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Abstract—In freemium games, the revenue from a player comes
from the in-app purchases made and the advertisement to which
that player is exposed. The longer a player is playing the game,
the higher will be the chances that he or she will generate a
revenue within the game. Within this scenario, it is extremely
important to be able to detect promptly when a player is about
to quit playing (churn) in order to react and attempt to retain
the player within the game, thus prolonging his or her game
lifetime. In this article we investigate how to improve the current
state-of-the-art in churn prediction by combining sequential and
aggregate data using different neural network architectures. The
results of the comparative analysis show that the combination
of the two data types grants an improvement in the prediction
accuracy over predictors based on either purely sequential or
purely aggregated data.

I. INTRODUCTION

Games distributed using the freemium business model are
freely downloadable and playable. The main revenue for the
games comes from virtual goods that can be purchased by
players. Furthermore, many games include some form of
advertisement (e.g. banners) that serve as a supplementary
revenue stream.

In the freemium industry, similarly to other service indus-
tries such as telecommunications, the revenue that a player
can generate is proportional to the duration of the relationship
between the player and the game/service. Therefore, increasing
player retention (i.e. the duration of the period before a
player quits) is commonly considered an effective strategy for
increasing lifetime value [25].

This can be achieved in many ways, for example by pro-
ducing more content for players in end-of-content situations
or by adjusting problematic sections in the game that have
shown to lead players to quit. Another possible way, as shown
by Milosevic [20], is to identify the players that are likely
about to stop to playing (i.e. churn) and target them with a
personalised re-engagement initiative before they abandon the
game.

This is challenging especially in non-contractual services
such as freemium games. For contractual services, such as
telephone subscriptions or newsletters, the churn event is well
defined, and corresponds to the moment when the contract
expires or is cancelled. However, for non-contractual services,
such as games or retail, there is not an explicit event that
signals that a user stops using the service.

The authors are with the IT University of Copenhagen and with Tactile
Games ApS. (e-mail: jeppek @tactile.dk; pabu@itu.dk). A special thanks goes
to Thomas Bjarke Heiberg-liirgensen and Rune Viuff Petersen for their MSc

thesis work.
978-1-7281-1884-0/19/$31.00 ©2019 European Union

Paolo Burelli
pabu@itu.dk

The most common way, as described by Hadiji et al. [8],
is to define the churn time as the time of the last event
produced by a player before being inactive for a certain period
of time. The duration of the inactivity may be very different
depending on the context: for example, if a player does not
return to a freemium game after one week it is much more
likely that he/she has churned compared to not returning to
a clothing retail shop after a week. Formalising churn is
therefore industry and time scale dependent and has to take
into account the applicability to the business.

Regardless of the churn definition, churn prediction is cur-
rently actively researched in number of different industries in-
cluding telecommunication providers [9], [24], insurance com-
panies [33], pharmaceutical companies [29] and games [16].

Within games, a number of techniques have been employed
for churn prediction ranging from a number of supervised
learning models based on aggregated player data [8], [27] to
more recent works that try to leverage the dynamics for the
player behaviour by using temporal data [15].

The main reason to use this kind of data is that the changes
in the user behaviour leading up to the churn event are
potentially more predictive than aggregated data. Such an
assumption is supported by a number of other recent studies
on churn prediction in other industries [7], [18], [30].

However, since these temporal based methods focus on the
dynamics of the player behaviour in a limited time window,
they are unable to capture the baseline behavioural patterns
of the players and assume that a specific sequence of events
determines churn independently of the player’s history and
context.

Inspired by the work of Leontieva and Kuzovkin [17] on
combining static and dynamic features for classification, in
this article we investigate how both sequential and historic
aggregated data about the player behaviour can be used in
churn prediction models. The hypothesis behind this study
is that static data about the player could serve as context
to interpret the dynamics of the player behaviour. For this
reason, we evaluate a number of different architectures that can
be used to combine the two types of data and we showcase
the results in a comparative analysis based on data from a
commercial free-to-play game.

