Action Spaces in Deep Reinforcement Learning
to Mimic Human Input Devices

Marco Pleines*, Frank Zimmer!, Vincent-Pierre Bergesi
*Technische Universitit Dortmund, Germany,
marco.pleines @tu-dortmund.de
TLaboratory for Computational Intelligence and Visualization
Rhine-Waal University of Applied Sciences, Kamp-Lintfort, Germany
iUnity Technologies, San Francisco, California, USA

Abstract—Enabling agents to generally play video games
requires to implement a common action space that mimics
human input devices like a gamepad. Such action spaces have
to support concurrent discrete and continuous actions. To solve
this problem, this work investigates three approaches to examine
the application of concurrent discrete and continuous actions in
Deep Reinforcement Learning (DRL). One approach implements
a threshold to discretize a continuous action, while another one
divides a continuous action into multiple discrete actions. The
third approach creates a multiagent to combine both action kinds.
These approaches are benchmarked by two novel environments.
In the first environment (Shooting Birds) the goal of the agent is
to accurately shoot birds by controlling a cross-hair. The second
environment is a simplification of the game Beastly Rivals On-
slaught, where the agent is in charge of its controlled character’s
survival. Throughout multiple experiments, the bucket approach
is reccommended, because it is trained faster than the multiagent
and is more stable than the threshold approach. Due to the
contributions of this paper, consecutive work can start training
agents using visual observations.

I. INTRODUCTION

Human players generally interact with video games by
utilizing input devices like a computer mouse, a keyboard or
a gamepad, while observing the screen. Based on the screen’s
output, decisions, on which buttons to press or locomotion
tasks (i.e. moving the mouse or a thumbstick) to carry out,
are sequentially to be made at high frequencies. In contrast
to humans, agents play many environments using actions, that
are not usually mapped to the aforementioned devices, but
are easier to train for achieving more reasonable behaviors to
solve their environment. For example in DotA 2 (Defense of
the Ancients 2), the non-profit company OpenAl developed
actions, which select positions in the game world by using
a limited grid [1]. This way, the players’ infinite choices of
positions (by moving the mouse) are reduced and therefore
simplified. Another action, which can also be seen in real-
time strategy (RTS) games like StarCraft, is to choose game
entities as targets. This is normally done upon a mouse click
by a human player. Instead, an agent gets a direct choice
of targets, which omits the necessity of moving the mouse
cursor above the desired entity before clicking. Overall, these
kinds of simplifications fit to the domain of their respective
environment but most likely do not fit to other ones. To

978-1-7281-1884-0/19/$31.00 (©2019 IEEE

overcome this issue and henceforth to approach agents playing
video games more generally, agents shall utilize common
action spaces. In the context of video games, these action
spaces shall mimic human input devices.

Two peculiarities have to be considered for developing these
spaces. Actions shall be carried out concurrently to allow rich
behaviors. For example, for some first-person-shooter (FPS)
video games, an eligible strategy is to run, strafe, and shoot
concurrently [2]. Moreover, if a robot arm had to rotate its
joints one after the other, it would take much more time to
accomplish its job (e.g. picking up and moving items). Such
essential and rich behaviors are not possible when each action
is carried out sequentially. This context can be expanded to
concurrent action spaces comprising discrete and continuous
actions. Mimicking human input devices cannot be done by
simply using a discrete or continuous action space alone. In
FPS video games, players move the mouse or the thumbstick
of a gamepad to change their view. This kind of action is
continuous as it allows infinite directions and velocities as
input. While moving these devices, players also need to press
buttons concurrently to trigger an event such as shooting a
gun, which is a discrete action.

II. CONTRIBUTIONS

To make use of concurrent discrete and continuous action
spaces, this paper examines three approaches, which are ap-
plied in the context of DRL (other contexts are applicable as
well):

A) Threshold Approach: discretizing continuous actions
using a threshold

B) Bucket Approach: breaking down continuous actions
into multiple discrete actions

C) Multiagent Approach: combining two cooperative
agents to comprise both action spaces

In addition, a general elaboration on four possibilities on how
to realize the agents’ locomotion is illustrated:

1) Selecting velocities for the horizontal and vertical axis

2) Selecting a torque to rotate the agent and a velocity to
move it forward

3) Determining the agent’s direction by a position on a grid,
while selecting a velocity to move forward



4) The agent selects an angle which derives a direction from
a unit circle, while selecting a velocity to move forward

The mentioned approaches are benchmarked using the
herein contributed new environments Shootings Birds (SB) and
Beastly Rivals Onslaught (BRO), which are based on Unity’s
ML-Agents toolkit [3]. Because the focus is set on action
spaces, the training time of the environments shall not exceed
dozens of hours (see section 5). Hence, it is not intended to use
visual observations nor to face an environment’s complexity
as seen in DotA. After solving the issue of concurrent discrete
and continuous actions, future work can start on developing
agents that play multiple games generally using a common
observation space (i.e. visual observation of the screen).

