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Abstract—In this paper we first summarize knowledge about
the standard (strong) version of the game 4-in-a-Row. It was
previously shown that 4-in-a-Row is a draw on 4 × n boards
for n = 4–8, and on the 5× 5 board as well. Further we know
that the game is a (first-player) win on the 5× 6 board. Finally
it is stated that 4-in-a-Row is a win on a 4 × 30 board. It is
not known if and where there is a transition from drawn games
to won games on 4× n boards for n ranging from 9–29. Using
our k-in-a-Row solver we then show that the 4 × n boards for
n = 9, 10, and 11 are wins. We provide the principal variations
by our solver program for the 5 × 6 and 4 × 9 boards.

Further we introduce a second version of the game, weak 4-in-
a-Row (also called Maker-Breaker (MB) 4-in-a-Row), where the
second player wins if he is able to prevent the first player from
winning, but does not win by obtaining a 4-in-a-Row sequence
himself. This game benefits the first player, since he can safely
ignore any “threats” by the second player. Our results show that
for weak 4-in-a-Row the first player already wins on the 5 × 5
and 4 × 7 boards. We also provide the principal variations by
our solver program for these boards.

We then focus on the monotonicity property of winning
positional games. It is widely believed that if a k-in-a-Row game
is a win on some board, it will be a win on any larger board as
well. This is denoted as a monotone win. As a consequence, if a
k-in-a-Row game is a draw on some board, it will be a draw on
any smaller board. For weak positional games the monotonicity
property holds by definition. However, for the strong version of
k-in-a-Row, the monotonicity property has never been formally
proven. It is surely not true on arbitrary graphs, where enlarging
the winning set might change a winning game into a draw.
This phenomenon is known as the Extra Set Paradox. Still it is
commonly believed that the monotonicity of winning does hold
for rectangular boards. However, we show that even this is not
true, at least not for arbitrary positions on a rectangular board.
We demonstrate this with a counterexample.

To deal with the problem of non-monotonicity we propose an
algorithmic solution. Suppose that k-in-a-Row is a win on some
m×n board (assuming arbitrarily that m ≤ n). To prove that
this is a monotone win, we enlarge the board with a rim around
the m×n board of width at most k−1. On this board the first
player is only allowed to play on the inner board, whereas the
second player may use the whole board. We show that if with
these constraints the first player still wins, the game is also a
win on any larger board. Using this method we have shown that
the 5× 6 board indeed is a monotone win. For the 4× 9 board
we had to make a small adaptation, namely that the first player
is allowed to use the rim, but only to respond to useless direct
threats by the opponent. Moreover, any such stone of the first
player in the rim may not contribute to winning variations in any
way. Using this we prove that also the win on the 4 × 9 board
is monotone. With these results strong and weak 4-in-a-Row are
completely solved.

I. INTRODUCTION

4-in-a-Row is a well-known game where two players called
Black and White try to be the first to get a straight line of 4
consecutive stones of their color on some specified rectangular
board. The winning lines can be horizontal, vertical or diag-
onal. By convention Black starts. 4-in-a-Row is an instance
of a more general class of strong positional games. In the
remainder of this paper, whenever we mention 4-in-a-Row, this
strong version of the game is meant, unless explicitly stated
otherwise. We first define our framework and then state some
general properties of this class of games.

A. Background Theory for Strong mnk-Games

We start with providing some useful notions.
Definition 1: (Taken from [2], [3]) A positional game is a

hypergraph (X , H), where the set X contains nodes forming
the game board and H ⊆ 2X is a family of target subsets of X .
During the game, two players alternately select one previously
unclaimed element of the board. When the goal of the game
for both players is to be the first to claim all elements of a
target subset, the game is a strong positional game.

Standard k-in-a-Row games are examples of strong posi-
tional games. The target subsets are all the possible winning
lines, also called groups, of k squares in a straight line. The
first player who claims all elements of a group wins the game.
If no player achieves a win, the game is a draw.

Definition 2: An mnk-game is a k-in-a-Row game played
on an empty rectangular board with m rows and n columns.

Definition 3: An mnk-position is a board position that may
occur in the course of an mnk-game.

A position therefore is a legal board position, mostly con-
taining white and black stones, whereas a game is associated
with the (empty) starting board.

Definition 4: A black (white) group is a consecutive horizon-
tal, vertical, or diagonal line of k squares in an mnk-position
that constitutes a possible winning line for Black (White), i.e.,
in which all squares are empty or black (white).

