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Abstract—Game-based benchmarks have been playing an es-
sential role in the development of Artificial Intelligence (AI) tech-
niques. Providing diverse challenges is crucial to push research
toward innovation and understanding in modern techniques.
Rinascimento provides a parameterised partially-observable mul-
tiplayer card-based board game, these parameters can easily
modify the rules, objectives and items in the game. We describe
the framework in all its features and the game-playing challenge
providing baseline game-playing AIs and analysis of their skills.
We reserve to agents’ hyper-parameter tuning a central role
in the experiments highlighting how it can heavily influence
the performance. The base-line agents contain several additional
contribution to Statistical Forward Planning algorithms.

Index Terms—artificial general intelligence, benchmark, game-
playing, hyper-parameter optimisation

I. INTRODUCTION

The bond between Artificial Intelligence (AI) and games
goes back to the origins of AI itself. AI can be used in games
in a multitude different ways: to procedurally generate content
(PCG), to control non-player characters or opponents, to bal-
ance their difficulty, but also to generate complete games (an
extensive collection of AI applications in games can be found
in [1]). In academia, advancements in AI are fostered through
periodic competitions that help benchmarking the level of
new AI techniques. Competitions are based on open-source
frameworks which often propose different tracks for different
tasks e.g. 1 or 2-player game-playing or level generation. In the
case of game-playing, there are mainly two branches of com-
petitions targeting learning-based algorithms and search-based
algorithms. Game-playing learning algorithms usually require
big computational budgets to be trained and are generally able
to play a single game once trained [2]. On the other hand
search-based algorithms, also known as planning algorithms,
use a Forward Model (FM) of the game to simulate possible
future states. Several frameworks encourage advancements
on Artificial General Intelligence (AGI) benchmarking such
algorithms on a wide selection of different games such as
General Video Game AI (GVGAI) [3]. However it’s worth
noticing how often with little modifications it is possible to
drastically modify games. Card games based on the 52 card
decks (e.g. Bridge and Poker) are clear examples.

II. MOTIVATION

In this paper we will present Rinascimento (R) a game
framework based on the popular board game Splendor™ (S)
published by Space Cowboys in 2014 and designed by Marc
André. S is a turn-based multiplayer (from 2 to 4 players)
board game where the players compete to obtain the most
prestige points which are earned buying bonus cards spending
tokens that can be taken from the table, noble tiles can provide
extra prestige based on the cards owned (see Section IV).

The game engine is implemented in a parameterised way,
every rule controlling the mechanics of the game can be
tweaked by changing its parameters. This unlocks many ap-
plications from the perspective of AI applied to game design.
A similar approach was taken in [4] where the authors altered
the parameters in the popular smartphone game Flappy Bird.
They showed how the game design space can be searched for
unique variants that suit completely different skill sets.

The parameters can actually influence the type of content
used during the game: cards, tokens, noble tiles. This makes
this game also particularly interesting to integrate PCG and
game-playing in a single framework.

This game provides new challenges for game AI since it is
a highly-stochastic partially-observable multi-player game.

We decided to develop the AIs for this framework giving
much relevance to hyper-parameter tuning. This is an aspect
that has been often overlooked in the past. In [5] is shown
how a correct tuning can make-or-break agent’s performance.
Thinking about game-playing AI in terms of tunable algo-
rithms will get us closer to measure their true potential, hand-
picked parameters can severely limit their performance.

III. BACKGROUND

A. Game AI frameworks
A number of game-based frameworks have been designed

and implemented for different research purposes. The most
classic ones include, but not limited to: GVGAI [3], microRTS
Framework [6], Mario AI Framework [7], AI Bird Frame-
work (AIRBIRDS) [8]. Each one has one or more relative
competitions periodically run at major Game AI conferences.
This trend started mainly around game-playing tasks, to then
expand to PCG: GVGAI, AIRBIRDS and Mario AI have PCG
tracks where content is produced and evaluated by humans.

978-1-7281-1884-0/19/$31.00 ©2019 IEEE



When the task is game-playing AI agents are usually
provided with a bounded action space either by enumerating
the actions (e.g: GVGAI and Mario AI), or through an explicit
a-priori knowledge of the action space (e.g.: microRTS).