This paper proceeds as follows: in section 2, related work
is portrayed focusing on research concerning action spaces as
well as the action space composition of DotA. Section 3 details
the aforementioned approaches and locomotion options. After
that, the contributed environments are showcased comprising
their dynamics, observation spaces, action spaces and reward
signals. Section 5 introduces the run experiments and provides
the results, which are put into context by the discussion in
section 6. The final section draws conclusions and provides
an outlook to future work.

III. RELATED WORK

Policy gradient and actor-critic methods, like DDPG [4],
A3C [5] or PPO [6], already support concurrent continuous
actions. This can be done by taking a sample from the
Gaussian distribution for each output of the policy’s neural
network. For discrete action spaces, Tavakoli et al. (2017)
and Harmer et al. (2018) contributed solutions for developing
concurrent discrete action spaces. Latter create an A3C policy
network whose outputs are treated as a set of Bernoulli
random variables [2]. Actions are selected from this policy
by sampling each output individually. A different solution
to support concurrent discrete actions is the idea of action
branching [7]. Instead of using one output layer for all actions,
the neural network is branched off into multiple sub-layers
(i.e. branches). One action is sampled from each branch. Then,
each action sample is concatenated to form a joint-action tuple.
This functionality has been applied to the DQN algorithm [7].
Action branching has been adapted by Unity’s ML-Agents
toolkit to extend their PPO implementation [3]. Other related
work researched parameterized action spaces, where discrete
actions are accompanied with continuous parameters to allow
more complex actions [8], [9]. Parameters could specify the
force of a kick.

Once the desired action space kinds can be used concur-
rently, the next concern is to define actions fitting to human
input devices. As mentioned in the introduction, OpenAl did
not implement a solution to let an agent mimic a mouse cursor
and a keyboard simultaneously. Instead, they created 170,000
discrete actions (per hero) to cover all actions [1]. Some of
these actions, such as casting an ability, require an explicit
game entity to be targeted (e.g. enemy hero or building). A
human player would have to select the desired ability or attack

Fig. 2: OpenAl Five: Discretized spell cast (left) and move-
ment locations (right) [1]

move and then click on the intended entity. In OpenAl Five
[1], these actions are hard coded. Given the scene in Figure
1, the agent (Sniper) has 6 potential foes to attack. So there
are ultimately 6 attack actions, where each one represents a
different target. Whenever a location on the ground is to be
selected (Figure 2), the continuous action space is discretized
to a limited grid. For selecting a position for the agent to
move to, the grid is limited to the agent’s (Viper) position. If
a location is to be selected for an ability, the grid is originated
at game entities.

IV. APPROACHES AND LOCOMOTION OPTIONS

The previously portrayed related works provide solutions
to concurrent action spaces, but not to action spaces mixing
discrete and continuous actions. In this section, the details of
the approaches on enabling concurrent discrete and continuous
actions are elaborated in the context of DRL. Besides that,
approaches concerning the locomotion of agents are examined,
where eventually one out of four locomotion implementations
is selected. This work uses the PPO implementation of the
ML-Agents toolkit [3]. The underlying architecture is similar
to the one from Schulman et al. (2017).



(4 ~
6\rr 6\rr
7/ v/

Fig. 3: The threshold agent uses a range, specified by the
threshold, to decide on whether to shoot or not to shoot (right),
while simultaneously selecting a movement speed (left).

Lo
L U
Fig. 4: The bucket agent draws a movement speed value from a

limited amount of options (left), while simultaneously deciding
on the discrete actions to shoot or not to shoot (right).

A. Threshold Approach

This approach considers all actions to be continuous. Con-
tinuous actions, such as movement, are represented by a value
in the range [—1, 1] in the ML-Agents toolkit. These actions
are carried out without further processing. In this approach,
actions, which are supposed to be discrete, are derived from
a continuous one by applying a threshold. The threshold can
be applied to the action’s absolute value:

< threshold —  Shoot

|action value| .
> threshold — Do nothing

For example, if a threshold of 0.1 is applied, every value in
the range (—0.1, 0.1) will trigger the actual discrete action.
The threshold can also be applied to the raw action without
taking its absolute value first. This means that the discrete
action is triggered if an action value is selected in the range
[—1,0). Experiments will show whether it is beneficial to take
the absolute value or not. Figure 3 illustrates a threshold agent.

