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Abstract—We present Taksim, an Answer Set Programming
(ASP) framework for generating content in games through
constrained graph partitioning. We illustrate its expressivity by
implementing logical constraints that are relevant to generating
the spaces of game levels. Furthermore, we present a case study
for creating game levels from a given Mission Graph. Finally, we
propose key concepts that make constrained graph partitioning,
coupled with ASP, an asset for Procedural Content Generation.

Index Terms—answer set programming , procedural content
generation , graph partitioning , game level design

I. INTRODUCTION

When generating levels for a game, we want to exert enough
control to guarantee the intended experience for the players.
The dialogue between the designer’s intent and the game
spaces that will realize it can be initiated by treating them
separately. For example, an intended sequence of tasks to
be accomplished by the player can guide the generation of
levels [1], [2]. Alternatively, the game spaces can be generated
first and validated next against the designer’s goals. But
starting with either game spaces or design goals may privilege
one over the other. Instead, we can start with a discrete
underlying structure (such as a Rectangular or a Voronoi grid)
and put its cells in groups to form game spaces such as indoor
rooms, outdoor regions, or the borders of countries [3]. The
process of grouping can then be constrained by high-level
design goals while keeping the underlying structure equally
malleable and accessible. This way, we can generate both: the
underlying structure that will give rise to the game spaces (e.g.
Polygonal Map Generation [4]) and the design goals that will
guide their formation (e.g. Mission Graphs generation [5]–
[7]), provided that the earlier can accommodate the latter.

We see this line of research as an investigation of those ideas
through the lens of constrained graph partitioning, expressed in
the declarative paradigm of Answer Set Programming (ASP).
We outline the framework of Taksim in Section III and
illustrate the expressivity of the framework by constructing
it in ASP in Section IV. The general concept of partitioning
an underlying structure can be used to produce a variety of
spatial game spaces such as strategy maps (each partition is a
country), dungeons (each is a room) or open-world maps (each
is a region) [3]. But in Section V, we demonstrate an important
application of Taksim, namely, generating levels that supports
a given sequence of in-game tasks (called a Mission Graph).
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Finally, in Section VI we discuss a number of advantages
afforded by the approach taken in Taksim1.

II. RELATED WORK

A. Answer Set Programming for PCG
Many design problems are ill-defined, and so it is common

for designers to iteratively refine their problem definition [8].
Procedural Content Generation (PCG) is not different in this
regard, as the designer of a generator will often find herself
building iterations of the generator as means of arriving at
a satisfactory design space. The tool used in building and
iterating on a generator has to support this process and a case
was made by Smith and Mateas [9] for using Answer Set
Programming for that purpose.

Answer Set Programming (ASP) is a declarative logic pro-
gramming variant that is directed toward combinatorial search
problems. Problems are encoded in terms of facts, variables,
and constraints that relate them. A domain-independent solver
can then generate sets of facts that satisfy these relationships
and each set is called an Answer Set.

B. Constrained Graph Partitioning
Graph partitioning is the problem of dividing the nodes in

a graph to K sets. It is common to enforce constraints on the
resulting partitions so they would have uniform sizes [10] or
have a certain adjacency relationship to each other [3], [11].

In a previous work by one of the authors [3], it was shown
that a number of content generation problems can be seen
as instances of the constrained graph partitioning problem.
For example, a Delaunay graph which describes the adjacency
between Voronoi cells (e.g. as in (1) and (3) in Figure 1) can
be partitioned such that each partition represents a different
faction in a political map or a different biome in a terrain
map. The adjacency between partitions can be described by
yet another graph, called the Quotient Graph. Two partitions
are considered to be adjacent if any of the nodes belonging to
them are adjacent.

The work of Abuzuraiq [3] explores the applications of
placing a constraint on which graph partitions should be
adjacent or nonadjacent. In other words, creating a partitioning
where the Quotient Graph matches a provided Constraint
Graph. If the Constraint Graph represented a Mission Graph 2

then the resulting partitions will be a spatial materialization

1Taksim means to divide or partition in Arabic, especially when done in a
careful and purposeful way.