In the past three years, the frameworks for Text-Based
Adventure AI Competition [9], Generative Design in Minecraft
Competition [10] and MARLÖ [11] have been released. These
frameworks highlight the need of more complex scenarios to
test AIs shifting the attention from 1-player and 2-player to
multi-player games, from 2D to 3D PCG, and from fully ob-
servable to partially-observable game states. The Hearthstone
AI Competition [12] has two tracks: Pre-made Deck Playing
and User Created Deck Playing. The second is particular
interesting because combines together high-level PCG and
game-playing in a single challenge.

Such frameworks can also be used to approach more game-
design-related problems. In [13] the authors optimised param-
eters that govern the rules of several GVGAI games to modify
the player’s experience.

B. Game-playing AI

In general, frameworks based on board games can be
implemented with extremely fast forward models, particularly
suitable for Statistical Forward Planning (SFP) game-playing
AIs [14] [15]. SFP methods, as the later-defined ones, can
provide overall good performance in different scenarios, as
shown by their results on the planning tracks of GVGAI [3].

1) Monte-Carlo Tree Search: Monte-Carlo Tree Search
(MCTS) [16] has been the state-of-the-art for planning in
games in the last years, being successfully applied to both
deterministic and stochastic games with perfect or partial
information [17]. In [16], Browne et al. review the advances
and usages of MCTS till 2012. MoGo [18], the first computer
Go program using Upper Confidence Tree (UCT), reduced the
branching factor and the length of random simulations using a
pattern group pruning technique and a zone pruning technique,
respectively. Thus, instead of considering the whole board,
only a sub-group of patterns or a sub-zone of the board is
considered [18]. R. Coulom applied progressive widening to
MCTS in his Go program CRAZY STONE to perform a local
search [19]. Chaslot et al. [20] proposed progressive bias and
progressive unpruning to enhance their Go program, MANGO.

2) Rolling Horizon Evolutionary Algorithm: Rolling Hori-
zon Evolutionary Algorithms (RHEAs) [21] model action
sequences of a fix horizon tp as a population of integer
vectors at time t. Only the first to action(s) (1 ≤ to < tp)
of the approximate optimal action sequence are applied, then
at time (t + to), a new population is initialised and evolved
for the next tp time steps with the updated environment. This
procedure is also called receding horizon control or model
predictive control. RHEAs was firstly applied to Physical
Travelling Salesman Problems (PTSPs) in 2013 [21], then
quickly became popular and achieved competitive results with
MCTS in GVGAI. The impact of the planning horizon and
population size of RHEAs has been studied in [22]. Gaina
et al. [23], [24] designed several enhancement techniques for

RHEAs in general video game playing, such as shift-buffer
and population seeding.

C. Automatic Algorithm Configuration

Algorithms usually are dependent on few parameters that
affect how they function. These can be ordinal, categorical
or numerical. Classic examples can be: the learning rate in
a learning algorithm, the mutation operator used in RHEA
or also terms of equations such those in the tree policy in
MCTS (UCB1). Being able to explore different configurations
of the algorithm can grant significant improvements in the
global performance of the agent. For this purpose, differ-
ent automatic algorithm configuration frameworks have been
proposed, including model-based approaches and model-free
approaches, such as SMAC [25] and the recently proposed
NTBEA [5], [14]. Bravi et al. [26] evolved UCB alternatives
for general video game playing using genetic programming.
Sironi et al. [27] compared NTBEA to CMA-ES in evolving
MCTS in real-time for general game playing. NTBEA has also
shown good results on both agent [5] and game tuning [14].

IV. SPLENDOR™

In the following we are going do describe the main elements
in the game S. The game comes with three types of items:
tokens, development cards and noble tiles. Figure 1 shows a
typical setup of the game. There are 2 types of tokens:

• common token: a token has one of five suits (emerald,
diamond, sapphire, onyx and ruby) and there is a total of
seven tokens for each suite;

• joker token: its suit is gold, it can be used as any common
token, there is a total of five tokens.

