
Automatic Generation of Game Content using a
Graph-based Wave Function Collapse Algorithm

Hwanhee Kim
NCsoft

Seoul, Korea
greentec@ncsoft.com

Seongtaek Lee
NCsoft

Seoul, Korea
caracara@ncsoft.com

Hyundong Lee
NCsoft

Seoul, Korea
mansoul@ncsoft.com

Teasung Hahn
NCsoft

Seoul, Korea
spinel@ncsoft.com

Shinjin Kang
Hongik University
Sejong, Korea

directx@hongik.ac.kr

Abstract—This paper describes graph-based Wave Function
Collapse algorithm for procedural content generation. The goal
of this system is to enable a game designer to procedurally
create key content elements in the game level through simple
association rule input. To do this, we propose a graph-based
data structure that can be easily integrated with a navigation
mesh data structure in a three-dimensional world. With our
system, if the user inputs the minimum association rule, it is
possible to effectively perform procedural content generation
in the three-dimensional world. The experimental results show
that the Wave Function Collapse algorithm, which is a texture
synthesis algorithm, can be extended to a non-grid shape with
high controllability and scalability.

Index Terms—Wave Function Collapse (WFC), Procedural
Content Generation (PCG)

I. INTRODUCTION

Procedural content generation (PCG) is a general term for
systems that take in certain design patterns and output new as-
sets from these patterns. PCG approaches include evolutionary
searches, rule-based systems, and the instantiation of content
from probability tables [1] [2]. Dahlskog et al. [3] proposed an
evolutionary computation method for Super Mario Bros. using
vertical slices of levels for the evolutionary computation. Alter-
natively, Snodgrass et al. [4] described a hierarchical method
for procedurally generating maps using Markov chains. Their
system takes as input a collection of human-authored two-
dimensional (2D) maps and splits them into high-level tiles
that capture large structures. Markov chains are then learned
from those maps to capture and generate the structure of the
level. Jain et al. [5] used autoencoders for game content gener-
ation, recognition, and repair, and described proof-of-concept
implementations of autoencoders for these tasks for Super
Mario Bros. levels. They train autoencoders to reproduce levels
from the original Super Mario Bros. game and then use these
networks to discriminate the generated levels from the original
levels and to generate new levels via transformations from
noise. Summerville et al. [6] presented a machine-learning
technique to train generators on Super Mario Bros. videos,
generating levels based on latent play styles learned from the
videos. They compared the generated levels to the original

This work was supported by a National Research Foundation of Ko-
rea (NRF) grant funded by the Korea government (MSIT) (No. NRF-
2019R1A2C1002525).

levels and levels from a generator trained using simulated
players. Shin et al. [7] created a system that uses PixelRNN
to create a game level with play intent and a level editing tool
that allows the user to edit the results interactively.

In computer graphics, texture synthesis is related to the
problem of generating a large output image with a texture
resembling that of a smaller input image. In many texture
synthesis approaches, the input and output images are charac-
terized in terms of the local patterns they contain, with these
patterns typically consisting of sub-images only a few pixels
in width. This approach has the advantage of offering better
control because it can generate new and complex patterns with
pattern sets that satisfy the small adjacency requirement.

Where Wave Function Collapse (WFC) departs from texture
synthesis is a key aspect to enabling surprising new appli-
cations in game design. Karth et al. [8] demonstrated how
WFC is a universally usable constraint solver and introduced
the re-implementation of 2D bitmap WFC with answer set
programming. In addition, they defined the adjacency relation
in the existing 2D bitmap WFC as a positive adjacency relation
and introduced the prohibited adjacency relation [9]. The WFC
intuitively has an advantage in that the user can instinctively
reflect the intention of the game designer in the PCG part by
designing the tile and defining the linkage rules. Various indie
games and developers have created game levels using WFC
algorithms.1 These applications demonstrate WFCs excellent
content control ability.