2A Mission Graph is a directed graph describing the sequence of tasks that
the player has to accomplish in a level.

978-1-7281-1884-0/19/$31.00 ©2019 IEEE



of the Mission Graph where each partition can be interpreted
as a different room in a dungeon or a different region in an
open-world game space.

We carry on the proposal for using constrained graph
partitioning for content generation in this work. But instead of
using an A* search formulation [3], [12] for addressing con-
strained graph partitioning, we present a constraint satisfaction
approach that is based on Answer Set Programming (ASP) [9].
We found the bar to updating and expressing constraints to
be lower in ASP than in the A* formulation. In Section IV,
we illustrate that by incrementally constructing a number of
constraints that were previously left as future work. Finally, we
make a conceptual argument for constrained graph partition in
the Discussion.

C. Mapping Mission Graphs to Game Spaces
By separating the generation of Mission Graphs from

the generation of spatial game spaces, more control can be
afforded to both. A number of approaches for generating
Mission Graphs [6], [7] and subsequently converting them to
levels are present in the literature. The papers by Dormans [1],
[5] are an early work on generating both missions and spaces
for action-adventure levels through a combination of graph
and shape grammars respectively. Following in spirit is the
work by Lavendar [13] for generating levels for the game
Legend of Zelda. In a similar line, the work by van der Linden
et al. [2] presents an approach for generating dungeons for
the game Dwarf Fortress (Wild Card Games 2013) that uses
grammars to generate Mission Graphs that are then embedded
into a 2D grid through a layout solver. The approach taken in
Taksim is to create a game space by partitioning an underlying
structure (e.g. a 2D grid or a Voronoi diagram) in a way
that is controlled by a set of constraints. The first of these
constraints (Adjacency Constraint) is shared with the works
mentioned earlier, which is to create regions/rooms that reflect
the Mission Graph. For example, if a combat task in the
Mission Graph is followed by a puzzle task then we need
to have two rooms/regions that serve these purposes and are
adjacent to each other.

III. APPROACH

The core unit underlying Taksim is that of partitions. We
obtain these by partitioning an underlying discrete structure
through partitioning the graph (named the Basic Graph) that
describes the adjacency between its cells (e.g. Voronoi diagram
structure and Delaunay graph respectively as in Figure 1). This
structure could be a Voronoi, hexagonal or a rectangular grid
to name a few. In addition to the Basic Graph, Taksim expects
a set of constraints to control the graph partitioning results. For
example, we can control the adjacency between the partitions,
the length of the borders along which they touch, their sizes
and shapes. The underlying assumption is that a variety of
game content types can be obtained by exerting the appropriate
control over the partitions of a graph, and consequently, the
underlying structure they represent. We introduce the overall
framework of Taksim and some technical terms next.

A. Technical Terms
• Basic Graph denoted by G is the graph to be partitioned.
• Quotient Graph denoted by Q, is the graph resulting from

the partitioning of G, where each node is a partition

Fig. 1. Reproduced from Abuzuraiq [3]:
(1) A Voronoi grid with Lloyd relaxation.
(2) After partitioning the cells into 7 groups (also an example of coarsening).
(3) The Basic Graph, here it is the dual graph of the Voronoi diagram in (1).
(4) The Quotient Graph of the partitions in (2)

and an edge is created between two partitions if any of
the nodes belonging to them are adjacent in G (e.g. in
Figure 1 partitions 4 and 5 are adjacent, but not 4 and 6)

• Adjacency Constraint, determines which the partitions in
Q should be adjacent or nonadjacent.

• Constraint Graph, denoted by C, is a graph that repre-
sents the desired Adjacency Constraint. If the Adjacency
Constraint is satisfied, then Q and C will be connected
in the same way. To be brief, we say that the Constraint
Graph C is imposed on the Basic Graph G.