Cards are characterised by three bits of information:
• bonus: the suit (same as common tokens) of the card;
• price: amount of tokens required for each suit to buy it;
• value: amount of prestige points.

Cards are divided in three decks: level 1 (40 cards), level 2
(30 cards) and level 3 (20 cards). As the level increases so
do cost and value of the cards in the deck. In the game there
are nine noble tiles, each noble is characterised by a value
(prestige points) and by an amount of bonuses.

A. The rules

The game setup varies with the number of players later
denoted as p. The decks and the nobles are shuffled, on the
table are placed

• p+ 1 randomly-picked nobles;
• p+ 2 common tokens for each suit;
• all joker tokens;
• four face-up cards for each deck.
From this state the game is played in turns during which

the player can play one of the following actions: pick tokens,
reserve a card, buy a card.

Players can have in their hand a maximum of ten tokens
(regardless of suit) and three reserved cards. If after an action
the player has more than ten tokens, they must give back
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Fig. 1: Game state represented in the framework’s UI.

tokens of any suit until the tokens count is down to the
maximum allowed. A player can pick from the table either
up to three common tokens of a different suit (pick different)
or two of the same suit (pick same). The stack of the token
type chosen for a pick same action must have at least 4 tokens.
Players can reserve cards either from the ones face-up on the
table (reserve table) or drawing the first one from one of the
decks (reserve deck). Reserving a card grants the player a
joker token if there are any left on the table. If the card is
reserved from one of the decks, the player can look at it but
then the card is kept face-down until purchased. Cards can be
bought if they are on the table face-up (buy table) or between
the player’s own reserved cards (buy reserved). To buy a card
the player pays the amount of tokens specified on the card
by putting them back on the table. Players will get a discount
on the price based on the cards they own, each one grants a
discount on the token suit specified by the card’s bonus.

These were active actions, the game also comes with
passive actions which are actions triggered by the game at
the end of each turn. S has only one: whenever a player has
the exact amount of bonuses specified by a noble tile, that
player automatically acquires the noble and its prestige points,
however it is possible to gain only one noble per turn.

Each player’s prestige points are calculated summing the
points of the cards they bought and the nobles they have got.
Once one of the players reaches 15 prestige points the round is
completed and once finished the game is over. When the game
over condition is reached the player with the most prestige
points wins. If two or more players have the same amount of
points, the player with less cards wins. If several players have
the same points and cards they all win.

B. Game dynamics and features

This game is particularly relevant for game AI because
of the balance of simple and complex elements. It provides
complex challenges but in a scenario that can be clearly
analysed. Simple elements:

TABLE I: Parameters extracted from the game’s setup. The
ones marked with a star require PCG.

Description Symbol Default
n° players P 4
token types* nTT 5
n° joker token nJT 5
n° decks* D 3
n° face-up cards FUC 4
n° extra noble* EN 1

TABLE II: Parameters extracted from the game’s rules.

Description Symbol Default
max n° tokens per player maxT 10
max n° reserved cards maxRC 3
end-game prestige points PP 15

• game state representation: information is simple since its
made of discrete and bounded values (type and amount
of token/bonus) plus the structure of this information is
concise and constant.

• actions have immediate effects on the game state;
• atomic and simple events can be clearly identified, e.g.:

taking or giving back tokens, getting a card, etc;
Complex elements:

• long-term implications of early-game actions;
• games are limited in time;
• there are elements of partial observability;
• and, last but not least, it’s a multi-player game, opponent

modelling can be beneficial for your own strategy.
The gameplay arising from the simple rules is quite complex

and require thorough planning and prediction of possible op-
ponents strategies. Moreover the relationships between game
elements are quite intricate and they result in a gameplay
where every action matters and has an influence till the end of
the game. Here we highlight the complexity before mentioned
through few examples:

• getting hold of a card with a rare bonus (due to shuffling)
in the early game can be crucial for the final outcome;

• reserving a card can stop one of the players from winning
and delaying the game-over enough to come up with a
winning strategy;

• coin scarcity limits opponents’ ability of buying cards;

V. THE GAME PARAMETERS

Diving into S’s rules we can easily recognise all the
elements that can be parameterised. Implementing Rinasci-
mento’s game engine using the parameters of the game rather
than explicit values allows us to reason on more abstract terms
on what are the abstract game mechanics. More importantly
it allows us to implement an engine that is able to play not
only the base S game but the entirety of S-like games.

