
An Experiment on Game Facet Combination
Raphael Patrick Prager

Department of Information Systems
University of Muenster

Münster, Germany
raphael.prager@wi.uni-muenster.de

Laura Troost
Department of Information Systems

University of Muenster
Münster, Germany

l troo01@uni-muenster.de
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Abstract—Procedural Content Generation of game content
has been vastly improved over the last years and is more and
more adopted also in the game industry. It relies mostly on
evolutionary and related optimization methods but usually only
treats a single of the many available facets as visuals, levels,
audio, etc. The problem of how to combine several facets of
generation is largely unsolved, but nevertheless very important.
One of its subproblems is that we currently do not know in
advance how users will react to machine-generated combinations.
Based on a simple maze game with exchangeable visuals and
audio styles we test how users receive ‘usual’ and ‘unusual’ facet
compositions by means of rank trace based annotations of their
own play-throughs. By means of machine learning techniques, we
establish a model in order to learn and predict user reactions.
Understanding the effects of facet composition on the user is
fundamental if we want to rise evolutionary generation of content
to the next level.

Index Terms—game facets, user study, procedural content
generation

I. INTRODUCTION

Driven mostly by evolutionary optimization algorithms,
Procedural Content Generation (PCG) is nowadays applied
for generating many different aspects of games [1]. More pre-
cisely, so-called game facets describe high-level components
of a game such as visuals, audio, narrative, game design, level
design or gameplay [2]. While it is often feasible to generate
one facet of a game – for example the selected mazes of this
experiment were at first procedurally generated – it is of major
challenge to combine multiple (by independent algorithms)
generated facets in a way that the resulting game is perceived
as harmonic by a human player [3].

The process of harmonizing the facets of a game has been
coined as facet orchestration [4]. The definition is inspired by
a musical orchestra where each instrument needs to be played
carefully to create a comprehensive and harmonic interaction.
If one instrument is out of tune, this can be easily noticeable
and may create an interfering experience for the listener.

Facet orchestration would be a necessity for a general game
generator. Probably due to the complexity of the task, the

amount of approaches in this area is currently limited [5].
A recent survey [4] introduces the problem of multiple facet
generation and provides an overview of attempts to combine
generation for different facet combinations. One of the diffi-
culties here is that it is hard to foresee how human users will
react to content combinations. Will they really only accept
harmonic matches, e.g. horror sounds with horror visuals?
Or will they also willingly accept seemingly non-matching
combinations? Is this shift rather gradual or pivotal? With this
study, we attempt to shed more light on how users perceive
different compositions of multi-faceted game content in order
to obtain directions for multi-faceted content generation. From
our point of view, this problem is relevant not only to research
but to practitioners as well. One could easily imagine that
comforting visuals paired with tensed sound might elicit an
even more distressing game environment for the player as he
expects something to happen. This is only one of the plethora
of possible combinations of facets and facet manifestations

We have therefore set up a simple maze runner game
with two exchangeable sets of visuals and audio content,
respectively. One set of each facet resembles a horror scenario,
and the other set a happy scenario. In our study, the content
is manually designed, but it may also have been generated
separately for each scenario. The question is, how humans will
react if, for a single facet, the content is swapped to resemble
the other scenario.

Based on our expectations concerning user reaction towards
the different combinations of happy and horror facets, we are
interested in testing the following hypotheses:

• Users generally prefer homogeneous combinations
(happy with happy, horror with horror) over heteroge-
neous ones.

• If at all, the video facet is more important than the audio
facet concerning user reactions.

• The facet combinations are so different that a model
predicting the effect of one combination on the player
cannot generally be used for another combination.
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The main contribution of this work is to provide more
insight into the interaction between facet combination and
user reaction. With respect to facet combination, a better
understanding of this interaction would clearly be beneficial
for better combining generated game content from multiple
generators in a way that is embraced by human players.

In Section II and III, we describe the maze runner game used
for the study in more detail and elaborate on the experimental
setup. Thereafter, we present the analysis of the obtained
information. This comprises an exploratory data analysis of
the study results. In Section V, a machine learning approach
is introduced which is able to scrutinize derived insights of
the former section. The outcomes are presented in Section VI.
This is followed by a discussion where we relate our results
to the field of facet orchestration. Finally, we summarize our
findings with respect to the hypotheses.