• Removed Nodes, are the nodes that are removed from the
Basic Graph during partitioning in an attempt to satisfy
the constraints. For example, if G was a 3× 3 grid as in
Figure 2 and we wanted to partition it so that Q matches
a Constraint Graph which is a cycle of 4 nodes, then we
can only satisfy this Adjacency Constraint if we removed
the node in the center. Finally, all the Removed Nodes
are placed in a special partition to remain consistent with
the graph partitioning framework. Throughout this work,
we visually represent removed nodes by coloring their
respective cells in the underlying structure with a white
color (e.g. as in Figure 5).

• Coarsening, which is to produce a smaller version of
the Basic Graph G by partitioning it first and using the
Quotient Graph of the resulting partitions as a substitute
for G. This is exemplified in Figure 1 where the graph
in (4) is a coarse version of (2). Coarsening can be used
to save computational resources (by reducing the size of
the Basic Graph) or introduce variations. We illustrate the
latter in Section V.

• Control Constraints, any constraint placed on the parti-
tioning aside from the Adjacency Constraint.



Fig. 2. Reproduced from [3]:
We cannot assign the node in the center to any partition

B. Framework

Answer Set Programming (ASP) is a declarative logic
programming language. The programs in this language are
written in the syntax rules of AnsProlog [14] and are then
passed to a domain-independent ASP solver. In this work,
we used the solver Clingo [15], version 4.5.4 and available
at (https://potassco.org/). We will only briefly introduce the
main concepts of ASP in the next section, so we refer the
readers unfamiliar with ASP to other sources such as Smith’s
paper [9] or Chapter 8 of the PCG book [16].

Next, we present the overall framework of Taksim from a
user’s and the system’s perspectives (see Figure 3).

1) User: A program or a user interface can be used to gen-
erate or hand-design the inputs to Taksim which are the Basic
Graph, the Constraint Graph, and the Control Constraints. In
order for the ASP solver to reason over these inputs, they must
be expressed as AnsProlog statements (e.g. the statements in
Section IV-A express the Basic Graph in Figure 4). Finally,
the inputs are written to files in preparation to passing them
to the ASP solver. Knowledge in ASP is not required when
providing these inputs as the system can handle the task
of expressing them in AnsProlog, but it is possible that no
solution is feasible for a given combination of Basic Graphs
and constraints. For example, we cannot impose a Constraint
Graph that is a cycle of 9 nodes or a chain of 8 on the Basic
Graph in Figure 2. This, however, requires an understanding
of the used constraints and their relation to the Basic Graph
but not necessarily knowledge in the syntax of AnsProlog. The
significance of this requirement depends on whether Taksim is
used online or offline. In an offline setting, we could mitigate
the risk of in-feasibility by using ”rich enough” Basic Graphs
(In the example above, we can replace the Basic Graph in
Figure 2 with that in Figure 1 or Figure 7). In an online setting,
a degree of visual feedback and user interaction can provide
insights about the feasibility of the constraints and support an
interactive redefinition of the inputs and constraints so that
they are feasible together.

2) System: The Clingo solver is called through the com-
mand line and expects the paths to one or more files contain-
ing AnsProlog statements in addition to some solver-specific
parameters. Files are divided so that each contains a cohesive

Fig. 3. A system view of Taksim.

unit of AnsProlog statements. The files containing statements
for the Basic Graph (Section IV-A) and the main graph
partitioning logic (Section IV-B) are always passed to the
solver. On the other hand, the files representing the Adjacency
or the Control constraints (the rest of Section IV) are only
passed if the user provided them from the application level.
Finally, the system can be extended by writing ASP statements
and passing them to the solver. The explanation we give in
Section IV can aid in that.

The result, which will be in a text file, states the partition
that each of the nodes will belong to. This is parsed to give
it an interpretation. For the purposes of presenting in this
paper, we simply color the cells of a Voronoi or a rectangular
grid based on which partition they belong to. While Taksim
operates on the Basic Graph, it is the structures which the
graph represents (e.g. the Voronoi cells) that finally form the
geometric layout of a game level or map.

Throughout this system, we uniquely identify nodes in the
Basic Graph with integer numbers. A partition can then be
defined as a set of numbers that belongs only to that partition.
The current implementation assumes that partitions (including
the Removed Nodes partition) are mutually exclusive and that
they collectively exhaust the nodes of the Basic Graph. Finally,
each partition is also assigned a unique integer number.