B. Some Theorems for Strong mnk-Games

Despite the simplicity of their rules, the theory on k-in-a-
Row games is rather scarce. A useful theorem for strong posi-
tional games, due to John Nash, but probably first published in
[7], is known as the strategy-stealing argument, which results
in classifying mnk-games in two categories according to their
outcomes.
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Theorem 1: Any mnk-game is either a first-player win or
a draw.

Proof: Suppose that some mnk-game would be a second-
player win. So we assume that the second player has some
strategy that assures him a win. But then the first player
starts by playing an arbitrary first move, and subsequently uses
the second-player’s winning strategy. Whenever this strategy
requires playing a square already filled by the first player,
he just plays an arbitrary other possible move. Since placing
an additional stone on the board never is a disadvantage
for the player, this shows that the first player can win,
which contradicts the assumption that there is a second-player
winning strategy. Hence, there cannot exist a second-player
winning strategy.

Using the convention that Black starts it means that an mnk-
game either is a win for Black or a draw. We therefore further
classify strong mnk-games just shortly as wins or draws. Note
that this is not holding for arbitrary mnk-positions, which
can be draws, or wins by either player. We will classify such
positions therefore explicitly as black wins, white wins, or
draws.

To prove that a set of groups is at most a draw for the first
player, the well-known HJ-pairing strategy [7] can be used.

Definition 5: A Hales-Jewett (HJ)-pairing for a set of groups
is an assignment of disjoint pairs of empty nodes (markers)
to all groups, such that every group is covered by a marker
pair. The second player hereby guarantees for every marker
of a pair played by the first player to respond immediately
by playing the second marker of the pair, thus covering every
group of the set by at least one second-player stone, preventing
a possible win by the first player in that set of groups.

Another useful theorem, as far as we know nowhere stated
explicitly, is the following, and can easily be proven using the
HJ-pairing strategy.

Theorem 2: Any mnk-game for k ≥ 3 with m < k and/or
n < k is a draw.

Proof: If both m,n < k, then the game is trivially drawn,
since there are no winning sets. Otherwise, suppose arbitrarily
that m < k and n ≥ k. Then the only possibility for getting
k-in-a-Row is as a horizontal group with k connected black
stones (White can never win, according to Theorem 1). The
following strategy by White, however, prevents Black from
getting three or more connected stones in a (horizontal) row.
For every row of the board, apply the HJ-pairing strategy to
every pair of neighbouring squares, starting at the left side.
If the width is odd, leave the last square in a row unmarked.
After any black move on a marked square White responds by
playing the other square of the pair. If the black move is on
an unmarked square, White plays an arbitrary possible move.
Using this strategy White prohibits Black from occupying
more than 2 connected squares in a row, thus preventing a
black win. In case m ≥ k and n < k a similar strategy is
used in columns instead of rows.

We next state two conjectures for strong mnk-games:
Conjecture 1: If some strong mnk-game is a draw, then any

strong m′n′k-game with m′ ≤ m and n′ ≤ n is a draw.

Conjecture 2: If some strong mnk-game is a win, then any
strong m′n′k-game with m′ ≥ m and n′ ≥ n is a win.

These two conjectures together denote the monotonicity
property of winning strong k-in-a-Row games (see Sections
IV and V for more on this). Although this property seems
very plausible (and in fact in many papers on mnk-games is
used), it has so far not been proven formally. However, it can
be proven for a related class of positional games, namely weak
positional games.

C. Background Theory for Weak mnk-Games

In many publications on positional games also the category
of weak positional games is defined [2], [3], [8]. They differ
from strong positional games only in their winning conditions.

Definition 6: A weak positional game is a positional game
with the following ending conditions: the goal of the first
player is similar as in strong positional games, namely claim-
ing all squares of a winning set, however not necessarily first.
The goal of the second player is to stop the first player from
reaching his goal; if the second player succeeds, we call it a
second-player win.

So, weak positional games and positions have just two
possible outcomes, a first-player win (quite similar as in a
strong game) and a second-player win (resembling a draw in
the strong version of the game). We therefore further classify
weak mnk-games just shortly as wins or losses (both from
the viewpoint of the first player).

By the nature of the different goals of both players weak
positional games are also often denoted as Maker-Breaker
(MB) games, where the goal of Maker (Black) is to claim
a complete winning set, whereas the goal of Breaker (White)
is to prevent Black from winning. Then the strong positional
games can analogously be denoted as Maker-Maker (MM)
games.