II. THE MAZE RUNNER GAME

The game we use for collecting data falls into the category
of maze runner games. Inspired by this genre, the general
objective is to escape a maze in a specific time frame. A single
maze consists of exactly one entrance and one exit. While dead
ends are incorporated, loops are excluded. Hence, the mazes
to be solved are called simply connected or perfect mazes.

At first, a player can try to escape the labyrinth unbothered.
After a given amount of time, an enemy spawns at the entrance
point. Using the A*-algorithm to construct the shortest path
[6], the enemy aims to reach the player. If that occurs, the
player will die, and thus loses the game. In addition, so-
called action chests are located within the maze. A chest can
simply be triggered by running against it. Thereby, an effect
is activated that is not known beforehand. Exemplary chest
events are teleportation to a predefined location within the
maze, jump scares and so forth. A full account of chest types
and their different effects is provided in Table I.

The game contains a visual representation for the previously
mentioned chests and the enemy but also for basic elements as
the walls of the maze, the floor, and the players avatar. These
visual representations are accompanied by a soundscape. This
soundscape is constituted of background music, and sound
effects for certain chests and other game events, for instance,
the spawn of an enemy. For both facets, visual representation
and soundscape, two different settings are available, i.e., a
selected visual representation can either convey a dark and
tensed, or a soothing and joyful game environment. Figure 1
provides two screenshots of these representations in the game.
On the left-hand side, the visual representation is set to horror.
The right-hand side depicts a happy visual representation. The
same applies to the soundscape. For the sake of simplicity,
we label the former as the horror setting and the latter as
the happy setting. The game allows combining the different
settings of visuals and soundscape in an arbitrary manner. In
other words, visual representation and soundscape can either
complement (e.g. both are set to horror) or contradict each
other (e.g. soundscape is set to horror while visuals are set to
happy).

Fig. 1. Different visual representations. Left: player in a horror environment,
next to an action chest. Right: a happy setting.

To provide a consistent language, we will use the following
notation in the remainder of this paper when referring to the
setting. The set of possible visual representations is denoted
as V = {horror, happy} and the soundscape respectively as
the following S = {horror, happy}. The setting configuration
sc of a game instance is captured in the tuple sc = (v, s)
with v ∈ V and s ∈ S. Hence, a game configuration which
uses happy visual representations and a horror soundscape is
denoted as (happy, horror).

To summarize the aforementioned game elements and con-
cepts, a player’s objective is to escape the maze within the
given time frame and without being caught by the enemy, by
either utilizing chests to his advantage or not, while being sub-
jected to the different configurations of visual representation
and soundscape1.

III. EXPERIMENTAL SETUP

In order to measure how human test players perceive the
different combinations of facets, we perform an experiment
that provides us with different types of information. Next to
some demographic data, we obtain annotated play-throughs of
different facet combinations together with preference rankings
also provided by the players.

Whereas the annotated play-throughs are modeled via rank
based SVM later on, we first separately analyze the rankings
done by the players concerning the different facet combi-
nations. However, we now start with describing how the
experiment was performed.

The survey was conducted with 20 participants. The rules
and game elements were explained beforehand. A tutorial al-
lowed each participant to get acquainted with the game for five
minutes. This enables players to familiarize themselves with
the controls. In this tutorial, visual elements, soundscape, and
game elements were reduced to a minimum, i.e., no enemy,
chests and sound effects were present. Visuals consisted only
of the player, the ground and walls. The reasoning for this
minimal audiovisual representation was to avoid introducing a
biased perception as much as possible. In other words, when

1The game can be found here: https://github.com/MS-Lolstars/PCGMaze.
Note that depending on your location the first level might lag in the beginning
until all resources are loaded



TABLE I
CHEST TYPES AND THEIR EFFECTS

Chest Type Effect
Rotation Rotates the camera by either 90, 180 or 270 degrees. This effect holds on until the current maze is finished.
Teleportation Instantly moves a player to a predefined location within the maze.
Reduce Time The amount of time to escape the maze is reduced by six seconds while a typical game takes about one minute to finish.
Increase Time The amount of time to escape the maze is increased by six seconds while a typical game takes about one minute to finish.
Zoom out The camera moves further away from the player. Hence, the player is able to see roughly twice as much of the maze as before.