The structure of the article is as follows: first the state-
of-the-art methods for churn prediction will be presented in
section II. Next the churn definitions and methods that we
will use in this article are introduced in III. The evaluation
parameters and data will be described in IV, and the results



of the evaluation is shown in IV-A. Lastly, section V is a
discussion of the results, followed by the conclusion in section
VL

II. RELATED WORK

While the concept of customer churn has been used in
research for many years, the first examples of models for churn
prediction start to be published in the late nineties and the early
two thousands [19], [21]. In their works, Masand et al. and
Mozer et al. employ artificial neural networks (with slightly
different topologies and feature selection methods) to predict
whether a customer will cancel their telephone subscription or
not. Other methods, such as decision trees [31], support vector
machines (SVM) [32] and logistic regressions, have also been
used extensively for churn prediction [6], [9], [13], with many
variations detailed in [28].

All of the aforementioned methods for churn prediction
attempt to assess the likelihood of a customer to churn based
on their past behaviour expressed as a static summary of their
state. These models assume that conditions leading to a churn
event are based only on a given state of the customer rather
than the way customer reached that given state. This means
that, for instance, two players with the same average number
of hour played per day would be classified in the same way
even if one of the two is playing increasingly more while the
other is progressively stopping.

To capture this type of difference, the inputs to the model
need to incorporate a temporal dimension. This dimension can
be either approximated (e.g. incorporating trend and standard
deviation to the aggregated measure) or the model can process
the inputs as time series. Castro and Tsuzuki [4], for instance,
analyse a number of methods to approximate the dynamics
of the customer behaviour using different forms of frequency-
based representations.

If a feature can be arranged into time-sequential bins (e.g.
hourly score, daily time played, monthly minutes on call), a
more complete representation of the dynamic behaviour can be
expressed in the form of a multi-variate time series, in which
each sample of customer behaviour is described as a matrix
with n; rows and ny columns, where n; is the number of time
steps/length of time-series and ny is the number of features.

Prashanth et al. [24] present two different ways of pro-
cessing time series using machine learning models. In their
compararive study, in one of the case, they employ a long
short-term memory (LSTM) [11] recurrent neural network
using the data directly as time series. In the other case they
flatten the multivariate time-series matrix into a single vector
with length n; - ny. By flattening the time-series, additional
static features such as days since last usage and age can be
appended to the vector. This vector is then used as input to
non-sequential models such as a random forest classifier (RF)
and a deep neural network.

A similar approach is used in [14] where the static features
(e.g. user age) are repeated for each month for the sequential
models. While the performance of the different models is
comparable, in both articles the RF outperformed the LSTM

approach in terms of area under the curve (AUC). Another ar-
chitecture that allows using sequential data is Hidden Markov
Models (HMM) which is used in [26].

One issue with framing churn prediction as a binary clas-
sification problem is that we do not know if/when a customer
churns in the future. Because this information is hidden in
the future the data is said to be right-censored. So, instead of
framing the churn prediction as a binary classification problem,
methods such as survival analysis attempt to estimate the time
to the next event of interest, for instance the return of the
customer or cancellation of subscription.

Survival analysis is extensively used in engineering and
economics, and popular methods include Cox Proportional
Hazards Model [5] and Weibull Time To Event model [1].
Both methods have been also applied to churn prediction alone
and in combination with other classifiers [7], [12], [18], [23].

A. Churn prediction in games

In both a general industry and games context, the two main
approaches for churn prediction consider the churn prediction
task as either a classification or survival analysis problem.

In [23], Perianez et al. interpret churn prediction as a sur-
vival analysis problem and focus on predicting churn for high-
value players using a survival ensemble model. One of the
first examples of treating churn prediction as a classification
problem in games is the 2014 article by Hadiji et al. [8].

In this work, the authors describe two different forms of
churn classification problems, in which the algorithm is either
trained to detect whether the player is currently churned (P1)
or whether the player will churn in a given future period of
time (P2). Furthermore, they compare a number of classifiers
based on aggregated gameplay statistics on both tasks on
datasets from five different games, showing decision trees to
be the most promising classifier.

In the same year, Runge et al. [27] present an article
investigating how to predict churn for high value players in
casual social games. In this article, high value player are
defined as the top 10% revenue-generating players, the churn
definition is similar to the one labelled as P1 by Hadiji et
al. [8], and the period of inactivity used to determine churn is
14 days.

A set of classifiers similar to [8] — with the addition of
support vector machines — is evaluated on the dataset from
two commercial games. For the feed-forward neural network
and logistic regression models it was found that 14 days of
data prior to the churn event leads to the highest AUC.