B. Bucket Approach

The bucket approach can be interpreted as the opposite of
the threshold approach. This time, actions which are meant
to be continuous are now discretized by a set of discrete
actions within a certain range, referred to as “bucket” from
now on. This bucket also simplifies a continuous action, if its
resolution (number of fine-grained or atomic actions) is not
too high. Due to this simplification, precision can be lost if
not enough atomic actions are available to choose from. But
also increasing the number of actions amplifies the effect of

rr

v d
Fig. 5: Both agents make use of their natural action spaces
where the continuous agent (yellow) chooses a movement

speed (left), while simultaneously the discrete one (orange)
decides whether to shoot or not to shoot (right).

the curse of dimensionality [4]. This increases the complexity
of the to be trained problem, while the agent’s action space
is much harder to explore. Note that in this approach’s action
setup, regular discrete actions remain the same. Figure 4 shows
an example of a bucket agent.

Buckets can be based on Tavakoli et al.’s (2017) action
branching architecture, which is implemented in Unity’s ML-
Agents toolkit. One action branch shall represent one continu-
ous action. Further branches can implement classical discrete
actions. Also, the problem of incompatible joint-action tuples
are avoided this way, because only one action per branch
is selected to create the tuple. For example, shooting and
reloading can be part of the same branch and therefore do
not conflict.

A continuous action is bucketed by a certain number of
sub-actions in a certain range. In the case of this paper, the
individual actions are selected from the range [—1, 1]. The
policy tells the agent which sub-action to take from the bucket.

C. Multiagent Approach

Assembling a multiagent, using agents that only use one of
the two available action space types, is the last approach. Each
action space operates as regularly intended without applying
any buckets or thresholds. An example is given by Figure 5,
where one agent decides on the continuous locomotion and
the other one on shooting or not. However, using multiple
agents has a few drawbacks. One deals with a redundant
observation space, because each agent trains its own model,
and in the worst case, both agents process the same amount
of information. Depending on the environment, some informa-
tion can be omitted. Same accounts for the reward function.
The aforementioned continuous agent cannot be punished for
reloading a fully loaded gun. Thus, the agents may vary in
all RL components, which make them hard to compare to the
previously mentioned approaches. As all agents have the same
goals, they all have to receive a shared reward signal to aid
cooperation.

D. Locomotion Options

Four possible locomotion implementations can be consid-
ered for developing the agents. The approach in Figure 6a is
based on two continuous actions. One determines the velocity



move forward

rotate

|

|

L
o
.

(a) The agent’s locomotion is
driven by the velocities on the
horizontal and vertical axis.

(b) The agent rotates left and
right while moving forward at a
certain speed.

Fig. 6
e,
| . | / \
£8 e
—_— I 110°
y
T ™ N

(b) The agent selects an angle
as moving direction and then
moves at a certain speed towards
this direction.

Fig. 7

(a) The agent moves at a certain
speed towards a chosen grid cell.

on the x-axis and the other one on the y-axis. Therefore, the
fastest velocity is accomplished by choosing a magnitude of
1.0 for each axis. As a consequence, the agent is biased to
move diagonally most of the time. Due to this behavior, the
agent is less precise or takes longer to achieve its goal, while
appearing less authentic to observers. Normalizing the velocity
could resolve this bias. Because normalizing a vector returns
a vector of length one, a third action would have to be added
to manipulate the agent’s speed.

Another variant (Figure 6b) uses one continuous action to
rotate the agent and a second one to select a speed to push
the agent forward. Apparently, this is not a solution to the
underlying use case, because a computer mouse is not intended
to be rotated during its usage.

The third option considers the discretization approach,
which was taken by OpenAl for DotA as seen in section
3 and Figure 7a. Following their strategy, the agent selects
a grid cell to determine a position to move to. The grid
cells are represented by at least one discrete action branch.
An additional continuous action is in charge of selecting a
movement speed.

The last approach makes use of one continuous action to
derive a direction from a position on a circle’s circumference.