A dictionary is used to maintain the mapping between the
unique number that represents a node and the node object on
the application level. For example, a Voronoi cell in Figure 1 is
an object containing data about the edges of the cell, its color,
and position. The domain-independent ASP solver treats each
node as a number only, and the dictionary is then used to map
these numbers back to the objects (e.g. Voronoi cells).

Unlike in the previous approach by Abuzuraiq [3], in this
formulation, we are not using graph isomorphism as a test
for whether the partitions’ Adjacency Constraint is satisfied.
Instead, we require the edges in the Constraint Graph C
and the Quotient Graph Q to match exactly, i.e. if an edge
between partitions 1 and 2 exists in C, the same edge with
the same nodes numbering should be seen in Q (1-2 and 2-1
are equivalent). In contrast, an isomorphism test will consider
two graphs equivalent if they are topologically the same.



TABLE I
A TABLE OF THE TYPE OF CONSTRAINTS. THE SECTION WHERE WE

DISCUSS EACH IS SHOWN IN PARENTHESIS.

Relation Partition-Partition Partition-Nodes

Constraints Adjacency (IV-C)
Length of Borders (IV-H)

Contiguous Partitions (IV-B)
Node Membership (IV-D)
Mapping Constraint (IV-E)

Nodes Co-Membership (IV-F)
Partition’s Sizes (IV-G)
Internal Graph (IV-I)

IV. CONSTRAINTS IMPLEMENTATION

In this section, we present constraints that can be placed
on a graph partitioning and their translation to AnsProlog
statements. A complete list of the constraints is shown in
Table I where they are categorized into constraints that address
the relation between the partitions or their relationship to the
nodes in the Basic Graph. The following subsections are to be
read sequentially as they build on each other.

A. The Basics
Let’s first represent the nodes and edges of the Basic Graph:

node(1).
node(2).
node(3).
edge(1,2).
edge(2,3).

The above is how the graph in Figure 4 would be represented
as facts in AnsProlog. Note how all the statements terminate
with dots and that each node is given a unique number that is
referenced when edges are defined.

B. Contiguous Partitions
We first show how nodes and partitions are represented and

generated, then build few predicates that would aid in defining
what constitutes a contiguous partition. So, here are the first
few lines:

#const n=0.
#const p=0.
#const r=0.
partition(r..p).
1{belongs(N,P):partition(P)}1 :- node(N).

The first three lines are constants and their values are passed
to the solver using the –const argument. The constant n is the
number of nodes in the Basic Graph. The constant p is the
number of partitions and it is equal to the number of nodes in
the Constraint Graph (if provided). The fourth line represents
partitions. The partitions are each assigned a number starting
from r and increasing up to p. If node removal is allowed then
r is set to 0 and the partition with number 0 will contain all
the removed nodes.

The last line contains a choice rule which has the syntax of
n{X:Y}m :- Z . A choice rule generates a number of facts that
are no less than n and no more than m and is the main driver
for non-determinism in ASP, in addition to the parameters
rand-freq and seed in Clingo3. The last line then translates
to: assign each node to exactly one partition, a node is said to

3Quoted from the description of Clingo’s command line parameters:
–rand-freq= < p > : Make random decisions with probability < p >
–seed= < n > : Set random number generator’s seed to < n >

belong to a partition using the fact belongs(N,P). Coupled with
rand-freq argument, this will assign nodes to random partitions
but will not guarantee the partition’s nodes to be contiguous.

family(N1,N2,P) :- belongs(N1,P), belongs(N2,P),
partition(P), node(N1), node(N2), N1 < N2.

Here we define a predicate for whether two nodes belong to
the same partition, the last term is to ensure that we always
have a single version of the family fact in which the node
with the lower number comes first. We found that we gain
performance improvement by doing so.

reach(X,Y) :-
edge(X,Y),
family(X,Y,P),
partition(P).

reach(X,Z) :- reach(X,Y), reach(Y,Z).