Furthermore, to include a temporal component in the model,
sequences of the daily number of logins are processed through
a Hidden Markov Model. The output of the HMM is then used
as an extra input feature. The authors, however, find the the
inclusion of the temporal data using HMM degrades the results
and hypothesise this might be due to data over-fitting.

A Hidden Markov Model is also used by Tamassia et al. [30]
in comparison with other supervised learning classifiers based
on aggregated data. The comparative study, conducted on



data from the online game Destiny', shows an advantage in
processing the player behaviour as temporal data.

Kim et al [15] also investigate the predictive power of
sequential data by evaluating an LSTM Neural Network model
in predicting churn for new players. In this work, the input data
to the LSTM corresponds to a single time series containing
the player score recorded every 10 minutes over 5 days; churn
is defined as having no activity for 10 days after the first 5
days of observation.

The results show that the LSTM model is able to outperform
both a one-dimensional convolutional neural network on the
same time series data and traditional learning models (RF,
Gradient boosting, logistic regression) in terms of AUC. A
similar result is achieved also by the LSTM based model by
YOKOZUNADATA in the churn prediction competition article
by Lee at al. [16].

Outside of the context of churn prediction in games, Leon-
tjeva and Kuzovkin [17] show in their article that a hybrid
LSTM network combining aggregated and time-series data is
capable of better churn prediction than methods using only
one of the two data types or classical ensemble methods.

These results combined with the aforementioned results
by the YOKOZUNADATA LSTM based model suggest that
there is potential for hybrid LSTM networks to leverage the
combination of aggregated an time-series data. For this reason,
in this article we present a comparative study of multiple
hybrid architectures of LSTM to evaluate the best possible
solution in a realistic churn prediction problem.

III. METHODS

In this study, we compare a number of different hybrid
LSTM architectures that combine time-series data with aggre-
gated data against commonly employed LSTM neural network
and random forest algorithms. In this section, we describe all
the architectures, the algorithms and the settings employed,
while in the next section, we describe the evaluation procedure.
However, before describing the algorithms, it is first necessary
to define what definition of churn will be used to label the
data for the algorithms training and evaluation. This choice
motivates what kind of data is relevant and can be used and
that, in turn, will also determine what kind of architectures
can be tested.

A. Churn prediction definitions

In freemium games the relationship between a player and
the game is typically non-contractual in nature because the
user can stop playing the game without any notice. In this
situation there is not clear churn event, like a customer
cancelling a subscription. For this reason, different research
works have slightly different definition of churn; however, they
all agree that a player can be considered churned if inactive
for a long enough period of time [16].

In this work, we define a churn event as the last event
generated by a player before a period of inactivity. The churn
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Fig. 1. Depiction of the churn definition used to label the data. The predictions
are made the day after the last day of the observation period/first day of the
prediction offset. In this example user A, C and E are labelled as churners
because their churn dates — i.e. the last active day before a period of inactivity
(churn span period) — happen before the end of the prediction window. Even
though user B and D have a churn date, they are labelled as non-churners
because it happens after the prediction window. This is not a problem since
their churn will be detected at a later prediction when it is appropriate to
reengage them. User F is continuously active and does not churn either. Image
courtesy of [10].

prediction task, similar to the P2 definition in [8], consists in
predicting whether churn event will occur in the next predic-
tion period (e.g. the week following the prediction). Figure 1
show a number of examples of patterns of player activity and
explains whether the players are considered churned or not
according to our definition.

A second aspect of the churn classification task that we
need to specify is which player is this model targeted at. Kim
et al. [15] describe a model aimed at predicting churn for
new players, while Runge et al. [27] and Perianez et al. [23]
focus on high-value players. In contrast, the model we propose
in this study is aimed at any player that is currently active.
This means that at the time of prediction, the model can be
applied to any player which has shown some activity (e.g. has
performed at least one action) within the previous 14 days.
This time window has been selected as 14 days is also the
length of the input data time window. Which, in turn, has
been chosen based on the periods selected in the literature.
The period duration had to be a multiple of 7 days based on
the periodicity of the players’ behaviour in the game used for
training and prediction.