Based on their definitions there is an obvious relationship
between the outcomes of strong and weak mnk-games.

Theorem 3: If some strong mnk-game is a first-player win,
then the weak mnk-game is a first-player win as well.

Proof: The proof of this theorem is trivial. Since Black
has a winning strategy in the strong mnk-game, he just can
use the same strategy in the weak version of the game. Since
White can not prevent a black win in the strong version, he also
can not prevent it in the weak version, because his abilities in
the weak game are just a subset of those in the strong game (in
particular, there are no white threats that Black must answer).

In many cases, Black wins faster in a weak game than in
its strong version, but he always could ignore a faster win and
use the same strategy. Note that the opposite of Theorem 3
is not valid: if a weak mnk-game is a first-player win, then
the strong version not necessarily is a win also, since White
might be able to prevent that using threats not available in the
weak version.

Theorem 4: If some weak mnk-game is a second-player
win, then the strong mnk-game is a draw.



Proof: The proof of this theorem is also trivial. Since
White has a strategy to block any black possible win in the
weak mnk-game, he just can use the same strategy in the
strong version of the game. This means White has a strategy
preventing the first player from winning without needing any
white threats.

Again, in many cases White has a faster way to prevent
Black from winning a strong game than its weak version, but
he needs not to. Also note that the opposite of Theorem 4 is
not valid: if a strong mnk-game is a draw, then the first player
might still win the weak version of the game, since he may
safely ignore any white threats.

D. Some Theorems for Weak mnk-Games

Conjectures 1 and 2, though not being proven for strong po-
sitional games, can be proven quite easily for weak positional
games:

Theorem 5: If some weak mnk-game is a second-player
win, then any weak m′n′k-game with m′ ≤ m and n′ ≤ n is
a second-player win.

Proof: The proof of this theorem is trivial. Since White
has a blocking strategy on the m×n board, he just can use the
same strategy on the m′ × n′ board. If the strategy demands
playing outside the m′×n′ board, White just plays an arbitrary
move. When a demanded white move has already been played
before, he also plays an arbitrary other move. Since additional
white stones never can hurt White, this proves that Black never
can reach a win.

Theorem 6: If some weak mnk-game is a first-player win,
then any weak m′n′k-game with m′ ≥ m and n′ ≥ n is a
first-player win.

Although this is a quite obvious result, the proof seems not
quite trivial and was still lacking to our knowledge. Using the
previous theorem it is surprisingly simple though.

Proof: Suppose the m′n′k-game is a second-player win.
This means that the second player has a blocking strategy and
according to Theorem 5 any equal or smaller game then is a
second-player win. But the mnk-game is a first-player win,
falsifying the assumption. Consequently, the m′n′k-game is a
first-player win also.

II. RESULTS FOR STRONG 4-IN-A-ROW

Results for strong 4-in-a-Row in the literature are scarce.
In [4] it was shown by a strategy found by C.Y. Lee that the
554-game is a draw. It further was stated that the 4×30 game
would be a win.1

A systematic computer study [11] with a predecessor of our
current 4-in-a-Row solver showed that 4-in-a-Row on 4 × n
boards for n ≤ 8 are draws. The 4 × 9 board could not be
solved then. Further it was shown that the 5 × 5 board is a
draw, while on the 5× 6 board the game is a first-player win.
Therefore it is known that the 5×6 board is the smallest board
on which the first player wins.

1A reference to a thesis [10] was given, but so far we were not able to
track down the source for inspection of this curious result.

Our new solver has much more elaborate (deeper) rules
and other domain knowledge, and a more sophisticated Hales-
Jewett pairing strategy. This results in proving outcomes often
earlier than with our previous solver. For details on the
knowledge used in our current solver we refer to [13].

Using our current k-in-a-Row solver we solved 4-in-a-Row
on all 4× n boards for 4 ≤ n ≤ 11 and the 5× 5 and 5× 6
boards. Results are in Table I.2

TABLE I
NUMBER OF VISITED NODES SOLVING STRONG 4-IN-A-ROW

(MAKER-MAKER VERSION)

Board size outcome # of nodes
4× 4 draw 1
4× 5 draw 189
4× 6 draw 4,452
4× 7 draw 69,717
4× 8 draw 1,498,074
4× 9 win 4,614,766
4× 10 win 60,178,371
4× 11 win 536,741,564
5× 5 draw 23,076
5× 6 win 61

A. The 5× 6 and 4× 9 Boards are First-Player Wins

From the results in Table I we see that the 5×6 board is an
easy win. Only 61 nodes are needed to prove the win within
a few milliseconds. In the following analyses we use Chess-
like notation, where squares are indicated by their column,
numbered from left to right as a, b, c, etc, and their row,
numbered from bottom to top by 1, 2, 3, etc. The main
variation of our program is given in Figure 1.
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Fig. 1. Principal variation on the 5× 6 board.