This effect is active for five seconds.
Horror Jump Scare One out of four different animated jump scares is played. The jump scare covers the entire screen for less than a second and is

accompanied by a respective sound effect. This chest type only occurs in combination with horror visuals.
Happy Video This is the antagonist of the horror jump scare. A short animated video is played. The content comprises what we define as

possibly funny or ‘sweet’, e.g., animal videos. During that, the countdown timer is paused. This chest type only occurs in
combination with happy visuals.

a participant would play a specific setting configuration in the
non-monitored tutorial, he might rate this setting configuration
differently in the monitored survey. After playing the tutorial,
each participant began the survey.

A single survey consists of four iterations of a specific pro-
cedure. This procedure is constituted of three distinct phases:
a playing phase, an annotation phase, and a rating phase.
In the playing phase, the survey participant tries to escape a
given maze. During this play-through, valuable information
of the game state is written to a corresponding log file.
The log file comprises information regarding the player and
enemy position in a 250 milliseconds interval, which sound
effects occurred at a specific point of time, which chests
were opened, and whether the game ended successfully or
not. In addition, the entire play-through is recorded. That
means the screen was captured using the Windows Gaming
Bar. This video is used in the annotation phase. During this
second phase, participants were presented their recording and
instructed to annotate their video in terms of arousal. Arousal
is a well established emotional dimension which was already
the focus of different research [7]–[9]. We define arousal as
the product of one or multiple endogenous stimuli. This can
be a positive emotion induced by certain game elements, for
instance, joy and laughter. But also emotions which typically
have a negative connotation, like stress, pressure, panic, and
fear. In either case, when the degree of overall stimuli rises,
participants are obliged to increase the arousal value. Respec-
tively, when the game cannot uphold the strength of stimuli,
participants are presumed to decrease the arousal value. The
gradient of change can be freely chosen by a participant. The
initial arousal value is zero, and there are no lower or upper
bounds. In addition, the produced values are discrete. This
results in a time series of arousal values, meaning for a given
participant and configuration c we gather the arousal value in
the beginning (t = 0), the arousal value in t = 1, and so
forth. When a participant does not explicitly assign an arousal
value in t, the last arousal value in t− 1 is usedThese arousal
values are collected using an external hardware component,
Griffin Power Mate2, in combination with the software called
Ranktrace3. According to [10], the unbounded annotation via

2https://support.griffintechnology.com/product/powermate/
3http://pagan.davidmelhart.com/upload.php

Ranktrace complemented by a wheel-like external hardware
component, such as the Griffin Power Mate, yield good results
when measuring arousal or similar emotions. The results of
the annotation phase are matched with the log files of the
playing phase to deduce meaningful insights. In the rating
phase, participants compare a given maze with a previous
maze played. It is of interest here which setting configuration
is perceived as more ‘fun’ and more ‘difficult’ over others.
Hence, we capture these preference decisions using a three
alternative forced choice questionnaire schema. In other words,
in case of ‘fun’, participants have to choose whether a given
setting configuration was ‘more’, ‘less’ or ‘same’ fun as the
previous one. This also applies to the question concerning
difficulty.

This procedure is repeated for the different setting
combinations. The available setting configurations
sc ∈ SC with set SC = {(horror, horror),
(happy, horror), (horror, happy), (happy, happy)} theoretically
allows for

∑|SC|−1
i=1 i = 6 different comparisons between two

setting configurations. To improve statistical relevance, only
four setting comparisons are considered within this paper.
These are namely:

• (horror, horror) versus (happy, horror)
• (happy, horror) versus (horror, happy)
• (horror, happy) versus (happy, happy)
• (happy, happy) versus (horror, horror)

On the one hand, this weakens the independence of the
measured results because there are combinations not tested. On
the other hand, this prevents the measured results to degrade
due to fatigue and keeps the amount of data large enough
to apply statistical procedures. With a larger test set (one
participant needs about half an hour, not including the training
level), a more complete comparison would have been possible.

As already mentioned, the described procedure, comprising
the three phases, is conducted four times for a single survey
participant. To ensure comparability between participants, four
different mazes were designed beforehand. In each of these
mazes, several chests with predefined effects were integrated.
In the first iteration, the initial setting configuration as well
as one of the predefined mazes are chosen at random. The
setting of the second iteration is determined by the setting of
the first iteration, i.e., if the first iteration used the (horror,



horror)-configuration, the second iteration will always attain
the (happy, horror)-configuration (c.f. the listing above). The
order of mazes on the other hand is not fixed, rather they
are sampled uniformly. The only constraint enforced is that a
maze cannot be played again within one survey (so sampling
without replacement). For the rating phase, this leads to
three different setting comparisons per survey, that is, (1)
comparison between the first and second setting combination
played, (2) comparison between the second and third setting
combination played, (3) and finally the comparison between
the third and fourth setting combination. Note that the first
iteration of the survey procedure only consists of the playing
phase and the annotation phase. The rating phase is omitted
simply because there is no previous game played to compare
it to.