A third aspect necessary to define is how long a player needs
to be inactive before being labelled as churned. Choosing the
duration of this period is a trade-off between finding actual
churners versus players just taking a break. Because of the
aforementioned weekly periodicity, a minimum requirement
for inactivity duration should be at least one week. The
maximum duration is not clear cut and can be chosen from a
business perspective. For example, if the cost of reengaging
churning players is low, a short inactivity period can be
chosen; however, at the same time a short inactivity period
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could lead the algorithm to label as churned a lot of player
who would return later. In this article the churn span period,
i.e. duration of inactivity before being labelled as churner, is
set to be 30 days.

Lastly, in order to create actionable predictions, a sliding
offset window from the prediction date (end of observation
period) is used in which the churn can happen, similar to the
P2 definition in [8]. This allows for preemptive actions to be
taken when a player about to churn, instead of when he/she has
already churned. The length of the prediction offset window
is 7 days.

B. Models

With the aim of finding the most effective way to combine
time-series and aggregated player behaviour data, we include
in the study three models which only use the sequential data
are used as a baseline, and a number of different hybrid archi-
tectures. All implemented algorithms are based on either the
Keras Deep Learning library? for Neural Networks or scikit-
learn® for the random forests and the evaluation heuristics.

The first two baseline models are a random forest classifier
and a feed-forward neural network. Because these models
cannot handle sequential data, the sequences are flattened into
a single vector. The last baseline model is shown in Fig. 2
(A). It consists of an LSTM layer to handle the sequential
data with an output dimension of 16. Heuristically using a
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larger dimension did not improve the predictions and typically
caused the model to overfit. The LSTM layer uses the default
settings of Keras — i.e. the activation function is a hyperbolic
tangent and the recurrent activation function is a hard sigmoid.

The hybrid models tested in this study include the architec-
ture that is best performing in [17], which we label as LSTM
+ Aggregated. As shown in Fig. 2 (B), this hybrid model
relies on the temporal model to generate features from the
time-series. The generated output is then concatenated with
the static data and fed into a final classifier.

These LSTM output can either be the LSTM activations,
the log-likelihood of belonging to each class or ratios of the
likelihoods. While all the hybrid models performed well in
[17], the setup using LSTM activations generally performed
better when many samples were used (> 5000) and the
sequence lengths were around 15 or longer; therefore, we use
this configuration. The final classifier uses a fully connected
network output layer with 1 unit using a sigmoid activation
function.

On top of this architecture, three other configurations are
included in this study: LSTM Predict + Aggregated, LSTM
Hidden State and Static in LSTM.

The first one (LSTM Predict + Aggregated) is a modified
version of the LSTM + Aggregated model that uses the LSTM
prediction instead of the activation. The final sigmoid output of
the LSTM serves as one of the inputs to the final classification
layer together with the aggregated features. This architecture
behaves similarly to the ensembles described by Leontjeva and
Kuzovkin [17] as the two classifiers operate independently.

In the LSTM Hidden State model, the static input is used
to set the initial states of the LSTM (see Fig. 2). This is done
by feeding the input data into two separate dense layers with
linear activations which correspond to the initial hidden state
and initial internal cell state of the LSTM. Since the number
of neurons in these layers must match the number of units in
the LSTM, 16 units are used for the dense layers.

Finally, in the Static in LSTM model, the static features
are modelled as time-series with a constant value over time.
These constant series, together with dynamic features, are used
as inputs to an LSTM model as suggested by Khan et al. [14]
Otherwise, the structure of the LSTM network is the same as
the baseline LSTM model.

All the neural networks are trained using binary cross-
entropy as a loss-function and an Adam optimiser. Early
stopping is also utilised and uses the model weights from the
best epoch if there are no improvement in the validation loss
after 10 epochs.

IV. EVALUATION

All the models described in the previous section are evalu-
ated on the same churn prediction task; the data used for this
test contains player logs from a casual mobile pop shooter
game by Tactile Games called Cookie Cats Pop (Fig. 3). In
these type of games the user typically has to complete levels
over a linear or semi-linear progression and each level is
composed by a different puzzle with the same core mechanics;
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Fig. 3. In-game screenshots from the mobile casual game Cookie Cats Pop, a
pop shooter game for Android and IOS. The left image shows the world map
where level progression can be seen (here it is level 96) and how in-game
events appear (such as treasure hunt). The right shows an example of a level.

in this case, the player has to shoot a number of bubbles
towards other bubbles to compose areas of the same colour
and gather points. Various boosters, such as bonus actions or
clearing the game board, can be used before or during the
game as help to finish the level.