1. c3 2. e3! strongest defense 3. b4 threatening to make
a winning Open-33 4. d2 best defense; the only alternatives
4. e1 and 4. a5 lose faster 5. c4! threatening to make two
winning Open-3s simultaneously, at c2 and d4 6. c1 strongest
resistance, by parrying one Open-3 threat and making a direct
white threat (the only other escape 6. f4 loses faster to 7. c1

2To gain more evidence that all larger boards including a 5× 6 subboard
are indeed also wins, we also solved all m × n boards with 5 ≤ m ≤ 10
and 6 ≤ n ≤ 10. They all are wins, needing between 31 and 215 nodes to
prove the win.

3An Open-3 is a straight sequence of 3 stones of the player with an empty
square at both sides, so it is a double threat of which only one can be parried,
thus resulting in a win.



(forced) 8. c2 (forced) whereafter 9. d4 achieves a winning
Open-3) 7. f4 forced 8. d4 parrying the other Open-3 threat
(the other two ways to parry the Open-3 threat by playing 8.
a4 or 8. e4 lose faster) 9. d3 with again an Open-3 threat,
this time at e2 10. b5 strongest defense; other defenses like
10. e2 or 10. f1 immediately lose to Black’s double threat at
b3; alternatively White can first make an intermediate direct
threat by 10. c5, but this loses after 11. f2 (forced) 12. f3
(best way to prevent the Open-3) 13. b3 14. a3 (forced) 15.
b5 with two direct threats; the other intermediate direct threat
by 10. f2 loses faster after 11. c5 (forced) 12. c2 (forced) 13.
e2 (forced, but at the same time an Open-3 win) 11. b3 12. a3
forced, yielding the final position in Figure 1. In this position
the program establishes a win-in-5, indicated with the dashed
lines (13. b1 direct threat 14. b2 forced 15. c2 wins by two
direct threats at c5 and e4).

This confirms (as already known from literature [9], [14])
that the 5× 6 board is the smallest board on which Black can
win.

Also, the 4 × 9 board is a win. For this proof some 5
million nodes in around 58 seconds were investigated. The
main variation of our program is given in Figure 2.
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Fig. 2. Principal variation on the 4× 9 board.

1. e2 2. e3! strongest resistance 3. e4! 4. d2 5. f4 threatening
an Open-3 and at the same time preventing a white direct threat
6. d4 strongest defense 7. d1 threatening a double direct threat
at g4 8. g4 best; a strong alternative is 8. f3, after which 9. d3
eventually wins like in the main variation 9. d3! very strong
move, threatening to win by a direct threat at b1 followed by
a winning Open-3 at c1, but simultaneously a direct threat
at f1 followed by a winning Open-3 at e1 10. f2 strongest
way to delay the loss by using a direct threat 11. g1 forced
12. e1 the other two options 12. f1 and 12. c4 immediately
lose to 13. b1 14. c2 15. c1 13. c2 but now Black wins by
a series of direct forcing moves 14. b1 forced 15. b3 16. a4
forced, yielding the final position in Figure 2. In this position
the program establishes a win-in-5, indicated with the dashed
lines (17. c3 direct threat 18. a3 forced 19. c4 winning by a
double direct threat (Black wins at c1 or f1).

B. Correctness of the Results

There are several methods we have used to check the
correctness of our results.

First, all results are in agreement with previous results from
literature [4], [9], [11], [14]. Moreover, shortly after the results

mentioned in this paper became available, a student at our de-
partment independently built a solver with less knowledge, but
including a threat-sequence searcher, confirming our results
[5].4

Second, for many boards solved we also solved them using
less rules (disabling the more complex rules), resulting in
investigating more nodes, but always leading to the same
results.

Third, and most importantly, for all rules and pairing
strategies in our program we incorporated a test feature that
checks all conditions of the rule or strategy in question and
notes the result, but then continues the search without using
the result and comparing the values with and without applying
the rule or strategy. This feature is very useful in debugging
and guaranteeing the correctness of each rule and strategy
separately. In the final version of the program no discrepancies
were encountered.

