
ToonToy: a node-based NPR solution for
UnrealEngine4

Emanuele Salvucci
Revolution Software Ltd.
York, United Kingdom

emanueles@revolution.co.uk

Abstract—We introduce “ToonToy” as a solution to the current
lack of flexible and programmable non-photorealistic rendering
solutions in modern game engines. The present paper briefly
analyses stylistic rendering in games and introduces the problem
of creating an “NPR-engine” rather than a single algorithm
tuned to produce a single style. Whilst ToonToy undergoes
continuous development, we describe general principles and some
of the algorithms currently employed along with their technical
implementation. We finally present results from commercial
games currently in development as well as technical demos.

Index Terms—NPR, games, image processing, real-time,
Canny, XDoG, UnrealEngine

I. INTRODUCTION

Creating photo-realistic visuals in recent years has
required game engines to implement the latest rendering
technologies and incorporate ongoing research efforts.
Nowadays, photorealistic real-time rendering is provided
off-the-shelf by modern game engines. Recent experiments
in cross-media productions [1] demonstrate how real-time
rendering with these game engines could be used in place of
traditional off-line rendering in the near future. Conversely,
the development of non-photorealistic-rendering features is
generally left with third-parties, if available at all on the
market. Interestingly, a study [2] claims that there is not
a lack of interest in stylistic games from the consumers,
rather, there appears to be a technological “default bias”
towards photo-realistic rendering. Whilst asserting that it is
presently easier to develop a photo-realistic game than a
stylistic one would make little sense in many aspects, we may
broadly agree with Jarvis [2] and add that “3D rendering” was
conceived, and still strives, to achieve synthetic photo-realism.
Many game developers instead base their distinctiveness also
on stylized graphics and rendering, often achieved through
additional manual work such as hand-crafted textures, careful
lighting, stylized character modeling and custom shaders.

II. MOTIVATION

ToonToy (“TT” hereafter) was initially conceived to obtain
stylized visuals for “Beyond a Steel Sky”, the sequel to
the 1994 game “Beneath a Steel Sky”. The global approach
was to avoid additional artist intervention on a per-asset
basis and hence TT was developed as a fully post-process

solution operating exclusively on the G-buffers [3] provided
in modern deferred rendering [4] pipelines. Also, the presented
work shares some general considerations and motivations with
“MNPR” [5], where a framework for stylistic rendering is
described to be generic enough to incorporate different styles.

III. CONCEPT AND PIPELINE

TT is a complex screen-space post-process shading network
created entirely within UnrealEngine’s (“UE” hereafter) built-
in node-based Material Editor (Fig.1). The fundamental con-
cept behind TT is to define a rendering pipeline that simulates
digital 2D drawing workflows based on three main stages:
inking, coloring and compositing. The inking stage comprises
four line rendering algorithms: a depth-test algorithm, a normal
threshold algorithm and real-time implementations of Canny
[6] and XDoG [7]. The Canny implementation also provides
the ability to use Sobel [8] and Prewitt [9] kernels. Within
the inking stage, hatching, cross-hatching and a custom bent-
hatching algorithm are also included. In addition to using
“hatching textures” inspired by Praun et al. [10], TT also
implements generated lines that provide the ability to rotate,
scale and vary line density, according to scene lighting. The
coloring stage includes a cutout1 algorithm using 1D LUT2

textures, a multi-sample, displaced cutout and a cross-hatched
cutout. All cutout algorithms can affect color textures or scene
lighting selectively. Finally, the compositing stage allows for
previous stages to be composited and blended with full-scene
buffers provided by UE. TT also provides separate parameters
for environment, characters, sky, fluids and foliage by indexing
the stencil buffer. Moreover, a global “depth gradient” is used
throughout all stages of the pipeline in order to modulate
parameters based on the actual distance from the camera.
Finally, it should be noted how UE’s peculiar shader-
development environment, allowed us to integrate several
specialized algorithms as mere contributions to each stage in
the pipeline, as each algorithm can be selectively included or
excluded by means of “switches”. When a feature is switched
on or off, UE automatically re-compiles the whole network
into a new HLSL shader so that only a given set of features
are evaluated to create a specific style, rather than the entire
set.

1The “cutout” term is used here to identify a cel-shading effect.
2Look-Up Table.

978-1-7281-1884-0/19/$31.00 ©2019 IEEE



Fig. 1. ToonToy node network in UnrealEngine4. Many of the depicted nodes are functions containing hierarchically nested nodes.

IV. CANNY IMPLEMENTATION

The Canny edge detection algorithm has been used for
decades in several fields of computer graphics, including NPR.
Our implementation of the Canny algorithm was initially
following the canonical real-time ones [11] [12], i.e. using
multiple passes for non-maximal suppression although it was
straightforward to implement it as a single pass and compare
performance. In our single-pass implementation, forward and
backward gradients are fully computed for each pixel instead
of being looked up as in the multi-pass version. Table I shows

TABLE I
PERFORMANCE OF MULTI-PASS AND SINGLE-PASS CANNY AT 1920X1080

ON GEFORCE GTX 960

GPU Time (ms)

Multi-pass 0.43

Single-pass 0.42

the two implementations in UE are substantially equivalent on
modern entry-level GPUs in terms of performance.
Unlike 2D applications, parameters for the Canny operator
must be adjusted to compensate for high variations in spatial
density, and hence frequency, of the input. This is especially
noticeable when using the world normals buffer as the input
to the Canny operator, as texels are filtered and density varies
according to depth. As shown in Fig.2, we use a depth gradient
to drive and adjust Canny parameters in order to keep rendered
details as homogeneous as possible in most cases.