The initial dataset contains player behaviour data from
2018-08-01 to 2019-03-04. However, because we cannot know
whether a player has churned until the inactivity period and
prediction offset period have passed, the latest data is at least
30 4+ 7 = 37 days before the upper-bound date.

The models are trained on two types of input data: aggre-
gated data, which summarises the characteristics of the player
during the last 6 months up to the moment of prediction,
and temporal data, which contain time series describing daily
summaries of the players’ behaviour.

The temporal data contain both features that describe the
activity level of the players and data that that reflect skill level
of the player. The selection is based on the features included
in [15] and [24]. In total, the following ten different features
have been selected:

e ACTIVITY: 1 if player was active, otherwise 0

¢ GAMESTARTED: number of times game/app was opened

e MISSIONSTARTED: number of missions started

e MISSIONMOVESUSED: sum of moves used

o POINTSPERMISSION: average points per mission

e« MOVESPERMISSION: average moves used per mission

e MISSIONCOMPLETED: number of completed missions

e MISSIONCOMPLETEDFRACTION: fraction of completed
missions

e MISSIONFAILED: number of failed missions

e CONVERTED: 1 if in-app purchase, otherwise 0

Each training record is composed by these ten features, each
feature has one daily entries for each of the previous 14 days

(observation period).

The aggregated data contain features to describe the char-
acteristics of the players and give context to the classifier
to interpret the temporal data. These features include game-
specific metrics such as amount of in-game currency used,
game feature/event participation and booster usage, but also
aggregations of general playing patterns (e.g. number of active
days, minutes played per day and max level reached). The
features can be grouped into the following categories:

o Player description which contain general descriptions of
the player and consists of FB-CONNECTED, MONTHSS-
INCEINSTALL, NUM-ACTIVEDAYS and MAXLVL

e Player behaviour which describes how the player
behaves in-game and consists of MINUTESPLAYED-
SUM, MINUTES-PERDAY-AVG, GAMESTARTED-
SUM, LEVELSTARTED-SUM, COMPLETIONRATE,
ABANDONEDRATE, COINSUSED, COINUSED-PERLEVEL,
COINSRECEIVED, CONTINUESUSED-PERLEVEL,
BOOSTERSUSED-PERLEVEL, TRANSACTION-SUM,
SUM-SPEND, TOTAL-SPEND and PROGRESSIONRATE

e Progression which describes progress in different
game modes and consists of DAILY, MAIN, ONELIFE-
CHALLENGE, SOCIAL-CHALLENGE, TOURNAMENT,
TREASUREHUNT, HOT-STREAK, LEVEL-DASH,
LEVELRUSH and STARTOURNAMENT

o Platform which describes what device player is using and
consists of ANDROID, FIREOS, 10S and KINDLE

e Acquisition channel which describes how the player
got invited to the game and consists of ACQUIRED,
CROSSPROMOTED and ORGANIC

In total 22 features are used which expand to 36 features using
one-hot encoding on categorical features.

As argued in the previous section, we use an observation
period of 14 days, churn inactivity period of 30 days and
a prediction offset window of 7 days. Defining churn this
way yields a data set with 65% non-churners and 35%
churners. While methods such as over- or under-sampling
or bootstrapping can be used to deal with class imbalances,
ensuring an even class distribution does not guarantee a better
result, especially in a churn setting and when using AUC as
the evaluation metric [3]. No further action is therefore taken
to deal with the class imbalance.

In order to gather a diverse data set covering a long enough
period of time, 8 sampling dates that are each 18 days apart
are chosen. This ensures data for every week day is included
and that the observation periods do not overlap. A player may
be included in multiple sampling dates, but since there is no
overlap in the observations it is assumed that the behaviour
is independent. Each date has approximately 250,000 records
resulting in a total data set of 2,284,238 records with 814,822
unique players.

For the evaluation of the different approaches, a 10-fold
cross validation is performed. In each fold three evaluation
parameters are used: the area-under-curve score (AUC) of the
receiver operating characteristic curve (ROC), the accuracy
and the F1 score.
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Fig. 4. Feature importance of the baseline random forest model. Note that
not all 140 features are shown, only the 10 most important features followed
by every tenth feature. The number in the parenthesis indicates the order of
importance. The suffixed number indicates number of days ago, where 1 is
the most recent date.