III. RESULTS FOR WEAK 4-IN-A-ROW

We also adapted our solver to be able to solve weak mnk-
games. Most importantly it meant a change in knowledge
rules, notably regarding the conditions for applicability with
respect to the absence of white threats.

Using our new k-in-a-Row solver we solved weak 4-in-a-
Row on 4 × n boards for 4 ≤ n ≤ 7 and the 5 × 5 board.
Results are in Table II.

TABLE II
NUMBER OF VISITED NODES SOLVING WEAK 4-IN-A-ROW

(MAKER-BREAKER VERSION)

Board size outcome # of nodes
4× 4 loss 1
4× 5 loss 123
4× 6 loss 2,978
4× 7 win 55,635
5× 5 win 7

We observe that weak 4-in-a-Row is already a black win on
the 4 × 7 board (the smallest 4 × n board) and on the 5 × 5
board (the smallest board at all).

A. The 5× 5 and 4× 7 Boards are First-Player Wins
The 5× 5 board is a trivial win. Only 7 nodes are needed

to prove the win within a few milliseconds (see the position
in Figure 3).

The main variation is 1. c3, after which every white response
leads to a position immediately recognized as a win. For
instance, after the response 2. b4, Black has a win-in-7, e.g.,
by playing 3. d3, Open-3 threat, 4. b3 5. d4 a double Open-
3 threat, 6. b2 7. d2 Open-3, and Black wins next move at
d1 or d5. Note that Black need not respond to White’s three
consecutive stones in the b-file, since a White sequence of 4
stones does not win for White.

Since a win for weak 4-in-a-Row is monotone, it means that
all boards containing a 5× 5 subboard, i.e., all m× n boards
with m,n ≥ 5, are wins.

4In his solver, the 4× 9 win was found investigating 79 million nodes in
358 seconds.
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Fig. 3. Principal variation on the 5× 5 board.

Regarding 4×n boards we already find that the 4×7 board
is a win. For this proof just some 56 thousand nodes were
investigated in around 1 second. The main variation is given
in Figure 4.
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Fig. 4. Principal variation on the 4× 7 board.

1. d2 2. e3 3. c3 4. c2 5. b4 direct threat 6. e1 forced 7.
d4 Open-3 threat 8. c4 best reply 9. b2 direct threat 10. a1
forced, yielding the final position in Figure 4. In this position
the program establishes a win-in-5, indicated with the dashed
lines, starting with 11. b3 direct threat 12. b1 forced 13. d3
double direct threat, winning at a3 or d1.

IV. THE EXTRA SET PARADOX

So far it has not been proven that a win for strong mnk-
games is monotone, since it might be the case that on some
board White effectively can use a threat, which he can not use
on a smaller board. This is an example of Beck’s Extra Set
Paradox [3]. In Figure 5 we repeat his example, which is a
small adaptation of an example by Gardner [6] as originally
notified to the latter by Austin and Knight. Note that in this
example all straight lines with three nodes are winning sets
(so this is a 3-uniform example of the Extra Set Paradox).

In the left graph the first player (say Black) wins by taking
the right-down corner. If the second player (say White) does
not respond in the large triangle, Black continues by taking
the upper corner in the large triangle and easily wins. If White
does respond in the large triangle, Black wins likewise in the
upper inner small triangle. In the right graph however, taking
the right-down corner by Black is responded by White by
taking the inner node with degree 4. If Black now continues
by taking the upper corner in the large triangle, White’s forced
response poses a direct threat to which Black has to defend.

Fig. 5. Illustration of the Extra Set Paradox (taken from [3]).

It can easily be verified that this and other optimal variations
lead to a draw. This example shows that adding winning lines
to a position can transform the win into a draw. Gardner [6]
then remarks that his original statement that “if the first player
always wins on a board of a certain size, he also wins on
any larger board” therefore does not hold on arbitrary graphs,
but still holds on square boards. However, this last statement
is not formally proved so far and it surely does not hold for
arbitrary positions on square boards. Consider the 554-position
in Figure 6 (left).

Fig. 6. Two example positions: a win for Black on the 5 × 5 board (left),
but a draw on the 5× 6 board (right).

In this position Black wins by playing c3, indicated with the
small dot. This move makes two Open-3 threats, indicated by
the dashed lines. One Open-3 threat can be parried, but then
Black wins by an Open-3 in the other line. However, when
we extend this position with an additional column to the right
(the position in Figure 6 (right)), then White can respond with
e3, which is a direct threat, to which Black must respond at
f4, after which White’s b2 draws.