In this paper, we propose a graph-based WFC algorithm by
extending existing grid-based WFC rules, which were limited
to 2D grid-based game content creation, to the graph world.
Our results show that the proposed WFC algorithm can be
applied to the Constraint Satisfaction Problem (CSP) and 3D
worlds efficiently while preserving the association rule of
game design.

II. GRAPH-BASED WFC ALGORITHM

The WFC is an algorithm released by the indie game
developer Maxim Gumin through the Github Repository.2

WFC divides an input pixel-based image or tile-based level

1For example, Caves of Qud, http://www.cavesofqud.com/,
https://marian42.itch.io/wfc,
and https://twitter.com/greentecq/status/1025348928634408960.

2https://github.com/mxgmn/WaveFunctionCollapse
978-1-7281-1884-0/19/$31.00 ©2019 IEEE

Fig. 1. Overview of the WFC algorithm process

into small chunks (1 × 1, 2 × 2 or larger) and rearranges
them to create new levels. The newly generated level consists
of overlapped or non-overlapped chunks. Figure 1 shows an
overview of the WFC algorithm process. In this paper, we
aim to extend the grid-based WFC algorithm to a graph-based
type for application to unstructured data, such as a navigation
mesh. The state space of the previous WFC is a regular grid,
and each node constituting the grid has an equal number of
neighbors. In contrast, the state space of a graph-based WFC
has an unlimited and variable number of neighbors. Hence,
we modified the propagation, compatibility, and backtracking
processes in the original WFC algorithm. Figure 2 shows
the main loop of the original WFC and graph-based WFC.
The gray box highlights the difference between the two. For
comprehensive details of the WFC algorithm, we refer the
reader to [8].

Fig. 2. Main loop of the original WFC (left) and graph-based WFC (right)

A. Handling input data
Both WFC and graph-based WFC receive input data and

produce output. The input can be in the form of an image or
text. It is assumed that the chunks attached to each other in
the image are connected. The non-redundant set of chunks is

called the tile, and it becomes the default unit of placement for
the WFC. When the input is in text form, we need to define tile
information in the same format as a JSON file. Graph-based
WFC uses only text-type input. This is because a typical graph
structure has a link that cannot specify a direction, unlike an
image.

B. Graph and grid structure
A grid is a graph in which the number of neighbors of

all nodes are the same. In other words, a graph is superset
of a grid. In the regular rectangular grid, Sudoku game grid,
and Voronoi non-grid3 shown in Figure 3, the neighbors for
an arbitrary cell are visualized. The number of neighbors of
a regular rectangular grid is constant at four. The number
of the Sudoku game grid’s neighbors is fixed to 20, which
includes 3 × 3 small grids within each cell, horizontal line,
and vertical line. In contrast, the number of Voronoi non-grid
neighbors is unlimited and variable. All of the above structures
are applicable to graph-based WFC.

Fig. 3. Neighbors for arbitrary cells from a regular rectangular grid, Sudoku
game grid, and Voronoi non-grid. The neighbors of the Sudoku game grid are
determined by the game rules, and the neighbors of the regular rectangular
grid and the Voronoi non-grid are determined by the adjacency of the edges.
Yellow = neighbor cell.

C. Adjacency rule assignment
Figure 4 shows the graph-based adjacency rules used here

and the corresponding WFC application results. The target

3A non-grid is the opposite of a grid. The number of neighbors of all nodes
does not need to be equal.

map uses an unstructured lattice based on a Voronoi diagram
instead of existing grid-type tiles. As described above, the
algorithm is executed with the neighbor relation rule referring
only to the connection relationships instead of the direction.
As shown in Figure 4, node A can be connected to nodes A,
B, and C; nodes B and C can only be connected to node A.
The output of the graph-based WFC can be obtained such that
nodes B and C are arranged in an area surrounded by node A.