In the above, we say there is a reach between two nodes if
they share an edge and belong to the same partition. We then
state that the reach property is transitive. This allows us to
decide if two nodes that belong to the same partition have a
reach/path between them. We need this test in order to ensure
that the partitions will be contiguous. Otherwise, the nodes of
the resulting partitions will be scattered.

contiguous(P) :- partition(P),
reach(N1,N2):
family(N1,N2,P),
node(N1), node(N2).

:- not contiguous(1..p).

In the last line, we use an integrity constraint (has no left-
hand-side and reads: if true, then reject) which rejects all the
partitions that are not contiguous. We start with the partition
with number 1 to exclude the removed nodes partition from
this constraint. This integrity constraint narrows down the
design space of potential graph partitions. Note how this
resembles the generate-and-test pattern.

C. Partitions’ Adjacency Constraints
Next, we present how the Adjacency Constraint is imple-

mented. To do that we need to represent the Quotient Graph
of the partitioning and then place constraints on it so that it
matches the Constraint Graph.

edge_q(P1,P2) :-
partition(P1), partition(P2),
edge(N1,N2), P1 != P2,
node(N1), node(N2),
belongs(N1,P1), belongs(N2,P2).

If two nodes in the Basic Graph are connected with an edge
and if these two nodes belong to different partitions, then
an edge in the Quotient Graph (edge q) is created between
these partitions. The Adjacency Constraints for a graph like
in Figure 4 look like this:

:- not edge_q(1,2) ; not edge_q(2,1).
:- not edge_q(2,3) ; not edge_q(3,2).
:- edge_q(1,3).
:- edge_q(3,1).

The integrity constraints above are a direct representation of
the edges in the Constraint Graph. We reject any Quotient
Graph that does not have an edge that exists in the Constraint
Graph (e.g. :- not edge q(1,2)). We indicate that either direc-
tion of the edge is accepted.



Unless we are fine with edges in the Quotient Graph other
than the ones we want, we also need to explicitly list the
Quotient Graph edges we do not want (e.g. edge q(1,3)).

Fig. 4. A chain graph of 3 nodes.

D. Node Membership
We can reuse the belongs(N,P) fact and an integrity con-

straint to reject any solution in which a node does not belong
to a chosen partition. The example below ensures that the node
with the number 1 will belong to the partition with number 2.
:- not belongs(1, 2).

E. Mapping Constraint
Given a collection of nodes in the Basic Graph, we can

require this collection to be mapped to a certain partition in
the result. For example, it could be the case that in a partially
hand-designed level, there is a designated region (represented
by a collection of nodes) where the player should start or
end. In other words, we allow all the partitions to vary (in
their shapes and contents) but we expect some of them to be
predetermined.

We implement this constraint by replacing the predeter-
mined group of nodes by a single node that represents them.
Next, we create edges between this representative node and
any node outside the group if there is at least one node
inside the group that was linked to it. Next, we assign a
unique number to the representative node. This can be the
number of any node in the group (since nodes have unique
numbers) or any combination of them that is guaranteed to
be unique. Finally, we use the Node Membership constraint
on the representative node to ensure that it will belong to the
desired partition. This process of creating a representative node
is done at the application level before running the ASP solver.

Note that this guarantees that the representative node will
belong to the sought partition but it will not prevent other
nodes to be included in that same partition (i.e. the partition
might become larger than intended). To stop the partition from
growing, we can restrict its size to be equal to the number of
representative nodes in it (1 if only one region was mapped to
this partition). We start by defining a predicate for the number
of nodes in a partition:
count(P,T) :-

T = #count{N:belongs(N,P), node(N)},
partition(P).

Next, we can constrain the number of nodes like this:
:- not count(1,1).

Here we want the partition with number 1 to include one node
only then due to the Node Membership constraint, it will be
the node we formed to represent the region.

F. Nodes Co-Membership
Where we require that two nodes should belong to the same

partition (possibly without choosing a one).

:- not family(1,4,P):partition(P), P != 0.