V. ARTISTIC CONSIDERATIONS

As depicted in Fig.3, some settings of the Canny operator
produce line rendering that is reminiscent of the work of
renowned artist Jean Giraud, aka “Moebius”, where lines
appear detailed and thin and play a major role in defining
the overall look.

Fig.4 shows how the XDoG contribution instead may be
associated with anglo-saxon comic book styles, with black and
white lines, large inked areas and overall providing a harsh
high contrast, reminiscent of the seminal work produced by
renowned comic book artist Dave Gibbons.

Fig. 2. (Left) Loss of details within the red circle due to magnified normal
map texels. (Right) Canny parameters are offset-ed by the depth gradient to
recover details.

Fig. 3. (Top) Original rendering. (Bottom) ToonToy style inspired by Moebius
applied.

Fig.5 also shows how tuning of XDoG parameters can also
produce very different results.



Fig. 4. (Top) Original rendering. (Bottom) ToonToy rendering employing
XDoG as a contribution to the inking stage. Assets from “Infinty Blade”
[13], courtesy of Epic Games.

Fig. 5. XDoG early tests produced with ToonToy showing different rendering
styles in the inking stage only.

VI. RESULTS

We present additional results from “Beyond a Steel Sky”
(Fig.6,7), currently in production, and from the tech demo
“Paragon Tribute” (Fig.8), a 150-seconds animation produced
with TT and UE using “Paragon” assets [14] by Epic Games,
demonstrating TT cross-media capabilities with any kind of
game assets without additional preparation work.

VII. CONCLUSIONS

TT presently comprises more than 500 parameters control-
ling all aspects of the rendering pipeline. It is HDR compliant
and provides artists with an in-game interface to build-up their
styles library, change styles on-the-fly and associate standard
UE post-processing parameters with the current TT style.

Fig. 6. Screenshot from “Beyond a Steel Sky”. (Top) Standard rendering.
(Bottom) ToonToy style applied.

Fig. 7. Screenshot from “Beyond a Steel Sky”. (Top) ToonToy style applied.
(Bottom) Inking stage only.



Fig. 8. Screenshots from “Paragon Tribute’. (Top) Original UnrealEngine4
rendering. (Others) Different ToonToy styles applied without additional ex-
ternal compositing. Assets from “Paragon” [14], courtesy of Epic Games.

As any content can be turned into a stylized rendering
without additional manual work and in real-time, new cross-
media productions can be explored, including production of
cartoons and comic books straight from games assets using
the game engine as a renderer.

ACKNOWLEDGMENTS

The author wishes to thank the following people and orga-
nizations:

• Charles Cecil: as the principal supporter of the present
research.

• Sucha Singh: for creating the ToonToy style at the heart
of “Beyond a Steel Sky” and art assets in Fig.2,4,5.

• Dave Gibbons: for precious suggestions and for being a
source of inspiration.

• The whole team at Revolution Software.
• Epic Games for releasing such great content [13] [14] to

the developers community for free.

REFERENCES

[1] “The human race,” The Mill, Epic Games, 2017, accessed: 2019-02-09.
[Online]. Available: http://www.themill.com/portfolio/3516/the-human-
race-

[2] N. Jarvis, “Photorealism versus Non-Photorealism: Art styles in com-
puter games and the default bias,” Master’s thesis, University of Hud-
dersfield, 2013.

[3] T. Saito and T. Takahashi, “Comprehensible rendering of 3-d
shapes,” in Proceedings of the 17th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’90. New
York, NY, USA: ACM, 1990, pp. 197–206. [Online]. Available:
http://doi.acm.org/10.1145/97879.97901

[4] M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt, “The
triangle processor and normal vector shader: a vlsi system for high
performance graphics,” in Acm siggraph computer graphics, vol. 22,
no. 4. ACM, 1988, pp. 21–30.

[5] S. E. Montesdeoca, H. S. Seah, A. Semmo, P. Bénard, R. Vergne, J. Thol-
lot, and D. Benvenuti, “Mnpr: A framework for real-time expressive
non-photorealistic rendering of 3d computer graphics,” in Expressive
18: The Joint Symposium on Computational Aesthetics and Sketch
Based Interfaces and Modeling and Non-Photorealistic Animation and
Rendering, ser. NPAR ’18. New York, NY, USA: ACM, 2018, pp.
9:1–9:11.

[6] J. Canny, “A computational approach to edge detection,” in Readings in
Computer Vision. Elsevier, 1987, pp. 184–203.

[7] H. Winnemöller, “Xdog: advanced image stylization with ex-
tended difference-of-gaussians,” in Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Non-Photorealistic Animation and
Rendering. ACM, 2011, pp. 147–156.

[8] I. Sobel, “An isotropic 3× 3 image gradient operator,” Machine vision
for three-dimensional scenes, pp. 376–379, 1990.

[9] J. M. Prewitt, “Object enhancement and extraction,” Picture processing
and Psychopictorics, vol. 10, no. 1, pp. 15–19, 1970.

[10] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein, “Real-time hatching,”
in Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. ACM, 2001, p. 581.

[11] J. Fung, “Computer vision on the gpu,” GPU Gems, vol. 2, no. 649-666,
p. 34, 2005.

[12] Y. Roodt, W. Visser, and W. A. Clarke, “Image processing on the gpu:
Implementing the canny edge detection algorithm,” 2007.

[13] “Infinity blade assets,” Epic Games, 2015,
accessed: 2019-02-09. [Online]. Available:
https://www.unrealengine.com/marketplace/assets?q=infinity+blade

[14] “Paragon assets,” Epic Games, 2018, accessed: 2019-05-10.
[Online]. Available: https://www.unrealengine.com/marketplace/en-
US/assets?keywords=paragon