Tables I, II and III list all the parameters, for each one
we specify the acronym and the value for 4 players S (later
addressed as 4PS). Together the form a total of 14 parameters,
they can be seen as a 14-dimensional vector of integer values
[P, nTT, nJT, D, FUC, EN, maxT, maxRC, PP, nTTPD, nTPD,
nTPS, minTPS]. The game however relies on some content



TABLE III: Parameters from the game’s actions rules.

Description 1Symbol Default
n° different token types in pick different nTTPD 3
n° tokens per type in pick different nTPD 1
n° tokens in pick same nTPS 2
min n° available tokens in pick same minTPS 4

Fig. 2: Interactions between core components in R.

(cards and nobles) which is dependent on the parameter. Thus
the game engine will need a PCG component that takes care
of generating cards and noble tiles, this feature however is left
for future expansion.

VI. THE FRAMEWORK

The Rinascimento framework (R in short)1 is engineered
to be highly customisable. It is not limited to a parametric
implementation of the game rules, in fact, new actions can
be implemented (both active and passive). The code base
was developed in Java due to its popularity (encouraging its
adoption), high-efficiency of its garbage collection, and its
cross-platform compatibility.

There are four main components in its design: Player, State,
Engine, Action. Figure 2 shows the interactions and the duties
of the components. The State is the object that encodes the
game state, more specifically: stacks of tokens, cards and
nobles on the table, decks and, finally, tokens and cards in
the players’ hands. The Action object represents, as the name
suggests, an action from a specific player encoding internally
all the relative information. The Player is the entity that is
responsible to provide an Action during its turn, it can use the
State to retrieve random actions that could be performed by a
specified player. The Engine is the object responsible for:

• owning the action space used by the agent in the game;
• triggering the passive rules;
• calling the players for their next action thus managing

the turns in the game;
• checking end-game conditions (stalemate (SM) or game-

over);
This subsection highlights the main features that differen-

tiate the framework from other existing ones used for Game
AI.

1) Automatic Player’s Budget Management: In most frame-
works used for game-playing AI benchmarking the equaliser
is some kind of budget given to the AI. The budget is
usually either an amount of forward model calls or CPU time,
although other forms of budget could be adopted, possibly
more sophisticated such as a combination of the two. The

1github.com/ivanbravi/RinascimentoFramework

framework provides to the player a game state coupled with a
resource checker that can be queried on the amount of budget
left. Once the budget is over the player won’t be able to use the
forward model anymore, if the player tries to use an expired
budget an exception is thrown to further warn the player.
Currently the framework implements a budget based on FM
calls.

Up to date, most game AI frameworks have not paid much
attention to easing the use of opponents models to better
shape your own strategy. When adopting player modelling
we basically allot some of the budget to predict opponents’
decisions. In R this is straightforward, in fact, thanks to this
budget management system it is possible to split a portion of
your own budget, i.e. a percentage of the original budget, and
give it to the opponent model. In case just a portion of the
budget is used, the original budget is depleted only by that
portion. In other frameworks this has to be handled explicitly
requiring ad-hoc code depending on the kind of budget, but
in R this is seamless.

2) Action Space and Forward Model: R’s Action Space
(AS) is modular, implemented through independent and atomic
PlayableAction (PA) objects, this architecture allows to sep-
arate the different mechanics in the game making easy to
implement new ones. Thus the AS is defined within the Engine
as a collection of PAs that can operate on any State whether
it’s the real game state or a simulated one. The Forward Model
(FM) can be in fact the same collection of PAs in the Engine
or a separate one to provide a different (or imperfect) FM to
the player. In addition also passive rules can be added.

3) Random Action Generator: One of the core challenges
in designing the framework was on providing a universal
interface for an AGI player. Frameworks usually enumerate the
actions available and that’s quite easy for actions like buying
or reserving cards. However enumerating pick actions is quite
complex, e.g. when a player also need to give back some
tokens. In that case a nested combinatorial problem needs to be
solved facing heavy computation especially keeping in mind
the parametric nature of the game i.e. combinations explode
with increasing the token types.