IV. DATA ANALYSIS

First of all, the dataset was split into several parts. Splitting
criteria were the four different mazes as well as demographics,
like gender and age. Thereafter, we checked if these factors
had an impact on the effect we want to measure, and whether
we should divide the dataset into several smaller ones for
further analysis. That was not the case. In addition, each
setting combination was approximately equally often the first
configuration of a survey. Thereby, we can assume that an
external bias is minimized to the best of our knowledge.
Regardless, the dataset is divided into two subsets due to their
distinct nature. The first dataset consists of the information of
the rating phase extracted from the questionnaire. The second
dataset comprises the matched game logs and the arousal
annotations which have a time-series character.

A. Questionnaire Data

As a reminder, each survey comprises three rating phases
where a participant compares the current level with the previ-
ous one. One of the questions is directed at the enjoyability,
i.e., is the current level more enjoyable (more ‘fun’) than
the previous one? The results of these comparisons between
the different setting combinations are depicted in Figure 2.
Players substantially prefer the heterogeneous (horror, happy)-
setting over the heterogeneous (happy, horror)-setting. This
also applies to the comparison of the (horror, happy)-setting
against the (happy, happy)-setting. The (happy, happy)-setting
is favored in that case. In the remaining two comparisons, that
is, (horror, horror) vs. (happy, horror), and (happy, happy) vs.
(horror, horror), none setting configuration clearly dominates
the other. The (horror, horror)-setting is only slightly preferred
over the (happy, happy)-setting and the (happy, horror)-setting.

However, rankings can still be extracted but have to be
regarded with caution. Assuming a scenario where we have
two objects a and b. For arbitrary reasons, if a has a better
rank than b, then this is denoted as rank(a) < rank(b).
Consequently, the aforementioned preferences of setting com-
binations can be written as follows:
• rank((horror, horror)) < rank((happy, horror))
• rank((happy, horror)) > rank((horror, happy))

• rank((horror, happy)) > rank((happy, happy))
• rank((happy, happy)) > rank((horror, horror))
This ranking is transitive. That means that the homogeneous

settings are preferred over the heterogeneous settings in any
of the four considered comparisons.

At the same time, participants perceived the heterogeneous
settings as more difficult compared to the homogeneous setting
combinations. An external bias induced by the different mazes
is most likely not the case. All four mazes were roughly
perceived as similarly difficult. This trend is illustrated in
Figure 3. It is likely that the heterogeneous combination
of visual elements and soundscape acts as a catalyst for
confusion, and is therefore a possible reason for an increase
in perceived difficulty. However, these rankings are of relative
nature. While heterogeneous setting combinations might be
perceived as more difficult, that does not necessarily mean
that the (horror, horror) and (happy, happy)-configuration are
too simple.

B. Arousal Data

Besides the dataset of the questionnaire, the arousal dataset
is also utilized for analysis purposes. Of special interest
is here the density of the arousal values distinguished for
each setting combination. The hypothesis (derived from the
questionnaire data) that homogeneous setting combinations
are preferred over heterogeneous ones seems to be present in
the arousal data as well. Figure 4 shows the mirrored density
of each audiovisual configuration. The (happy, happy)-setting
and the (horror, horror)-setting exhibit both a relative stable
density with fatter tails in the direction of increasing values.
The heterogeneous settings on the other hand cover a larger
range of values on the y-axis. While these violin plots do
not illustrate the time series of arousal values, it can still
be inferred that the increase and decrease of arousal in the
homogeneous settings is more smooth. This holds especially
true for the (horror, horror)-setting. In contrast, the (happy,
horror)-setting and the (horror, happy)-setting exhibit more
rugged properties. To confirm the intuition that each density is
different, the Kolmogorov-Smirnov test is used. H0 assumes
an equality of distribution. In every pairwise comparison (e.g.
(horror, horror) and (happy, happy)), H0 can be rejected with
a significance level α = 0.01

Surprisingly, the analysis of the chest types in context of
different audiovisual aesthetics does not yield any insights.
Especially in the case of the Horror Jump Scare and the
Happy Video chest, we expect differences in the distinct setting
combinations which are not present. While the absolute arousal

TABLE II
ARITHMETIC MEAN AND MEDIAN OF AROUSAL FOR THE DIFFERENT

SETTING CONFIGURATIONS.