&

Obstacle Q

Cross-hair ®

(Agent)

- o

o &
Obstacle

EEE:]

Fig. 8: The environment Shooting Birds and its entities

This way, the action determines an angle. A second one
chooses the movement speed of the agent. An exemplary
illustration is given by Figure 7b. This approach is used for
the to be solved environments, because it closely represents
the human usage of a mouse. Also, it does not introduce a
bias like the first locomotion approach.

V. ENVIRONMENTS

Some apparent restrictions have greater impact on how the
environments are going to be designed. The scope of this work
focuses on action spaces including various experiments for the
SB and BRO environments. Training times, which take more
than a dozen hours, are infeasible. This is due to many training
runs, which have to be conducted to tune hyperparameters and
test the implemented environments’ dynamics. Therefore, too
complex environments might demand too much training time,
leading to a higher risk of defective results. For example,
Deepmind’s AlphaStar was trained for two weeks [10]. So
complexity is a high concern and in general, it is advisable to
start out as simple as possible when building RL environments.
Once training succeeds, complexity can be raised. To keep
the to-be-trained problem smaller, images are not used as
observation.

Next to these restrictions, the environments shall ask the
agent to act precisely to analyze the effectiveness of the
introduced approaches. This has to be proven feasible for at
least two use cases, in particular the SB and BRO environment,
which are implemented using Unity’s ML-Agents toolkit [3].

A. Shooting Birds

The Shooting Birds environment (Figure 8) is inspired by
the German game Moorhuhn'. Tn this environment, the agent
steers a cross-hair to shoot birds.

1) Dynamics of the Environment: Birds of three different
sizes are randomly spawned on the left and right side of
the environment. For every vanished bird, a new one is
spawned. Their velocities and flying behaviors are stochas-
tically initialized. The agent’s shooting functioning is limited
by ammunition (8 shots). Therefore, the agent has to manually
reload to be able to shoot again. Birds, which are hidden

Uhttps://www.moorhuhn.de/



Fig. 9: Raycasts to measure distances to perceived birds

behind obstacles (e.g. tree and barn), cannot be hit. At the
beginning of each episode, one out of 7 levels is randomly
loaded. Further, the agent’s ammunition is randomized.

2) Observation Space: To partially observe the environ-
ment, the agent collects 44 observations. The whole observa-
tion space is stacked three times, which includes the current
and the past two sets of observations. 36 out of these 44
values are perceived by using raycasts (Figure 9). Starting from
the center of the cross-hair, the raycasts are sent outwards at
angular steps of 30 degrees. This way, the agent detects birds
and perceives their sizes and distances to them. Distances
to obstacles are sensed as well. If no birds or obstacles are
detected at all, the observed values are described with —1.0
for that particular raycast. The remaining 8 values comprise:

« Remaining ammunition
Gun loaded (true or false)

e Agent’s position (x and y value)

o Agent’s velocity (x and y value)

o Agent’s speed (magnitude of the agent’s velocity)
« Hovered entity (bird, obstacle or unknown)

3) Action Space: Two continuous and two discrete actions
are available to the agent. The agent’s velocity is dependent
on two continuous actions based on the locomotion approach,
which includes a unit circle (Section IV-D). Shooting and
reloading are triggered by the discrete ones. In the case of
the bucket and multiagent approaches, a third discrete action
is added, which does nothing at all. This is necessary for the
agent to decide when not to shoot or not to reload. The agent
makes a decision for every step of the environment.

B. Reward Signals

Accurately shooting down birds as fast as possible is the
agent’s goal. Thus, 6 different rewards are signaled throughout
the environment’s execution. The agent is rewarded for hitting
a bird. However, the size of the bird matters. Big birds
handout +0.25, medium ones +0.75 and small ones +2.0.
Hitting nothing is punished with a negative reward of —0.1.
The other reward signals are related to the ammunition. If
the agent tries to shoot without ammunition, it is punished
by —1.0. Reloading, while the agent’s gun is still loaded,
is punished proportionally to the amount of wasted shots:

Slow Sphere

Cursor (Agent) e
X ’

J

Controlled Character
®

Fig. 10: The simplified BRO environment and its entities

remaining shots/max shots. Therefore, reloading an empty
gun is not punished, while wasting 4 shots is punished by
—0.5.

C. Beastly Rivals Onslaught

This implemented environment is a simplification of the
game BRO?. To avoid the challenge of more complex mul-
tiagent systems, the original game is broken down to just one
player with the goal of surviving as long as possible.