We decided to provide an interface to a Random Action
Generator (RAG). This can be seen as a tool that samples
the action space hiding its real complexity. Since the action
space is completely customisable, and the PA directly imple-
ments the mechanics, introducing a new action simply means
providing to the engine a new RAG. A peculiar feature of a
RAG is that it can generate a random action for a specific
player given its id and a seed. The seed is used by the RAG
to generate the action, using it the agent can influence how the
action space is sampled. By contract the RAG returns a null
when it’s not possible to perform any action of such kind.

4) Stalemate detection: Similarly to Chess, a stalemate
condition happens when players can’t play a legal action
during their turn. This feature is implemented through exact
RAGs: when none of the generators is able to produce a non-
null action, a StalemateException is thrown. Another danger
is ending up in cyclic game states: in the game it is possible



to take actions that don’t change the game state, i.e. a pick
action when the player has already maxT tokens and puts back
the same tokens that were picked. Such condition is avoided
limiting the number of ticks per game.

Games can be run with or without visual, a very simple UI
is provided with the framework and it adapts seamlessly when
varying game parameters.

The framework has a remarkably fast Forward Model,
running 4PS with random actions we registered the following
stats2: speed 1.74 M states/s, average game duration 0.44 ms,
14.1% stalemate rate.

VII. THE AI AGENTS

We have implemented several AI agents: two basic policies
to provide a baseline and three more sophisticated based on
state of the art algorithms in video game playing. The latter
agents have been implemented keeping in mind the highly
parameterised nature and flexibility of their algorithms. In fact
their hyper-parameters can be tuned using an optimisation
algorithm. We have implemented two different versions of
Rolling Horizon Evolutionary Algorithm (RHEA) agent and
one Monte-Carlo Tree Search (MCTS) agent. All the advanced
agents can use opponent models, the specific model is defined
through an hyper-parameter om, the options are do-nothing
agent (0), random agent (1) and one-step look ahead (2). A
budget can be allotted to these models and it’s controlled by
the omsb hyper-parameter. Since om and ombs are common to
all the agents they are omitted. All the advanced algorithms
rely on a heuristic to search the action space, it is possible
to come up with several ones for S, we used one that
comes naturally from the rules: the number player’s prestige
points. With such heuristic the algorithms were setup as for
maximisation problems.

A. Basic Agents

The Random Agent (RND) is a player that performs, as
the name suggests, random actions. It simply returns the first
random action generated by the game state. The One-Step
Look Ahead (OSLA) agent instead keeps sampling random
actions keeping track of the best (according to a heuristic)
action until the budget is over.

B. Branching Mutation Rolling Horizon Agent

The Branching Mutation Rolling Horizon (BMRH) agent
is implemented along the lines of [21], this agent evolves
sequences of actions sampled through RAGs. The main new
contribution to this agent is the usage of a different kind of
mutation operator: branching mutation. In standard RHEA,
mutating an action sequence simply means swapping an action
id with a new one. Such id is essentially an index number that
is unequivocally mapped to an action. This works perfectly
when the action space is fixed or it can be easily enumerated
but this is not the case in R. In fact, the AS highly depends
on the current state and its computation is not trivial.

2Run on Intel(R) Core(TM) i7-3615QM (2012) CPU @ 2.30GHz, 8GB
1600 MHz DDR3 RAM.

Fig. 3: shows an example of branching mutation on a sequence
of length 5. a2, thus the selected mutation point, then a3−4

are the following random actions rolled.

TABLE IV: Hyper-parameters of the BMRH agent.

Symbol Type Description
l integer sequence length
n integer sequences evaluated
usb boolean if it uses shift buffer
mo boolean if it has to mutate once
ms integer mutation type
dcy double probability of exponential decay
µ double mean of the gaussian mutation point
σ double std dev of the gaussian mutation point

To initialise the first sequence it is sufficient to (1) request
a random action, (2) execute it and then repeating (1) and
(2) until the end of the sequence. However when it comes
to mutating an action it is necessary to roll the current game
state through the sequence up to the action we want to mutate
in order to get legal (and meaningful) random actions to
substitute it with. This essentially means to potentially follow
the same path through game states, up to stochasticity.