Fig. 4. Adjacency rules of the graph-based WFC algorithm according to
arbitrary connection relationships and the corresponding output results

D. Modification of the Propagator and Compatible variables

To implement graph-based WFC, we modified the Prop-
agator and Compatible variables of the original WFC. The
Propagator variable is a 3D array in the original WFC. Let T
be number of all tiles, D be number of possible directions, and
V be number of connectable tiles (this is a variable number).
Then, the size of Propagator P is the product of the three
terms: P = TDV . In contrast, in graph-based WFC, we
cannot take into account the direction, so P can be described
as P = TV . Likewise, the Compatible C variable refers to
the number of tiles that can be tied to a certain tile at a
specific grid position, expressed as a 3D array of the number
of all lattices N , T , and D in the existing WFC. Hence,
the size of Compatible is the product of the three terms:
C = NTD. It hence becomes a 2D array of N products.
In graph-based WFC, it becomes T , because direction is not
specified. Therefore, we can calculate the computation cost of
C as C = NT .

E. Backtracking

In the WFC algorithm, the structure for iterating Observe()
and Propagate() is the same until the full output is obtained. In
addition, there is a Backtrack() function to deal with conflict
when the value of Compatible is equal or less than zero on
any cell—this means there is no neighboring cell that can be
attached. However, in graph-based WFC, there is no direction
check, so a connection that does not exist in the propagator
can occur on the output, unlike in original WFC. We call this
the “negative” case. Because this negative case does not fit
the game designer’s intent, we need to deal with this conflict.
We can check whether the neighborhood of each cell whose
value is set is within the range of the Propagator variable. If
not, there is a “Propagator Conflict” as Figure 2 shows. In
this case, we call the Backtrack() function. This function goes
back to the point before the conflict occurs and runs the search
again.

III. EXPERIMENT

A. Sudoku experiment

Sudoku is a number puzzle that must be filled with numbers
from 1 to 9 in a 9 × 9 blank space. The criteria for filling in
the numbers are that only one of the numbers 1 through 9 may
be filled in for the vertical, horizontal, and small 3 × 3 grids
without overlapping. There are many ways to solve Sudoku,
and CSP is one popular method.4 Figure 3 shows that each
Sudoku cell has 20 neighbors, so this is a grid. However, we do
not have to specify direction for these 1 to 9 tiles, so a graph-
based WFC can be used to solve this problem.5 Figure 5 shows
how a Sudoku puzzle is solved on graph-based WFC. The
leftmost column is a predefined value constraint, and graph-
based WFC can solve the problem even with constraints. The
unresolved values in the middle cells show the average color
value of their possible outputs.

Fig. 5. Sudoku experiment. (Middle) Initial state (with manual constraints).
(Right) Output.

B. Four-color theorem experiment

To verify the implemented non-grid WFC, we checked
whether it could solve the four-color problem, which is used as
a basic example in the CSP. The four-color problem involves
dividing the plane into finite parts, then painting the parts
that are in contact with each other with a different color.
Four colors are sufficient to do this. In this problem, when
a plane is divided into finite parts, each part has a non-grid
structure in which the number of neighbors in each case is not
constant. Therefore, this problem is suitable for verifying the
basic performance of non-grid WFC in this paper. We want
to ensure that we can set up four adjacency conditions and
create a batch satisfying them. Figure 6 shows the results of the
creation. In this experiment, we show that the system proposed
in this paper does not need any additional constraints to solve
the four-color problem and can solve the problem definition
with the minimum definition, that is, with only the connections
of each color tile.

C. PCG experiment with navigation mesh

Experiments were conducted to verify whether the graph-
based WFC works properly on a 3D prototype game level. The
navigation mesh was created using Blender. We applied an
open-source pathfinding algorithm6 to the level for extracting

4For example, see http://norvig.com/sudoku.html
and https://gist.github.com/ksurya/3940679.