Setting configuration Mean Median
(horror, horror) 37.27 9
(happy, horror) 17.31 2
(horror, happy) 25.41 2
(happy, happy) 24.50 4
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Fig. 2. The four considered comparisons between two different setting configurations. The title of each bar plot indicates the order of settings played. For
instance, (horror, horror) vs. (happy, horror) means that the previous maze had the (horror, horror)-setting whereas the current maze consists of the audiovisual
aesthetics (happy, horror). The x-axis depicts the three different possible answers to the questions ‘How much did you enjoy the current maze compared to
the previous?’. The y-axis represents the number of answers by participants. Note that due to the randomized experimental setup the number of total answers
to each question varies slightly.
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Fig. 3. This figure is closely connected to Figure 2. The same description of that figure applies here. The only difference is the asked question: Whereas the
previous figure illustrates the enjoyability of the setting combination, the information of this figure targets the perceived difficulty. The question was ‘How
difficult is the current maze compared to the previous?’.

values are divergent and cannot be explicitly connected to the
chests, the magnitude of change, after a chest is activated, is
approximately the same.

Besides the information depicted in the violin plots, the
(horror, horror)-setting has the highest median value in terms
of arousal. This is followed by the (happy, happy)-setting.
The arithmetic mean on the other hand does not bare any
meaningful interpretation due to several extreme outliers in
some setting configurations (c.f. Figure 4). However, for full
disclosure the arithmetic means and medians of the arousal
distinguished for each setting combinations are summarized
in Table II.

Nevertheless, the derived insights of the arousal data cannot
fully support the hypothesis that homogeneous setting com-
binations are preferred over heterogeneous ones. One of the
measured features of the questionnaire is ‘fun’ which assumes
a positive valence. In contrast, arousal itself can be both,
positive and negative, as it only expresses an emotional re-
sponse in one dimension. Consequently, an increasing amount
of arousal does not necessarily mean that it will automatically
be preferred by players. However, there exists a correlation
between the features fun and arousal. A more gradual and
smooth density of arousal seems to imply that it will be more

fun for players. This is the case for the homogeneous setting
configurations, that is, (horror, horror) and (happy, happy).

V. RANKED SVM BASED AROUSAL MODEL

This section introduces a machine learning approach to
model arousal based on the different audiovisual configura-
tions of the maze runner game. Comparative predictive mod-
eling is applied to examine the consistency of user reactions
to stimuli within and between audiovisual configurations. Our
results provide further insights into the capacity of different
facet combinations to influence the emotional outcome of a
gaming experience. This approach focuses on the predictive
strengths of different models based on given configurations
between subjects and across different setups.

A. Datasets and Features

For the machine learning task, the data is preprocessed and
divided into different sets based on the configuration of the
audiovisual aesthetics of the given session of a player. Both
the input and output features are preprocessed and aggregated
on a low level. Each element of the gameplay logs and
the corresponding annotations are grouped and assigned to
three second time windows. This procedure helps to smooth



4

32

256

(happy,happy) (happy,horror) (horror,happy) (horror,horror)

A
ro
us
al

Fig. 4. Each violin plots depicts the density as well as the skewness and kurtosis of a given setting combination (x-axis). The y-axis indicates the arousal
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i.e., for each participant and a given configuration the values of the entire time span are taken.

out the data and aligns the input and output features while
preserving the moment-to-moment dynamic of gameplay. The
whole dataset of 1320 feature vectors is divided into 4 sets of
330 samples for each audiovisual configuration.

Input features are translated from gameplay logs into both
general gameplay metrics (Time Passed, Overall Distance
Travelled, Delta Distance Moved, Euclidean Distance to the
Starting Location) and gameplay events related to audiovisual
aesthetics (Horror Jump Scare, Happy Video, Sound 1: Distant
scream, Sound 2: Crow call, Sound 3: Alien noise, Sound
4: Crying baby), enemies (Enemy Spawned, Enemy Present,
Enemy Catches Player), navigation (Rotation 180◦, Rotation
270◦, Teleportation, Zoom Out, Player Finds Exit) and time
constraints (Decrease Time, Time Runs Out, Increase Time).