1) Dynamics of the Environment: Figure 10 shows the four
main game entities:

« A mouse cursor, which represents the agent

o A character, which is controlled by the cursor

e A beast, which chases and kills the character once
reached

o A slow sphere, which wanders around and slows down
the beast and the character

Over time, the beast gets more accurate and moves more
quickly, and thus survival is more and more challenging.
Another threat or potential support is the slow sphere. The
character’s and the beast’s velocities are reduced while inside
this sphere. The closer they are to its center, the more the
agent’s and beast’s motion will be slowed down. To survive,
the agent has to send suitable commands to its controlled
character. By clicking on the ground” the agent tells the
character to move to that location. Another command, which
could be implemented as a “double-click” for a human
player, is the blink ability. Once commanded, the character
is teleported instantly to the location of the cursor. The blink
ability is then on cooldown (i.e. unavailable) for 200 steps of
the environment. For visualization purposes, the character is
colored orange while not being able to blink.

BRO has some stochastic elements, which affect the envi-
ronment’s initial state. Random locations are chosen for the
agent, the controlled character and the slow sphere. Addition-
ally, the beast’s rotation is randomized.

2) Observation Space: 21 observations are collected by the
agent to fully observe its environment:

o Blink cooldown

2Video of the game BRO https://youtu.be/OTcDd7a_ROA



« Mouse cursor position

¢ Mouse cursor velocity

o Character position

o Character velocity

« Relative position to the beast

« Beast position

« Beast velocity

« Beast speed (magnitude of the beast’s velocity)

« Beast accuracy growth speed

« Relative position to slow sphere

« Slow sphere velocity

Position and velocity information are two dimensional fea-
tures. Relative positions are related to the character. The whole
observation space is stacked three times.

3) Action Space: Two continuous and two discrete actions
are apparent. The agent’s velocity is dependent on two continu-
ous actions based on the locomotion approach, which includes
a unit circle (Section IV-D). One discrete action triggers the
movement of the character to the “clicked” location com-
manded by the agent. The other one is the character’s blink
ability, which is a teleport to the agent’s position. A third
discrete action is considered for the bucket and multiagent
approaches, because the agent has to be capable of deciding
when not to move or not to blink at all. Every six step, the
agent decides which action to take. In-between these steps the
same action is triggered.

D. Reward Signals

Three kinds of reward signals are sent to the agent. As long
as the character is alive, the agent gets rewarded with 40.01.
Being touched by the beast is punished with —1.0 and the last
reward signal punishes the agent with —0.025 for trying to
use the blink ability during its cooldown time.

VI. EXPERIMENTS AND RESULTS

Seven experiments are conducted to benchmark the selected
approaches on each environment. One experiment is concerned
with the multiagent approach, whereas three different thresh-
olds and three different bucket sizes are used for the other
experiments:

o Thresholds: 0.0, 0.1, 0.5

« Bucket Size: 3, 11, 41

The thresholds 0.1 and 0.5 are applied on the absolute
value of the action’s value. 0.1 is chosen to provide a smaller
range that triggers the discrete action, because the agent
could receive too many punishments during exploration (e.g.
frequently missing birds) and therefore stops using that action
completely. Although a smaller range could be explored too
infrequently. Half of the action value’s range is enabled by the
thresholds 0.0 and 0.5. Using 0.0 makes all negative values
trigger the discrete action, whereas 0.5 utilizes the middle
region of the action value. Concerning the bucket sizes, these
are chosen to answer the question whether a small bucket lacks
in precision or a big bucket is too complex to train. Only
one multiagent experiment is run as reasoned in the previous
section.

Shooting Birds Shooting Birds

140 1.0
120
o e 0.8
2100 z
g o
-4 5 0.6
o 80 3
% <
S 60 o4
g O Thresholds
O 40 —— 0.0
0.2
20 0.1
0.5
0 0.0
0 1000000 2000000 0 1000000 2000000
Steps Steps
BRO BRO
1
20 1750
- 1500 WAJ.VNMA%
&
z 51250
o @
0 <1000
z g
g o 750
E &
3 500
250
0 1000000 2000000 0 0 1000000 2000000
Steps Steps

Fig. 11: Threshold Results

During the next subsections, the results for the run exper-
iments are portrayed and described. For all measured values,
the mean and standard deviation over ten training runs is
shown. Each experiment measures the cumulative mean reward
of episodes. The mean click accuracy is recorded for SB and
the episode length is tracked for BRO. More details on the
conducted runs, such as the hyperparameters, can be found in
this repository>.