Here we require nodes numbered 1 and 4 to belong to the
same partition. By requiring that P != 0 we are rejecting cases
were they are both added to the removed nodes partition.
Combining this constraint with the idea of forming groups
of nodes mentioned in the previous Subsection IV-E, we can
require that two regions belong to the same partition.

G. Size Optimization
Where we want to maximize or minimize the size of some

partitions. This could be motivated by game-specific reasons
like maximizing partitions which would represent an ocean or
a desert in terrain map or minimizing treasure rooms’ sizes,
etc. For example, we can use size maximization here. To
implement this constraint, we can use the count() predicate
we defined earlier along with an optimization statement like
this (replace with #minimize for minimization)

#maximize {T@1:count(P,T), partition(P), P==1}.

This maximizes the size of the partition with number 1, the
@1 indicates the priority of this maximization statement over
others. The highest the value, the more priority it is given. We
could also maximize all partitions’ sizes except the removed
nodes partition in a single statement.

#maximize {T@1:count(P,T), partition(P), P!=0}.

It is important to mention that Clingo accepts a parameter
for the number of models to be evaluated, with more models
evaluated, the solutions get closer to the optimum in terms
of the optimization statements. Passing a value of 0 would
request the solver to find the optimal solution by enumerating
all models. Since an optimal solution might not be required
or desirable, we can terminate the solver after some time or
evaluate a limited number of models.

Another way to get partitions with larger sizes is to apply
coarsening first on the Basic Graph. This will create partitions
with appropriate sizes and more regular shapes (See figs. 5–7,
where the same Constraint and Basic graphs were used).

H. Minimizing the Number of Nodes on the Borders between
Partitions

One property that we could desire is to limit the number of
nodes that are on the borders of partitions. This is important
if the partitions are seen as rooms that should connect through
gates only (not sharing walls as is often seen in room-based
dungeon generators).



Fig. 5. ASP solver default sample solution. The Constraint Graph is a chain
of 5 nodes. White cells are removed nodes.

This can be achieved through a statement like this:

count_borders_supp(P1,P2,T):- T = #count{N1:
belongs(N1,P1), belongs(N2,P2),
edge(N1,N2), node(N1), node(N2)},
partition(P1), partition(P2), P1 != P2,
P1 != 0, P2 != 0.

count_borders(P1,P2,T) :-
T = T1+T2,
count_borders_supp(P1,P2,T1),
count_borders_supp(P2,P1,T2),
partition(P1), partition(P2), P1<P2.

#minimize {T@1:
count_borders(P1,P2,T),
partition(P1), partition(P2)}.

The first line counts the number of nodes on the bor-
ders but will give results like count borders supp(1,2,1) and
count borders supp(2,1,3) for a partitioning like that in Fig-
ure 6 (the partition at bottom left has the number 1, one above
it has the number 2) that together add up to the right number
of nodes at the border so in the second statement we add those
together. Note that we don’t count nodes on the borders with
the removed nodes, but that is only to gain a speed-up and
can be omitted. Lastly, we use a minimization statement to
reduce the number of nodes at the borders as we discussed in
Section IV-G about size optimization.

I. Internal Graph Constraint
For any partition, its internal graph is a sub-graph of the

Basic Graph that describes the adjacency between the nodes
belonging to that partition. We can control the shape of the
internal graph of a partition in a way that is similar to the
Adjacency Constraint at Subsection IV-C.

is_chain3(P) :-
node(X1), node(X2), node(X3),
X1!=X2, X1!=X3, X2!=X3,
partition(P), belongs(X1,P),
belongs(X2,P), belongs(X3,P),
edge(X1,X2), edge(X2,X3),
count(P,3).

:- not is_chain3(2).

Above, we require the partition with number 2 to have the
shape of a chain of three nodes (as in Figure 4). We start by
stating that we have three nodes, X1, X2 and X3. Next, we

Fig. 6. Here #maximize statements were used with equal priority for all the
partitions and 30 models were evaluated, while the sizes are better than in
Figure 5, the shapes of the partitions might seem artificial.