The branching mutation operator picks an index in the
sequence and from there on it starts mutating the remaining
actions while rolling the state. Figure 3 shows the core idea
behind the branching mutation. The mutation point can be
selected using three different distributions: uniformly across
the sequence, with exponential decay from starting probabil-
ity dcy, following a gaussian distribution with mean µ and
standard deviation σ. dcy, µ and σ are hyper-parameters of
the agents, a full list can be found in Table IV. Other than
branching mutation this agent can be tuned to use no mutation
at all or a complete different sequence. This agent requires
what we could call an online mutation: evaluation is done at
the same time as the mutation since the state has to be rolled.

C. Seeding Rolling Horizon Agent

The Seeding Rolling Horizon (SRH) agent is another vari-
ation of RHEA, it exploits one of the feature of R : the
possibility to provide a seed to the RAG. The sequence evolved
is made of long seeds which are going to be used to generate
deterministically the action sequence to perform. Using such
action encoding it’s possible to mutate and evaluate the se-
quences separately, offline, as opposed to BMRH. A similar
approach was used to optimise stochastic agent’s performance
in [28], but in this case seeds are used to bias the action
generators to provide better actions. Using seeds might not be
as robust as dealing with actual action plans, in fact, the search
space is theoretically infinite although practically limited by
Java’s long precision, thus much harder to search.



TABLE V: Hyper-parameters of the SRH agent.

Symbol Type Description
l integer sequence length
n integer sequences evaluated
usb boolean if it uses shift buffer
mo boolean if it has to mutate once
mr double mutation probability

TABLE VI: Hyper-parameters of the MCTS agent.

Symbol Type Description
d integer max depth reached by the tree or the rollout
c double exploration constant of UCB
e double ε of UCB
ep double probability of further expanding the node
ps integer number of actions sampled during expansion
rt integer recommendation type

Since we decoupled mutation and evaluation, mutation
operators more similar to the standard RHEA can be used.

D. Monte Carlo Tree Search Agent

The main feature of this implementation is its ability of
dealing with the unknown size of the action space similarly
to progressive widening. In the following we describe our
implementation broken down in the classic 4 steps:

• 1)Selection: the algorithm travels from the root towards
the leaves. Every step the selected node’s action is
performed together with the opponents’ according to their
model. Selection is done as follows:

– if current node is terminal: jumps to 4;
– else if the node wasn’t expanded it jumps to 2;
– else with probability ep: jump to 2;
– else pick children with highest UCB, jump to 1;

• 2)Expansion: the algorithm samples the actions space ps
times adding a maximum of ps nodes to the current node,
one for each unique action sampled. One newly expanded
node becomes the current and it proceeds to 3;

• 3)Rollout: from the current node a random rollout is
carried out until d depth is reached then goes to 4;

• 4)Backpropagation: the reward r is backpropagated up
the tree. r is the heuristic delta from game state reached
after the rollout and the present game state. The statistics
in the nodes traversed are updated.

Once the algorithm has consumed the budget available it
will return an action using either one of three recommenda-
tions based on rt: max child (0), robust child (1) or secure
child (2). For MCTS’s hyper-parameters see Table VI.

VIII. METHODS

In this section we describe the experiments we have carried
out and their objective. All the experiments are based on the
4PS version of the game, the agent are given a 1000 action-
simulations budget per tick. We have first carried out a pre-
liminary experiment (1000 games between 4 RND agents) to
understand some features of the game from an AI perspective:
average length and probability of stalemate.

Then, in order to test the abilities of our BMRH, SRH
and MCTS agents, we have run a grid search using the
parameters in Table VII. Each configuration of the algorithms
was tested over 1000 4PS games against 3 other OSLA agents.
The values for om and omsb are respectively {0, 1, 2} and
{0.005, 0.01, 0.02, 0.05} The parameters were hand-picked us-
ing the authors’ knowledge of the algorithms and the domain.
Our focus with these experiments is to highlight the sensibility
of the algorithms to their hyper-parameters.

