
tition.

2) For each game node, g and edge, (g, Py), in PN , add
the problem node Py to E(g) if PN does not have an
edge (g, Px) and Py belongs to D(Px), i.e., Px depends
on Py and Px is necessary to enable the game node g.

The first step identifies maximal groups of problems that
a player can attempt without any restriction. The second step
identifies the conditions under which the game nodes (barriers)
separating these groups of problems are enabled. It ensures
that the enabling set for each game node includes mutually
independent problem nodes only. If a problem Py belongs to
D(Px), and Px is already included in the enabling set then
problem Py need not be included in that enabling set since a
player can attempt problem Px only after solving Py .

The next step after designing the graph is to develop a
navigation procedure to collect all the resources (concepts)
pertaining to a topic. The navigation procedure we use is
intended to find the shortest possible path, from any given
problem in the game, such that all concepts related to the
topic(s) of interest are covered. Shortest possible path is
the one that leads the student to solving fewest number of
problems while achieving proficiency in each of the concepts
encoded into a given problem. Section III-D discusses the
procedure for routing procedure for traversing the graph.

D. Network Traversal

The network traversal algorithm simply maximizes the
metric learning gain (Lg) at every step. The failure to solve
a problem in the game is akin to a node failure in P2P
networks and the corresponding resources (concepts) are lost.
The network traversal algorithm is robust to such failures. We



have assumed that all concepts are replicated on at least r
problems so that a student still has a chance to learn those
concepts in case they fail to solve a particular problem.
Algorithm: Network Traversal

We define the initial problem set Pinit as the set of problems
whose concepts don’t have any dependencies or incoming
edges in the concept hierarchy CH . Every problem Px is
associated with a node tuple Ntx. We traverse the graph as
follows,

1) We find a problem Pf in Pinit that maximizes the
learning gain Lg as follows,

a) Compute the node tuples Ntx associated with
every problem in Pinit.

b) Compute the candidate concept tuples for each
problem as Ctp = Ntx OR Ct.

c) Choose a node in Pinit that maximizes the learning
gain Lg computed on the candidate concept tuple
and the target tuple.

d) Update Ct = Ctp if the problem was solved
successfully.

2) After identifying and solving Pf , we process the neigh-
bors of a node starting with Pf in G as follows,

a) For each neighbor Px1 , Px2 , . . . , Pxm we check if
any of the problems is in the initial problem set
Pinit.

b) For each neighbor that is in Pinit we compute
the learning gain Lg and choose the one that
maximizes Lg.

c) Repeat the above two steps until no more neighbors
in Pinit result in an increase in Lg.

3) After all the nodes in Pinit are processed, we choose
the next hop by choosing the neighbor that maximises
Lg starting from the last problem that was solved.

The algorithm continues until the HammingWeight[Ct
AND Tp]=HammingWeight[Tp].
Learning multiple topics: If multiple topics are to be learnt,
then the target tuple is simply set to the OR of all the individual
target tuples for every topic.

IV. PROBLEM NETWORKS IN A QUANTUM
CRYPTOGRAPHY GAME: QUASIM

We describe how the proposed approach can be used to
design problem networks in our quantum cryptography game,
QuaSim. QuaSim is a multiplayer, 3D serious game developed
using the Unreal Engine including several problems involv-
ing quantum computing basics and cryptography protocols.
QuaSim is an adaptive game that analyzes player interactions
on-the-fly and adapts the game in several ways including
providing several forms of hints, varying the difficulty of
problems, teleporting players to the next interesting problem
and so on. QuaSim has been played by over 100 students
whose experiences are reported in [4]–[6].

Each play session in QuaSim is divided into a series of
lessons which are further subdivided into problems. The first
lesson in QuaSim introduces the concept of qubit (quantum

analog for a classical bit) programming through polarization of
photons. This lesson is divided into twelve problems designed
by one of the authors who is a quantum cryptography expert.
In each problem, the player has to activate one or more qubit
receptors by programming a qubit using the correct orientation
in a specified notation and basis. The number and the types of
qubit receptors that the player activates depends on the topic
being learned in the session. The associated set of concepts
C = {S,Ae,Or, V,K,L,B}, where S= same angle, Ae=
angle equivalency, Or= orthogonal, V = vector notation, K=
ket notation, L= linear combination, and B= basis. Table I
defines these concepts further.

The concept hierarchy CH is depicted in Figure 2. Note
that the concepts S,Ae,Or, V don’t have any dependencies.

Fig. 2. The Concept Hierarchy Graph CH .

Assume that the concept tuple is given by Ct =<
S,Ae,Or, V,K,L,B > where the concept symbols are re-
placed with 1 or 0 depending on the condition discussed above.
Initially, it is consists of all 0s. We will drop the commas
between 1s and 0s for convenience.