Fig. 7. Here a coarse version of the Basic Graph is created first. The blocks
created through coarsening sets a limit on the minimal partition size, also
the partitions’ shapes are influenced by the blocks’ shapes which are in turn
controllable by changing the algorithm used for coarsening.

make sure that they will be distinct and that they belong to the
same partition P . Next, we demand the nodes to be connected
in a specific way (1-2 and 2-3). Up to this point, we ensured
that at least three nodes in partition 2 will be connected in
a chain of three but this does not restrict its internal graph
to be only that. This is why we also restrict the size of the
partition through the count(P,3) term. Remaining is to note
that the above constraint can be automatically constructed on
the application level in a way that adapts to any internal graph
provided by the user. Below, is an additional example for an
internal graph that is a cycle of four nodes:

is_cycle4(P) :- partition(P),
node(X1), node(X2), node(X3), node(X4),
X1!=X2, X1!=X3, X1!=X4,
X2!=X3, X2!=X4, X3!=X4,
belongs(X1,P), belongs(X2,P),
belongs(X3,P), belongs(X4,P),
edge(X1,X2), edge(X2,X3),
edge(X3,X4), edge(X1,X4),
count(P,4).

Figure 8 shows the above constraint in use.



V. SHOWCASE: LEGEND OF ZELDA

In this section we convert the Mission Graph in Figure 9 to
an open-world level. Figure 8 shows a partitioning of a 6× 6
grid. An internal graph constraint (is cycle4) is applied to the
boss and start regions while a size constraint that restricts the
size to a single node is applied to the boss key, small key, and
dungeon item partitions. Moreover, the remaining partitions
(combat and puzzle) had their sizes restricted between 3 and
6 nodes and the number of nodes on the borders between
all partitions is minimized with 10 models evaluated for that
purpose. Finally, We placed the icons for the locks and keys
from the online series by Brown [17] to illustrate how they
relate to the Mission Graph in Figure 9.

While starting with a small grid is a good strategy for
iterating quickly on the constraints and getting fast feedback,
it is often more interesting to generate levels at a larger scale.
In Figure 10 the Basic Graph is grid of size 14 × 14. A
coarse version of the Basic Graph is created that has 36 nodes
only (instead of 196). The same constraints are used here
but the appearance of the partitions here is affected by the
shape and size of the blocks created by the coarsening process
(showing coarsening as a source of variation). We note here
that the Mission Graph can contain cycles and consequently,
the generated levels that satisfies them. An advantage of that is
that it reduces dead-ends and player’s backtracking [18]. For
an example, see Figure 10.

VI. DISCUSSION

Starting with an underlying structure as a substrate, and con-
structing content by partitioning it, we gain these advantages:

A. Separation of Concerns
First, we largely separate the concern of content genera-

tion which is performed in an abstract constraint satisfaction
manner (e.g. on the Delaunay graph), from the aesthetics and
geometry of the content which stem from that which the Basic
Graph represents. For example, cells in a Voronoi diagram can
be rendered after applying noise to their edges and coloring
them. Amit Patel’s article on Polygonal map Generation shows
a good example of that [4].

B. Diverse Sources of Variation
The variation in the content can be introduced by random-

izing the Basic Graph, the Constraint Graph or the Control
Constraints. Another strategy is to start with a large Basic
Graph and coarsen it first (e.g. as in Figure 1) to produce
nodes with more random shapes as we did in the last section
to generate the level in Figure 10. Even if the above could not
be varied, then there are many ways to partition a Basic Graph
given a fixed set of constraints. This is made true through
choice rules in ASP and parameters such as rand-freq and
seed in Clingo.

C. It is Graphs All the Way Down
When nodes are partitioned into groups, a new Quotient

graph is created. This resulting graph can then be treated as
a Basic Graph and be partitioned subject to a different set of
constraints. This allows us to partition a graph then group the
partitions into larger ones and so on. This could be used to
create a political map recursively, where we start with forming
small states then further group them into provinces and finally

Fig. 8. The Constraint Graph is shown in Figure 9. The internal constraint
is cycle4() is applied to the boss and start nodes.