However, even if grid search gives a broader representation
of the hyper-parameter space, it is often extremely expensive
to run. Thus we designed another experiment to check the
feasibility of using a hyper-parameter tuner to reduce the
computational used. Multiple experiments are run to see how
the agents can be tuned appropriately varying the NTBEA’s
budget. The true fitness, i.e. the win ratio, is measured over
1000 games with the suggested configuration. Each experiment
(fixed budget and agent type) is run 100 times and the results
are shown in box plots to compare the outcomes. NTBEA set
up was the same with k = 1 and ε = 0.2.

Two final experiments are run comparing the best config-
urations obtained from the grid search. We are selecting the
highest win ratio between all the configurations. This is not
meant to be a fair comparison between the algorithms. Within
the possible agent’s configurations we could probably find
some equilibria without a strong dominance of an algorithm
over the other, this however goes beyond the scope of this
paper. The first experiment consists in playing 4PS while the
second running a round robin tournament between the three.

IX. EXPERIMENTS AND RESULTS

The preliminary experiment shows an indistinguishable win
ratio of the players, uniform random, each player 25% (ignor-
ing stalemates). Through this experiment we also tested the
average duration of completely random games: (mean=140.86,
sd=21.35, max=183, min=29), this helped us setting the time-
out limit: 300, more than twice the average duration.

A. Grid Search

The values for the hyper-parameter space were all hand-
picked and they can be seen in Table VII. This table also
includes the best agents’ configuration in bold, later referred
to as BMRH*, SRH* and MCTS*, respectively.

Once the configurations were tested we have plotted the
ordered hyper-parameter space, see Figure 4. While analysing
these plots we should keep in mind that the probability of
winning a game out of luck is 0.25 (since it’s a 4-player
game) if all agents played uniformly at random. Figure 4
shows in red BMRH’s. We can notice how most configurations
are concentrated in the higher half of the win rate making it a
simpler agent to configure against OSLA. There are however
a few configurations that perform below 0.25. SRH’s, shown
in yellow in Figure 4, has a more robust behaviour (even with
the poorest configurations) as we can see from the win ratio
hardly going below 0.25, however its best configurations are
performing slightly worse compared to BMRH’s best ones. On



TABLE VII: Hyper-parameters spaces (total size of the space between parenthesis). In bold, the best parameter value found.

BMRH SRH MCTS
Parameter Values (207,360) Parameter Values (28,800) Parameter Values (32,400)
l {1,2, 3, 5, 10, 20} l {1,2, 3, 5, 10, 20} d {2, 3, 6, 11, 21}
n {20, 50, 100,200} n {0, 1, 5, 10, 20, 50, 100,200} c {0.0, 1.41, 4.0, 9.0, 15.0, 20.0}
usb {false, true} usb {false, true} e {1.0E− 6}
mo {false, true} mo {false, true} ep {0.1, 0.2, 0.3,0.4}
ms {0,1, 2} mr {0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8,0.9, 1.0} ps {1, 3, 5, 10, 15}
dcy {0.5, 0.7,0.8, 0.9} ombs {0.01,0.05, 0.1}
µ {0.0,0.1, 0.3, 0.5, 0.75}
σ {0.5, 1.0, 2.0}

the other hand, MCTS’s hyper-parameter space shows how its
configuration needs to be done carefully tuned to achieve a
strong performance, being able to perform only with a handful
configurations (see blue plot in Figure 4).
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Fig. 4: hyper-parameter spaces’ ordered fitness landscape.

The best configurations of BMRH, SRH and MCTS scored
respectively 0.924, 0.882 and 0.918. Looking at the parameters
picked we can see that all the agents prefer estimating very
short-term action plans. Both BMRH* and SRH* evolve
sequences long just 2 actions and MCTS* grows a tree of max-
imum depth 2. This is probably due to the high stochasticity
introduced by opponents’ actions and random card shuffling.
Keep re-sampling the short horizon is safer than adventuring in
longer and dangerously uncertain plans. Along the same lines,
the agents are always configured to not model the opponents.
This is probably because having a weak model introduces
even more noise reducing the overall budget significantly. A
peculiarity of MCTS* is that UCB is tuned to completely
eliminate the exploration term. This fundamentally means that
whenever it is not expanding another action it is re-sampling
the action with the highest expected reward (highest score)
and wait for it to eventually drop because of re-sampling or
expansion. BMRH* uses the branch mutation described earlier
instead of a uniform random, however whether this brings
better performance is not clear since the sequence evolved
is only two-actions-long.