Though not formally proved we still strongly believe that
Conjectures 1 and 2 hold.5 Note that in weak k-in-a-Row
games (in fact all weak games) the Extra Set Paradox is not
applicable, since the second player has no threats to which the
first player must respond to avoid losing. As a consequence,
wins in weak games are always monotone.

5Two reasons why we feel these conjectures most likely hold are based on
evidence: 1) on the larger board Black, who has the initiative, has even more
room for maneuvring and avoiding threats by White; and 2) the conjectures
are completely in accordance with all experimental evidence so far, i.e., up
till now there is not a single strong mnk-game known to be a draw, for which
a smaller board is a win.



V. AN ALGORITHMIC SOLUTION

To solve the problem of possible non-monotonicity of
winning in strong k-in-a-Row games we elaborated on the
following idea. The only reason that a strong win on some
m × n board can be non-monotone is that White on larger
boards might have winning sets (and so possible threats) that
are not present at the m × n board (the Extra Set Paradox),
because otherwise Black could use exactly the same winning
strategy on the larger boards as well. As a consequence, when
Black wins on an m×n board even when White is allowed to
play “outside the board” but Black not, it follows that Black’s
win is monotone.

We therefore define a new set of games.
Definition 7: A strong mnk-rs-game is a strong k-in-a-Row

game played on an empty (m+ 2r)× (n+ 2s) board, where
the first player is only allowed to play on the “central” m×n
board and the second player is allowed to use the full board,
which consists of the central board with a two-sided horizontal
rim of width r and a two-sided vertical rim of width s.

This means that if White has a timely direct-threat involving
a square on a rim, Black cannot defend and loses such a
position. As a small test-by-hand: for the strong 343-game
(the smallest board size where the first player wins the
TickTackToe game) it is easily shown that Black still has a
win for any rim size, since White has no time to play in the
rim at all (if Black starts in one of the centre squares, White
can not play in the rim, since Black then obtains a winning
Open-2; after that all black moves are direct threats leading
to a win). Hence, Black wins any mn3-game on boards 3× 4
and larger, and consequently the win of the strong 343-game
is monotone.

We have built a rim-version of our solver of strong 4-in-a-
Row, implementing the rules for the rim version of the game
and of course adapting all knowledge rules used in such a way
that wins by Black only involve groups completely within the
central board, but that threats by White that are incorporated
in the conditions of the rules may include squares in the rim.

The question now is how large such rims at least must be.
It is evident that a rim of size k is over-sufficient, since this is
only useful for White if he is allowed to obtain a sequence of
k consecutive white stones in a straight line across a full rim
of size k. But in order to reach that he should play at least
k times in a rim, meaning that Black has the opportunity to
play at least k additional moves before White can reach such
a win, enough for Black to win. Therefore a rim of size at
most (k − 1) is sufficient.

The following three theorems state this idea formally.
Theorem 7: If a strong mnk-game is a first-player win and

the mnk-rs rim-game is not a first-player win (so it is a draw
or a second-player win), then every mnk-r′s′-game with r′ ≥
r and s′ ≥ s is not a first-player win.

Proof: Given that the second player can prevent the first
player from winning the mnk-rs-game, he can use exactly
the same strategy on any m× n board with a larger rim and
prevent the first player from winning, by just not using the
additional rim surplus.

Theorem 8: If a strong mnk-rs-game is a win, then the
strong (m+ 2r)(n+ 2s)k-game is a win as well.

Proof: This proof is trivial. The first-player can use in
the (m + 2r)(n + 2s)k-game the same strategy as in the
mnk-rs-game, thus guaranteeing him a win, which the second
player obviously can not avoid, even not by playing outside
the central m× n board.

Theorem 9: If a strong mnk-game is a win and the strong
mnk-(k − 1)(k − 1) rim-game is also a win, then the win of
the mnk-game is monotone.

Proof: Given that the first player wins the strong k-in-a-
Row game on the m × n board and still wins the rim-game
with rims of size (k − 1), it follows from Theorems 7 and 8
that all strong m′n′k-games with m ≤ m′ ≤ m + 2(k − 1)
and n ≤ n′ ≤ n + 2(k − 1) are wins. Now suppose an even
larger board is not a win. Then it must be the case that White
has a threat involving a square outside the (k − 1) rim. But
such a threat necessarily concerns a winning line completely
in the rim, for which White has no time as shown above. So
this contradicts the assumption that this larger game is not a
win. Hence all larger boards are wins also, which means that
the mnk-game is a monotone win.