The ROC curve is a graph of the true positive ratio over
the false positive ratio at different classification thresholds.
The higher area-under-curve, the fewer false positives to true
positives. An AUC score of 1 is therefore the highest possible
score while 0.5 corresponds to a random guessing model.
Although using AUC with imbalanced data sets may not give
a complete idea about the model performance [2], the method
is independent of choice of classification threshold and thus
useful for a non-biased comparison between models.

Accuracy is a measure of how many correct predictions out
of all the samples, i.e. acc = TP+TN where TP is the number
of true positives, T'N is the number of true negatives and N is
the number of samples. While accuracy is not a good metric
on very imbalanced data sets, it is often used in literature and
thus included for comparison.

The F1 score is the harmonic mean of the precision and
recall of the model. Precision refers to the ratio of true
positives to classified positives, and recall is a ratio that
describes the number of true positives to actual number of
positives. Since the F1 score gives equal weight to precision
and recall it can be used to measure the all around performance
of the model.

Accuracy and F1 score require a binary classification so a
classification threshold of > 0.5 is used to label a player as
churning.

A. Results

The results of the evaluation are shown in Table I. Of the
baseline models, the LSTM is better in terms of all three
metrics, with significant differences that are larger than the
uncertainties. The NN and RF classifier had very similar
performances. Since the data is sequential in nature it is
perhaps not surprising that models that are designed to deal

TABLE I
MODEL RESULTS. NUMBER IN PARENTHESIS IS THE TWO SIGMA
UNCERTAINTY ON LAST SIGNIFICANT DIGITS. THE MODELS WITH THE
BEST PERFORMANCE ARE HIGHLIGHTED IN BOLD.

Model AUC F1 score Accuracy
Baseline RF 0.8405 (21) 0.6414 (33) 0.7749 (21)
Baseline ANN 0.8559 (18)  0.6771 (54) 0.7868 (19)
Baseline LSTM 0.8592 (18)  0.6795 (48)  0.7900 (16)
LSTM + Aggregated 0.8729 (19)  0.6929 (50) 0.8013 (16)
LSTM Predict + Aggr. | 0.8711 (20) 0.6898 (60)  0.8000 (17)
LSTM Hidden State 0.8741 (20)  0.6953 (30)  0.8023 (20)
Aggregated in LSTM 0.8737 (22)  0.6927 (34)  0.8020 (19)

with such data also performs better. However, it is a good test
of the validity of using sequential data for churn.

In order to extract some information about the behaviour
leading to churn, the RF model can be used to extract the
feature importance, which is shown in Fig. 4. It can be seen
that the three most important features are the most recent
values for number of missions started, number of times game
has been opened and whether a player was active — all values
which reflect play time. The least important features were all
whether the player had converted. These results are similar
with what was found in [15] for other mobile casual games
and in [24] for telecom data.
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Fig. 5. ROC curves for selected models.

The LSTM Hidden State model and the one using static
features in the sequential data have the best performance on
all the parameters of all the tested architectures. However, the
confidence intervals of the evaluation metrics of the different
models overlap. It is worthwhile to note, though, that the
training time of the Hidden State model is about one third
faster than the static one, while the LSTM + Aggregated
model was only slightly faster than the Hidden State model.
In a business setting, the baseline LSTM model may be the
fastest to both train and implement but it is only a small
increase in complexity to use the Hidden State or LSTM +
Aggregated model, which may then allow for use of domain-
specific features that can boost the model performance for
different user segments (e.g. level reached in games or in-
game event participation). The best strategy may therefore be



to use either the Hidden State or LSTM + Aggregated model
and then tune the hyper-parameters.

A reason why the Hidden State and Aggregated in LSTM
models appear to perform better than the LSTM + Aggregated
models may be because the static features are not directly used
in LSTM part of the latter models. It therefore limits what
kind of features the LSTM can extract resulting in slightly
worse performance. The ROC curves of some of the models
are shown in Fig. 5, where it can be seen that the Hidden
State and Aggregated in LSTM are better than the baselines
but otherwise very similar.

We have also briefly tested the models only on converted
users. These samples make up 10% of the data set, and about
20% of have a positive churn label (this number is 35% for
the overall data set). While the AUC and accuracy generally
increased slightly, the F1 score decreased.