In lesson 1 of QuaSim, each problem consists of two
concepts k = 2, and there are 12 problems (expert input)
with a replication factor of 3. The concept distribution on
these problems is given by, P1 = {S, V }, P2 = {Ae, V },
P3 = {Or, V }, P4 = {S,K}, P5 = {Ae,K}, P6 = {Or,K},
P7 = {S,L}, P8 = {Ae,L}, P9 = {Or,L}, P10 = {S,B},
P11 = {Ae,B}, P12 = {Or,B}.

In other words, problem P1 covers concepts same angle and
vector notation, problem P10 covers concepts same angle and
basis and so on.

Given the concept hierarchy CH , the problem dependency
sets for the twelve problems are computed as: D(P1) = D(P2)
=D(P3) = {}; D(P4) = D(P5) = D(P6) = D(P7) =D(P8)
=D(P9) = {P1, P2, P3}; D(P10) = D(P11) = D(P12) = {P7,
P8, P9}.

The network construction algorithm takes the CH and the
problem dependency sets as its inputs and outputs the problem
network graph depicted in figure 3. The graph consists of
twelve learning problem nodes corresponding to the twelve
problems and 9 game nodes. Navigation edges are denoted by
dashed lines and the game edges are denoted by solid lines in
the figure. The nodes P1-P3 are interconnected by navigation



TABLE I
CONCEPT DEFINITIONS.

Concept Definition/Student activity
S Student creates a qubit by polarizing a photon at a particular angle (or the same angle that is shown to her).
Ae Student learns the concept of angle equivalency, i.e. two photons polarized at an angle 180◦ from each other are equivalent.
Or Student is introduced to the concept of orthogonal qubits, i.e. for example photons that have orthogonal polarization.
V Student learns the vector notation for a qubit.
K Student learns the ket notation for a qubit.
L Student learns how to represent a qubit as a linear combination of linearly independent vectors.
B Student learns the concept of basis.

Fig. 3. Problem Network in Quantum Game: i) Problem network graph and
problem cliques, ii)Spatial map of problem design in QuaSim derived from
Network mapping –(a)P1 (b)P2 (c)P3 (d)Walkway (e)Stairs (f)P4 (g)P5 (h)P6
(i)Teleportation portal to third level.

edges as there dependency sets are identical. Similarly, the
nodes P4-P9 are interconnected and the nodes P10-P12 are
interconnected due to their identical dependency sets. The
game nodes g1-g3 capture the dependencies between prob-
lems P1-P3 and problems P4-P7 respectively, induced by the
dependency between the concepts V and K. The game nodes
g4-g6 capture the dependency between concepts V and L and
the nodes g7-g9 capture the dependency between concepts L
and B.

The network mapping algorithm takes the problem network
graph and the problem dependency sets as its inputs and
outputs three cliques – CL1-CL3 depicted in Figure 3(i). The
problem node partition output by the algorithm is: {P1,P2,P3},
{P4,P5,P6, P7,P8,P9} and {P10,P11,P12}. The enabling

TABLE II
NODE TUPLES FOR PROBLEMS IN EXAMPLE 2. IF A PROBLEM COVERS A

PARTICULAR CONCEPT, THE TUPLE HAS A 1 IN THE CORRESPONDING
POSITION IN THE TUPLE.

P1 < 1001000 >
P2 < 0101000 >
P3 < 0011000 >
P4 < 1000100 >
P5 < 0100100 >
P6 < 0010100 >
P7 < 1000010 >
P8 < 0100010 >
P9 < 0010010 >
P10 < 1000001 >
P11 < 0100001 >
P12 < 0010001 >

sets output by the algorithm are: E(g1)=E(g4)={P1};
E(g2)=E(g5)= {P2}; E(g3)=E(g6)={P3}; E(g7)={P7};
E(g8)={P8}E(g9)={P9}.

These are used by the QuaSim game designers to distribute
the problems P1-P3 across the first level of a building in
the game. Problems P5-P9 can be placed in a single level as
well. As a design layout optimization, the designers distributed
problems P4-P6 distributed at the second level of the game and
placed problems P7-P9 in the third level of the game. The final
three problems P10-P12 were placed together at the top level
of the building.