5https://twitter.com/greentecq/status/1037193248756957184
6https://github.com/donmccurdy/three-pathfinding

Fig. 6. Four-color problem-solving experiment. Node count = 47.

reachable edges between nodes. Figure 7 shows the results
generated by arranging the nodes with the graph-based WFC
algorithm. Four nodes—a base, a resource, a NPC cluster, or
an empty space—can function as an abstract symbol of the
games content.

Fig. 7. PCG node placement on a 3D navigation mesh. Node count = 107.

Fig. 8. Various results of changing the Stationary variable

Variations of the level can be generated according to the
intentions of the game design. Users can assign a value
constraint similar to Sudoku solving to a specific node so that
a specific tile is predetermined or prohibited. Users can also
increase or decrease the probability of creating a particular
node by adjusting the Stationary variable. Figure 7 shows the
result of setting the Stationary variable of each tile—gray, red,
yellow, and blue–to [1,1,1,1]. The Stationary variable has a
direct effect on the probability that each tile will be selected.
For example, if the Stationary variable is [2,1,1,1], gray tiles

are selected twice as often as red, yellow, and blue tiles under
the same conditions.

Because of the simple connection rules, the search step
increased linearly to O(n) and the backtracking count was
constant O(1) when the number of nodes increased. However,
we have experienced explosive increase in computation time
when using complex connection rules and applying more value
constraints and ratio constraints.

IV. CONCLUSION

In this paper, we showed that the WFC algorithm, which is
limited to an existing grid-based system, can be extended to
a graph-based system. Our methodology can help to facilitate
the use of PCG in CSP and graph space by taking advantage
of the excellent content control offered by WFC. However,
graph-based WFC in CSP has a drawback in that it can
only solve problems irrespective of the order of the solution.
To compensate for this, we have to make more use of the
search to solve the important order of the solution (cf. the
river crossing puzzle7). In addition, optimization is necessary
because the calculation time is longer because the number
of constraints increases in a general graph structure. In the
future, we intend to apply this PCG generation technique to
other content besides games, such as music and storytelling.

REFERENCES

[1] Hendrikx, M., Meijer, S., Velden, J. V. D., and Iosup, A. (2013).
Procedural content generation for games: A survey. ACM Transactions
on Multimedia Computing, Communications, and Applications 9(1):1.

[2] Togelius, J., Yannakakis, G., Stanley, K., and Browne, C. (2011).
Search-based procedural content generation: A taxonomy and survey.
IEEE Transactions on Computational Intelligence and AI in Games
3(3):172186.

[3] Dahlskog, S., and Togelius, J. (2013). Patterns as objectives for level
generation. In Proceedings of the Second Workshop on Design Patterns
in Games, ACM.

[4] Snodgrass, S., and Ontanon, S. (2014). A hierarchical approach to
generating maps using Markov chains. In Proceedings of the Tenth
Artificial Intelligence and Interactive Digital Entertainment Conference.

[5] Jain, R., Isaksen, A., Holmgrd, C., and Togelius, J. (2016). Autoencoders
for level generation, repair, and recognition. In Proceedings of the ICCC
Workshop on Computational Creativity and Games.

[6] Summerville, A., Guzdial, M., Mateas, M., and Riedl, M. O. (2016).
Learning player tailored content from observation: Platformer level gen-
eration from video traces using LSTMs. In Proceedings of the Twelfth
Artificial Intelligence and Interactive Digital Entertainment Conference.

[7] Shin, S. B., “Game Level Generation Using Neural Networks,” Gama-
sutra. https://www.gamasutra.com/blogs/SeungbackShin/20180227/
315017/Game Level Generation Using Neural Networks.php

[8] Karth, I., and Smith, A. M. (2017). WaveFunctionCollapse is constraint
solving in the wild. In Proceedings of the 12th International Conference
on the Foundations of Digital Games (p. 68). ACM.

[9] Karth, I., and Smith, A. M. (2018). Addressing the fundamen-
tal tension of PCGML with discriminative learning. arXiv preprint
arXiv:1809.04432.

7https://en.wikipedia.org/wiki/River crossing puzzle