Fig. 9. We follow the naming convention of Smith et al. [7] in this Mission
Graph.
sk: Small Key, di: Dungeon Item,bk: Boss Key, c(1) and c(2): Combat, p(1)
and p(2): Puzzle. Remaining are sl: Small Lock, dl: Dungeon Lock and bl:
Boss Lock. For these we decided to annotate them on the Constraint Graph’s
edges instead of giving them a separate node.

Fig. 10. An open-world level. Since the Mission Graph contains a cycle, the
player does not need to backtrack through c(2) once arriving to di. Instead,
they can complete a full cycle by proceeding to p(1).



group the provinces to form countries. We can also do it in
the opposite direction by starting with partitioning the Basic
Graph to form countries and then given the internal graph of
each country, we partition again.

D. Access to Data
The third advantage can be highlighted by contrasting our

approach to the problem of converting a Mission Graph to
a game space (dungeon rooms, open-world regions, ...etc)
with other approaches. In particular, we refer to the work by
Dormans and van der Linden [2], [5] as top-down approaches
since they consider the generation of the game space after
obtaining a Mission Graph. Another (more common in prac-
tice) class of approaches generates game spaces and leaves
the Mission Graph as an emergent and implied property of
the generation, we refer to these as bottom-up approaches.
Constrained graph partitioning can be seen as a combination
of the two since both the Basic Graph and the Mission Graph
can be generated separately, for example through approaches
such as Polygonal Map Generation [4] and generating Mission
Graphs with lock-and-key structures [7] respectively. The data
associated with the structure underlying the Basic Graph is
available prior to and during partitioning. This allows us to
access the data associated with the partitioned nodes and
express Control Constraints in their terms. This data could
be the partition they belong to (hence being able to express
the Node Membership constraint), but it could also be their
position, geometry or other domain-dependent semantics such
as terrain, or collectibles. Since Taksim uses Answer Set
Programming, we can perform the partitioning while taking
this data into consideration as facts in AnsProlog.

E. Integration with Non-Procedural Elements
Finally, the fourth advantage concerns the fact that the

Basic Graph does not need to be generated. Instead, it can
be the navigation mesh of a hand-designed level or any graph
structure as long as the act of partitioning it has a meaning. If
we combine this invariance to generation with the use of the
Mapping Constraint (Subsection IV-E) we argue that Taksim
is capable of integrating procedural elements into games that
contains a hybrid of both generated and hand-designed content.

VII. CONCLUSIONS AND FUTURE WORK

We proposed Taksim, which is an ASP-based constrained
graph partitioning framework for content generation. We gave
an overview of the framework and its implementation, illus-
trated a result of converting a Mission Graph to game spaces,
and argued conceptually for the advantages of the approach.

In the future, we can explore capitalizing on the point made
in VI-D by adding properties to the nodes and partitions (e.g.
node(1, DESERT) or partition(3, BOSS ROOM)) in a way
that makes it more customizable to the domain at hand. For
example, demanding a certain percentage of steppes tiles in
the partition/country representing a nomadic tribe.

Currently, we only allow removing nodes from the Basic
Graph. Upon observing Lavendar’s [13] implementation of
Dorman’s [1] shape grammars, we find that it satisfies the
Adjacency Constraint by removing or creating walls between
the rooms in a level. We note that this is one way for repre-
senting the absence or presence of an edge in the Basic Graph,
visually and geometrically. As a result, we are interested in
exploring the potential of allowing edge removal in Taksim.

Another venue we want to explore is the use of a mixed-
initiative interface to enable the visual expression of con-
straints and an easier iteration on them. The designer can
interactively select subgraphs of the Basic Graph to partition
with different constraints for each. The tool would capitalize
on the human’s ability to detect visual patterns in a way that
makes the partitioning guaranteed to find (e.g. by interactively
removing nodes from the Basic Graph) and its results closer to
the designer’s intent. Finally, we plan to continue exploring the
applications of Taksim to different types of content in games.
In addition to that, we will consider game levels of a larger
scale than presented here, possibly through the support of the
aforementioned mixed-initiative interface.
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