The three game nodes between the groups CL1 and CL2

were used to design physical barriers between first level and
the second and third levels. There are no physical barriers
between the second and the third levels of the building
allowing players to freely move between the problems at
these levels. The game nodes between CL2 and CL3 were
used to design physical barriers between the second and third
levels and the top level. As a design layout optimization,
the three physical design barriers specified by the mapping
algorithm were optimized into two game elements – a stair
and a walkway. The stairs are enabled whenever either of the
two problems P1 or P2 is solved. The walkway is enabled
whenever the problem P3 is solved. The physical barrier layout
were similarly optimized for the other levels. For instance,
there is a physical barrier between the third level and the top
level that is enabled only upon solving any of the problems
in the third level. The QuaSim design layout for the first two
levels is depicted in figure 3(ii).



A. Network Traversal
Assume that the player wants to learn a topic, namely ‘qubit

representation with respect to a basis’ and the concepts that
need to be covered for this include S and B. However, B
depends on L and L depends on V . Therefore, a student needs
to cover S, V , L, and B. As a result, the target tuple is given
by < 1001011 >.

Although not required for our navigation algorithm a quick
glance at the twelve problems tells us that in order to acquire
these concepts the student needs to solve three problems:
P1, and one from P7, P8, P9 and another from P10, P11, P12.
Therefore, a path of length three exists that covers all the
concepts. In the following, we discuss how the network
traversal filters out different problems such that the student
is able to achieve proficiency in the said topic by solving the
fewest number of problems.

The navigation algorithm first identifies the initial set of
problems, Pinit, which contains problems P1, P2, and P3.
Table II gives all the node tuples for the problems P1 through
P12. Therefore, if a student solves problem P1, Ct is updated
to < 1001000 >. If the student solves P2, Ct is updated to
< 0101000 > and so on. The network traversal algorithm
guides the student through the problem network by maximiz-
ing the learning gain metric, Lg.

Table III illustrates the computation of learning gain for all
the problems in the Pinit set. Initial value of Ct is all 0s.
As we can see that solving P1 gives a learning gain of 2
while solving P2 and P3 gives a learning gain of only 1. The
navigation algorithm therefore chooses P1 as the first problem
to be solved. This results in an updated concept tuple Ct of
< 1001000 >.

Next the algorithm looks at the neighbors of P1 which
in this case are all the problems in the network except for
problems P10, P11 and P12. Of the neighbors, first it checks if
there are any in the Pinit set that result in an increase in the
learning gain. In this case problems P2 and P3 are in Pinit. We
can quickly see that these two problems do not provide any
increase in the learning gain and hence are discarded. Next it
checks the learning gains from problems P4 through P9. The
learning gain calculations for these problems is given in table
IV. Since, the learning gain was already at 2 and problems
P4, P5 and P6 do not provide any improvement in that value.
However, problems P7, P8 and P9 provide an equal increase.
Therefore, we can choose any of these problems as the next
hop. Let’s assume that the player solves P8, then Ct is updated
to < 1101010 >.

Now, P8 is connected to problems P10, P11 and P12. We see
that each of these provide an equivalent learning gain since we
acquire the concept B that we need. The resulting new concept
tuple is then < 1101011 >.

At this point we see that the HammingWeight[Ct AND
Tp]= HammingWeight[< 1101011 >AND< 1001011 >]=4
HammingWeight[Tp]. Therefore, the algorithm concludes and
we have acquired all the concepts that we were interested in.

The serious game QuaSim has five lessons currently each
involving multiple problems. The more involved lessons in-

volving multiple players are divided into tens of exercises with
each exercise having tens of lessons. The problems designed
and implemented using the proposed method was played by
over 100 players. Their learning and gaming experiences are
reported in our earlier works (see [4]). Our focus in this paper
is on the algorithms used to incorporate problems into games
such as QuaSim.

V. CONCLUSIONS

In this paper, we have described a novel approach to design-
ing a problem network and its mapping onto gaming elements
in a serious game. The approach has been implemented in
QuaSim, a quantum cryptography virtual educator built in
Unreal Engine 4. The proposed approach is inspired by the
design of P2P networks where nodes are mapped to problems,
and resources on each node are mapped to concepts that a
problem covers. The network traversal (resource location) in
P2P networks in order to say collecting different parts of a
movie file is akin to collecting concepts that help learn a
particular topic. QuaSim was played by over 100 students
at our University and results of our observations have been
reported earlier [4]–[6]. This paper focused on the design and
incorporation of problems into serious games and described
a novel approach for systematic design and incorporation of
problem networks into game scenarios so that players can learn
a topic of interest by efficiently navigating to and solving
relevant problems. In future work, we plan to combine the
notions of probabilistic knowledge structure and stochastic
assessment procedure [29] with the problem network models
presented in this paper to model the partial learning of a
concept and partial readiness to learn a concept. We also plan
to investigate methods to incorporate new problems into and
remove old problems from the network, on the fly, depending
on student performance as they play the game.
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