The target output for all models is the annotated arousal.
This ground truth is processed through different means, which
are modeled independently. Six different signals are generated
through three processing methods and the same three-second
window method which is applied to the input features is
employed here as well. For each window, the amplitude (Â),
the gradient (∆A), and mean value (µA) is calculated. For
each of these combinations, a second feature is generated
as well with the application of a one second lag (l), which
shifts the annotation back, potentially aligning them with the
gameplay logs to account for the reaction time of the player.

B. Pairwise Preference Learning

Preference Learning (PL) [11] is a supervised machine
learning paradigm, in which an algorithm learns to infer the
relative association of datapoints. In contrast to classification
and regression—which treat data as nominal and interval
values respectively—PL regards datapoints as ordinal variables
[12], hence it is more flexible [13], [14]. To infer relative
relationships PL applies a pairwise transformation on the
given dataset [15], translating it into a new representation,
which can be solved by any binary classifier. During the
pairwise transformation for each pair of (xi, xj) ∈ X the
preference relation of the variables is observed based on their
associated ground truth value (yi, yj) ∈ Y . If (yi > yj),
then xi is preferred over xj (xi � xj). For each of these

observations, two new datapoints and associated labels are
created, signifying the difference between the two datapoints
and the direction of the preference relation. In case of xi � xj ,
the new datapoints are x′1 = (xi − xj) with label λ1 = 1 and
x′2 = (xj−xi) with label λ2 = −1. During the transformation
a preference threshold parameter (Pt) is applied to control
the minimum significant difference between datapoints for the
inference of the preference relationship. As a result of the
transformation, the training set is inflated to 386 on average.

C. Ranking Support Vector Machines

The present study applies pairwise preference learning
through Ranking Support Vector Machines (rankSVM) [16]
as they are implemented in the Preference Learning Toolbox
[17]. This application of the algorithm is based on LIBSVM
library [18]. SVMs operate by maximizing the margins of
a separating hyperplane, often in higher dimensional feature
space [19]. The present study uses both linear kernels to infer
the distance between the transformed points. During training,
our models rely on the C regularization term, which controls
the trade-off between the correctly classified training examples
and the width of the margins of the separating hyperplane.
RankSVMs are chosen for this study because they have been
shown to produce robust results in affect modeling tasks [20],
[21].

D. Model Validation

To find the best hyperparameters and get a better picture of
the internal consistency of the data, cross-participant validation
(CPV) is applied in combination with grid search. In the CPV
process, we define folds as separate participants based on
their id, and run traditional (leave one out) cross-validation
over these folds. We have 20 folds in total, with each fold
combining data of 4 play sessions. We find the best C
parameter in the 1–100 range (with steps of 10); and Pt in
0.01–0.09 range (with steps of 0.01) range.

For the tests comparing the predictive power of different
datasets, we fit the models with the best parameters found
for each output to the whole dataset and test them on all of
the other three datasets, first separately then combined. Due
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Fig. 5. Test accuracy (y-axis) of the SVM with linear kernel when predicting µA(l = 1) arousal. The x-axis indicates which audiovisual constellation was
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predicting arousal on a (horror, horror)-setting.

to space constraints, the presented models are always using
their best parameters. Since the aim of the predictive modeling
is to compare how well models can be trained to perform
on different datasets, we compare their best performance and
disregard the differences in their hyperparameters.

VI. PREDICTIVE MODELING RESULTS

This section displays the results of the rank based SVM
modeling and is structured as follows: Section VI-A describes
the CPV results briefly, Section VI-B presents the predictive
power from one dataset to another, and shows the results
of models predicting results from a pooled dataset of three
other configurations. Due to the pairwise transformation of
the dataset, the baseline for all models is 50%.

A. Cross Validation Results

An initial CVP result shows that the internal consistency
of homogeneous audiovisual configurations are higher, with
the average accuracy of linear SVMs are at 80.73%, 72.02%,
68.45%, 61.37% for the (happy, happy), (horror, horror),
(horror, happy), and (happy, horror) setups respectively.

B. Comperative Tests of Single Configurations

To test the robustness of models trained on specific setups, a
set of comparative tests is carried out. Although previous tests
already show the effectiveness of homogeneous audiovisual
configurations, these tests reveal more about the effects be-
tween different aesthetic setups. As the results show on Figure
5, models trained with happy audio generalize with a higher
average accuracy (by approximately 6.8%), while the (horror,
horror) setup is the easiest to predict with approximately 8.5%
increase in accuracy on these test sets on average.