Due to Theorem 7 to investigate if some strong mnk-game
win is monotone it is useful to first apply smaller rims before
applying the (k− 1) rims. Therefore it is natural to start with
rims of size 1 and as long as the rim game is still a first-
player win, increment the rim up to (k− 1). Only if the latter
game is still won by the first player, it is guaranteed that the
mnk-game win is monotone.

It is not guaranteed that this idea works for wins in arbitrary
strong mnk-games, so we have to investigate this experimen-
tally for relevant games explicitly. The first experiment is to
determine if the strong 564-game is a monotone win. In Table
III we give the results of solving 564-rr games with increasing
rim size r.

TABLE III
NUMBER OF VISITED NODES SOLVING STRONG 4-IN-A-ROW ON THE

5× 6 BOARD WITH RIMS OF DIFFERENT SIZES

Rim size outcome # of nodes
0 win 61
1 win 7,084
2 win 6,393
3 win 18,833
4 win 18,833

We see that the strong 564-rr-games are all first-player wins
for rim sizes up to 3. We may conclude that the win of the
564-game is monotone, hence that strong 4-in-a-Row is a win
on any m × n board with m,n ≥ 5 and max(m,n) > 5.
We also note that the number of nodes investigated for rim
size 3 and 4 are exactly equal. This supports our claim that a
rim size of (k − 1), i.e., 3 for 4-in-a-Row, is large enough to
investigate a potential monotone win.

We next applied this method to strong 4-in-a-Row games
on 4×n boards. In this case it is sufficient to add only vertical
rims, since we are only investigating the monotonicity of wins



of boards with a fixed number of 4 rows. Results are in Table
IV.6

TABLE IV
NUMBER OF VISITED NODES SOLVING STRONG 4-IN-A-ROW ON 4× n

BOARDS WITH n =9, 10, AND 11, FOR RIMS OF DIFFERENT SIZES

Board Rim size outcome # of nodes
4× 9 0 win 6,191,234
4× 9 1 no win 94,888,015
4× 10 0 win 83,305,748
4× 10 1 no win 13,102,532,623
4× 11 0 win 836,261,749
4× 11 1 unknown � 25,000,000,000

Unfortunately, for the 4×9 board (the smallest 4×n board
where the first player has a win) we find that already with
a rim of size 1 (and due to Theorem 7 therefore with any
larger rim) the second player can prevent the first player from
winning (see Table IV, upper part). This was not completely
unexpected, since we know from our results that 4-in-a-Row
on the 4 × 9 board involves a very complicated win for the
first player, mainly since the strongest way to win, by posing
Open-3 threats, is only possible in the horizontal direction.

We then did the same experiment for the 4 × 10 board,
but again already with a rim of size 1 White can prevent
Black from winning (Table IV, middle part). For 4 × 11 the
number of investigated nodes for a rim size of 1 already
becomes excessively larger than reasonably feasible (see Table
IV, lower part), let alone (if this board would still be a win
for Black) for rim sizes of 2 and 3.

Investigating the results so far we found as reason for this
behavior the possibility for White to use the rim for useless
threats, that Black cannot parry due to his handicap. We then
made an adaptation to our rim-version of the program, where
Black is allowed to defend a direct threat in the rim, but further
is still not allowed to use the rim. This prevents (sequences
of) useless threats by White, but cannot prevent White from
any potential to win or to hamper a black win using the
rim. Moreover, responses by Black in the rim may not be
involved in the final black win in any won variations. We
denote such adaptation of a rim game by rim+. The next
theorem formally proves that Theorem 9 still holds for this
modified rim+ version of k-in-a-Row rim games.

Theorem 10: If a strong mnk-game is a win and the strong
mnk-(k − 1)(k− 1) rim+ game is also a win, then the win of
the mnk-game is monotone.

Proof: The proof is similar as the proof of Theorem 9
since (sequences of) threats by White in the rim are useless
when Black still wins the rim games.

Using this version we repeated the previous experiments.
The results are shown in Table V.

In the upper part of the table we find that for the 4×9 board
it still holds that White can prevent Black from winning with
a rim size of at least 1. In the lower part of the table, it is

6The slightly larger numbers of investigated nodes for the boards with rim
size 0, compared with Table I, are due to a small difference in move ordering
in this version of the program.