V. DISCUSSION

The results show that including the aggregated data in-
creases the performance compared to the baseline LSTM and
the improvement is comparable to using an LSTM over an
RF or NN. Interestingly, including static features in the time
series (Static in LSTM), and thereby increasing the number of
sequential features, did not decrease the performance. This
is only somewhat in agreement with [15] where including
more than 4 features lead to either no or a small decrease
in performance. However, it should be noted that the method
employed by Kim et al. [15] is a gradient boosting method
whereas in this this article we use an LSTM.

Small variations of each model were tested, including in-
putting the aggregated features into a dense layer first (like for
the hidden state model), adding a dense layer just before the
output layer and using more cell units. However, no significant
differences were found.

While combining aggregated and temporal data shows and
improvement in churn prediction accuracy, it is worthwhile to
consider that the aggregated features used in this study include
many game-specific parameters, such as in-game currency
spent, participation in game-specific events and so on. Further
investigations would be needed to assess the generalisability
of the results in other games. For instance, by replicating the
experiment on the datasets used in [16].

Additionally, being able to use the same architecture for
other games with similar mechanics may be of particular
interest to some companies since that will allow them to target
even more players with relative ease. A more general approach
may therefore be to cluster the users based on domain specific
heuristics and use this group information as aggregated inputs.
Different rates of activity can also be used, keeping it as
general yet informative as possible.

The small difference in model performance across architec-
tures may suggest that activity features are enough to capture
a churn signal in simple mobile casual games.

One thing that also affects the performance is how the data
sampling is done. The proposed method of using aggregated
historical data and multivariate time series of the behaviour

Accumulated fraction

Start date

churn, 2019-02-05 00:00:00 () no churn, 2019-02-05 00:00:00

of players

rcentage

Per

churn, 2019-02-05 @) no churn, 2019-02-05

Fig. 6. Top: number of player start dates split by churn label. Bottom:
fraction of player start dates split by churn label. It can be seen that old
players are generally less likely to be predicted to churn. The predictions
were made on 2019-02-05 using the baseline LSTM model. A classification
threshold of > 0.6 is used, which is chosen from a rough estimate of the
gain and probability of reengaging a true churner vs the cost of reengaging a
falsely predicted churner.

leading up to churn is a kind of supervised hierarchical tem-
poral memory model. This means that we choose the timescale
(lifetime values and most recent 14 days) and binning window
(e.g. daily aggregations) ourselves instead of in an automated
way. However, this way we may not capture all the temporal
dynamics because we have explicitly chosen which dynamics
to consider. Indeed, looking at the player start dates (Fig. 6)
split by churn label, it can be seen that of players starting
roughly three weeks prior to the prediction date, a majority
of them are churners. Although it is still in the interest of
the business to catch any player, the model may become
specialised in predicting churn for new players and not learn
to properly model the more profitable long-term players. This
is also in line with the previous results: although the AUC was
higher for converting players, this does not take into account
the lower amount of identified churners, as reflected by the
lower F1 score.

Some methods, such as the wavelet approach in [4], allow
for a bit more of an unsupervised approach in terms of data
sampling, but the results are largely the same. In theory the
input to a LSTM model can also be trained using complete
life time sequences. Additionally, stacked LSTMs may allow
a model to learn different temporal dependencies [22], which
was also tested in this article but showed no improvement.

VI. CONCLUSIONS

In this article we presented and tested four neural network
architectures for churn prediction that allow to combine ag-
gregated historic data with sequential data.

The results show that combining the static features with
either the LSTM prediction or activations showed an improve-
ment over the baseline. However, the best models were the
ones that included the aggregated data in as some form of
input to the LSTM - either by setting the initial state or simply
adding the static data to the time series.



As found in other articles, features that described the most
recent activity carried the most importance for predicting
churn. Using general activity patterns therefore form a good
baseline and can be used across games. However, some fea-
tures used in the evaluation also included very game specific
details. For this reason, we believe it is worth investigating
some form of generalisation of the aggregated data, and we
plan on investigating how to employ player profiling as an
input in our future works on this topic.

Furthermore, a more dynamic data extraction scheme that
can capture different temporal dynamics depending on player
type may give an even better performance. Individual models
for player archetypes will also give a better understanding
of the predictions allowing for differentiated re-engagement
strategies which will keep players, both old and new, passion-
ate or absent, interested the game.

Lastly, for our future tests, we plan on expanding our suite
of datasets by including all available data used in other articles
such as [16].
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