A final test examines which models generalize better over
not just one but all other setups. These results underline and
validate prior observations about the robustness of models
trained on happy audio. Results of (happy, happy) and (horror,
happy) configurations show 72.61% and 72.26% accuracy,

while (horror, horror) and (happy, horror) only reaching
65.01% and 64.34%.

VII. DISCUSSION

In this study, we performed different types of analysis in
order to investigate how users perceive different compositions
of multi-faceted game content and how they can be predicted.
The results of the exploratory data analysis claim that homo-
geneous settings are perceived as more fun and less difficult
than the heterogeneous ones. This also correlates with the
derived arousal values which are higher and more stable for
the homogeneous settings. In contrast, arousal values for the
heterogeneous settings cover a large range of arousal values
which indicates that it might be hard to foresee how players
will react to these setting configurations.

The predictive modeling results support this observation as
the homogeneous audiovisual facets can be predicted with
greater accuracy, especially in case of more intense and
transgressive configurations (i.e. (horror, horror)). As for the
predictive power of a facet combination, there seems to be
a divergence between the combinations. The (happy, happy)-
model is able to predict the arousal value for (horror, horror)
with an accuracy of nearly 80%. The happy audio setting
generally performed better than the horror audio setting,
regardless of the visual configuration. This may indicate that
the audio facet has a bigger impact on the player’s perception
of the game content than the visual facet. The results of
predictive modeling extend beyond what the statistical analysis
has revealed in two main ways: A) using a pleasant soundscape
yields data with a more consistent inter-rater agreement (see
configuration-dependent but user-independent model accura-
cies in Section VI-A) and thus subsequent models generalize
better; and B) homogeneous, especially transgressive (horror,
horror) audiovisual configurations elicit emotions which are
easier to model but not necessarily easier to transfer to less
intense input.



Nonetheless, these results must be interpreted with caution
and some limitations should be borne in mind. This study
only considered a subset of the possible comparisons of two
audiovisual configurations, namely four out of six. Addition-
ally, only two facets, audio and visual, were included which
only allows for restricted statements about multi-faceted game
content. These limitations were endured in order to keep the
amount of data large enough for statistical procedures and so
that at least some findings can be presented.

VIII. CONCLUSIONS

By means of this study, we want to provide more insight into
the interaction between facet combination and user reaction.
Therefore, we conducted an experiment with a maze runner
game and four different audiovisual setting combinations,
namely (happy, happy), (happy, horror), (horror, happy) and
(horror, horror). In doing so, we derived information about the
perceived arousal for each game and rankings of the different
facet combinations. Based on this, we first performed an
exploratory data analysis. The results of this analysis are in line
with our first hypothesis, users generally prefer homogeneous
combinations over heterogeneous ones, as these were overall
perceived as more ‘fun’. Additionally, the densities of arousal
values were smoother for those setting combinations and
exhibit overall larger arousal (in terms of median).

Next, we applied pairwise preference learning with ranking
support vector machines to investigate if facet combinations
can be used to predict the effect of one combination on the
player. As a first result, we observed that the homogeneous
settings can be modeled with greater accuracy than hetero-
geneous ones which supports our first hypothesis. Moreover,
there is a high predictive power between some of the facet
combinations. This partly contradicts our third hypothesis,
facet combinations are generally too different to predict the
effect of one combination on the player. Additionally, the
audio facet seems to exhibit more predictive power than
the visual one which counteracts our second hypothesis that
the video facet is more important concerning user reactions.
Investigating the role of audio facets in games more detailed
might be a promising venture for future research.

Collectively, this study examines the effects of facet compo-
sitions on the user. The corresponding results are of valuable
insight for PCG with respect to evolutionary algorithms in or-
der to generate games with multiple facets which are perceived
as enjoyable by human players. Targeting a specific arousal
value, a well performing PL model (consisting of more than
two facets and setting configuration) can be used as black-
box function for which an evolutionary algorithm aims to find
a suitable combination of facets. When we move from the
automated generation of individual and independent facets of
a game to the harmonized generation of multiple facets using
facet orchestration, we are able to reach astonishing advances
in the area of PCG, maybe even including a general game
generator. This study is only a first step. To move further
in that direction, more comprehensive studies with a larger
amount of different facets and participants are necessary.
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