TABLE V
NUMBER OF VISITED NODES SOLVING STRONG 4-IN-A-ROW ON 4× n
BOARDS WITH n =9 AND 10 USING THE RIM+ VERSION, FOR RIMS OF

DIFFERENT SIZES

Board Rim size outcome # of nodes
4× 9 0 win 6,191,234
4× 9 1 no win 100,355,209
4× 10 0 win 83,305,748
4× 10 1 win 312,543,420
4× 10 2 win 386,574,878
4× 10 3 win 689,771,099
4× 10 4 win 689,607,829

shown though that for the 4 × 10 board White is no longer
able to prevent Black from winning using rims of sizes up
to 3 or more. The results once more indicate that increasing
the rim size from 3 to 4 for 4-in-a-Row hardly has any effect,
again supporting our claim that a rim of size k−1 is sufficient.
Using Theorem 10 the results show that the black win on the
4 × 10 board is monotone, and since Black also wins on the
4× 9 board, it follows that the black win on the 4× 9 board
is monotone.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have closely investigated the simple (in
rules) but yet complicated (in strategy) game of 4-in-a-Row.
We have obtained four main conclusions, all four connected
to a different version of the game.

Continuing earlier work on the strong version of the game
using a mediocre knowledge-based program we now have used
a more deep and refined knowledge-based solver. We were not
only able to reproduce within a fraction of a second the fact
that the 5 × 6 board is indeed the smallest board on which
Black can win, but also showed with some more effort (about
a minute) that the 4 × 9 board is the smallest 4 × n board
on which Black wins. For both boards we have given our
program’s principal variations, clearly exhibiting the inherent
complexity of the game.

Next we showed that weak 4-in-a-Row is already a black
win on the 5× 5 (the smallest) and 4× 7 (the smallest 4×n)
boards. These wins are easier, since White can not use threats
by himself, but only can block Black by claiming at least 1
stone in every group. By definition these wins are monotone
and therefore weak 4-in-a-Row is completely solved.

We also investigated the problem posed by the Extra Set
Paradox, which means that wins in the strong version are not
necessarily monotone (at least not proven so far, though they
probably are, evidenced by all available results). This means
that from solving the 5 × 6 and 4 × 9 boards we may not
conclude that any larger board incorporating a 5× 6 or 4× 9
board is a black win also. For the 5×6 board we formulated an
algorithmic solution based on a rim version of the game, where
Black can only claim squares on a central board, whereas
White can claim squares on the whole board, a central board
with two-sided rims. The results showed that Black still wins
the game, even if White is allowed to use a rim of size 3 or
more. Therefore, the black win in the 5×6 game is monotone.



For the 4×n boards with n ≥ 9 this did not work so far, and
we adapted our program so that Black is allowed to respond to
direct threats in a rim as long as they are not useful for White
(i.e., do not prevent black wins) and do not support Black in
obtaining a win. With this version, Black still was unable to
win the 4 × 9 board with rims of size 1 or larger. However,
from 4 × 10 onwards Black wins with rims of sizes up to 4.
Combined with the black win on the 4 × 9 board without a
rim, this means that the black win on the 4× 9 board also is
monotone.

By the previous two results it now is known that Black wins
on any 4×n board with n ≥ 9 and on any m×n board with
m,n ≥ 5 and max(m,n) > 5, This means that also strong
4-in-a-Row is now completely solved.

Regarding future research, we first of all will elaborate on
the current components of our solving program and enhance
these where possible (for which we still have many ideas).

Further we want to implement two main ideas. The first one
is to combine our solver which is strong in quickly finding won
positions using knowledge rules [13] with a form of threat-
space search as applied by Charatsidis for 4-in-a-Row [5] and
by Allis et al. for Go-Moku (5-in-a-Row on a 15× 15 board
with slightly special rules) [1]. This combination is expected
to find winning variations even much quicker. The second idea
is to implement the strategy of Set Matching [12] which is an
enhancement of the Hales-Jewett pairing strategy [7]. Such
implementation is expected to find drawing variations much
quicker.

We then want to use these advanced techniques to also
investigate larger versions of strong k-in-a-Row games (for
k = 5, 6 or 7) for which we do not have full knowledge
yet, including the topic of monotonicity of wins. Of course it
would be great if a general proof of the monotonicity property
of k-in-a-Row on rectangular boards was found.

Finally we also aim at solving weak (Maker-Breaker) and
maybe other interesting versions for such games.
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