B. NTBEA

For each agent (BMRH, SRH and MCTS) we ran NTBEA
with the following budgets: 50, 100, 200, 500 and 1000; We
can see the all the results in Figure 5, this shows box-plots of
the tuned agents’ true fitness. Tuning MCTS with less budget
is clearly harder than the other agents, but this is trivial looking

at Figure 4. The important take-away from these experiments
is that with only 1000 games played it’s likely to get a good
configuration of the agents.
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Fig. 5: Box-plots showing the NTBEA’s outcome distributions
varying budget and agent to optimise.

TABLE VIII: Round robin tournament results.

P1 vs P2 P1 win rate P2 win rate SM
MCTS* vs BMRH* 52.3% 47.5% 0.2%
SRH* vs BMRH* 40.2% 59.5% 0.3%
SRH* vs MCTS* 39.8% 59.3% 1.6%

C. Comparing Best Settings

Once obtained the best configurations of the agents we ran
10000 games of 4PS between BMRH*, SRH*, MCTS* and
an OSLA player as fourth player. This experiment doesn’t
aim to prove the general superiority of an algorithm over
the other. It rather highlights the relative performance of
agents that were separately tuned against weaker opponents.
MCTS* and BMRH* have similar performance (values re-
ported with 95% confidence intervals between parenthesis),
respectively 35.67% (±0.94%) and 37.67% (±0.94%). SRH
instead clearly has lower win ratio but it still manages to win
around 25.09% (±0.94%) of the games. The bad performance
shown by OSLA was expected, since it was the objective
the agents were optimised for. Between the 10000 games,
only the 1.39% ended in a stalemate, well below the 14% of
completely random games. This proves that the agents have a
clearer purpose in their strategy even with a simple heuristic.
Finally we have run a round robin tournament on the two-
player version with the following results, see Table VIII all the
results are reported with a std error of ±1.6%. MCTS* can be



slightly more robust than BMRH* in a 2 player-game where
uncertainty due to number of opponents is lower. Generally
both MCTS* and BMRH* outperform SRH*.

X. DISCUSSION AND FUTURE WORK

In this paper we have presented a new framework for Game
AI research. It presents big challenges due to its nature:
multiplayer, stochastic and with a partially-observable state.
This benchmark is efficient in its implementation, simulating
1.74 million states per second. The framework was tested on
the 4PS version of the game without exploring variations of
the game parameters, this limit was imposed to first assess the
suitability of the agent to fast parameter-tuning.

We introduced several baseline game-playing algorithms
and shown how they can be efficiently tuned obtaining good
performance in few game simulations even in a non-favourable
hyper-parameter space. This feature makes the agents and the
framework suitable to run experiments that require solid AI
performance without a known testing condition e.g. when
changing the game’s parameters. The agents were provided
with a very basic heuristic: player’s prestige points. This poses
a limit to the agent’s skill potential, but it reduces the bias
towards some game states thus it isn’t a dramatic limitation
for these initial experiments. In the future, when optimising
against strong opponents it will likely be a crucial point.

To fully take advantage of Rinascimento the framework will
need a PCG module to generate cards and noble tiles for
configurations of the game were the number of token types
varies. It would also allow to modify the starred parameters
in Table I. Simulation-based PCG methods will highly benefit
from the quick tunability of the agents introduced in this paper.

Future work can be done to expand the game-playing
agents available in the framework and to introduce more
enhancements to the ones presented, both RHEA and MCTS
are flexible methods. In real S, predicting opponent’s actions
is key to competitive playing, so being able to use a reliable
opponent model will critically improve the skill level of a
player. That is a field that requires more attention andR seems
a perfect platform to expand the current state of the art.
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