A. Threshold Results

For both environments, a threshold of 0.0 outperforms the
other ones in terms of stability and score as seen in Figure
11. In SB, it reaches a cumulative reward of about 114,
while achieving an accuracy of about 97%. The threshold 0.5
behaves similarly, but not as good. A very unstable and much
weaker performance is achieved by threshold 0.1. Concerning
BRO, all thresholds have a similar behavior to the ones from
SB. The best threshold agent converges to a cumulative reward
of about 93, while it survives for about 1560 steps.

B. Bucket Results

The three different bucket resolutions do not provide a
distinctive winner in the BRO environment (Figure 12). All
of them behave stable, while reaching a cumulative reward of
about 104 and an episode length of more than 1700 steps. A
much greater differentiation among the performances of the
buckets can be observed for SB. The best result is achieved
by the bucket using a size of 11. It accomplishes a cumulative

3GitHub Repository https://github.com/MarcoMeter/
Action- Space- Compositions-in-Deep-Reinforcement-Learning



Shooting Birds Shooting Birds

Shooting Birds Shooting Birds

140 1.0 140 1.0
o 120 /ﬂ 0.8 o 120 P el os
8 100 / > 2100 M 9
8 7 €6 & o6
v 80 “he v 80 d “h
> O > [¥]
% < ;f—a, <
S 60 o4 S 60 o4
g o Bucket Sizes g [} Approach
O 40 — 3 O 40 —— Threshold
20 02 11 20 02 Bucket
— 41 —— Multiagent
0 0.0 0 0.0
0 1000000 2000000 0 1000000 2000000 0 1000000 2000000 0 1000000 2000000
Steps Steps Steps Steps
120-BRO BRO 120-BRO BRO
1750 1750 AN
100 v ~/\/\,./\ 100 W W
Y, s 1500 - 1500
g i 5 /
g 80 W 51250 g 80 // | B12s0 ~
] c 9] = c
< ] o< [}
) )
2 60 < 1000 2 60 < 1000
k! $ 750 5 g 750
2 40 3 2 40 a
w w
3 500 3 500
20 20
‘ 2501 | 250
0 0 0 0
0 1000000 2000000 0 1000000 2000000 0 1000000 2000000 0 1000000 2000000
Steps Steps Steps Steps
Fig. 12: Bucket Results Fig. 13: Mean Results of all Approaches
reward of about 136 and an accuracy around 99.8%. The other Threshold 0.0 - - 917
buckets are as accurate, but do not get passed a cumulative
reward of 130. Threshold 0.1 5.9 21
. Threshold 0.5 5.8 22
C. Approach Comparison
SB
Figure 13 shows the mean of the threshold and bucket Bucket 31 >8 22 BRO
experiments as well as the results of the multiagent approach. Bucket 11 A 6 22.7
In BRO, the multiagent achieves a cumulative reward of 105
. s Bucket 41 - 6.9 23.3
and an episode length of about 1750 steps. This is slightly ueke
better than the bucket approach, but comes at a cost of Multiagent 10 26.7
20% more training time (Figure 14). A cumulative reward of i i . . .
0 5 10 15 20 25

about 122 and an accuracy of about 99.7% is scored by the
multiagent in SB. Comparing all approaches, the threshold
approach is by far the most unstable one and is quite apart
concerning its performance. The bucket approach is superior
to the multiagent one in SB, but slightly inferior to the
multiagent in BRO. Figure 14 shows the training durations of
each experiment for both environments. In SB, the mutliagent
requires more than 30% of time to be trained. The other
experiments take about the same amount of time except for
the biggest bucket size, which takes a little more time.

D. Learned Behaviors

The best runs of each approach can be watched in this
video*. For each environment, the best resulted behaviors
are very similar. In SB, it can be observed that the agents
accurately and rapidly shoot down their targets, while not
wasting any shots. Also, they are capable of hitting birds

4Video of the learned behaviors https://youtu.be/Pb14i3srRWc

Hours

Fig. 14: Training duration of each experiment

which are partially obscured. Only the threshold agent looks
less efficient by occasionally skipping denser regions of birds.
Once a side of the environment is cleared, the agent decides
to transition to the other one. In relation to that, the velocity
is usually greater on the x-axis on average.

Concerning BRO, most trained behaviors usually survive
the whole episode (2000 steps). The agent commands very
frequently movement locations to its controlled character,
while its blink ability is nearly never used. During the course
of an episode, the agent moves in big laps. The longer the
episode lasts, the smaller the laps are walked by the agent,
which are usually located at the pitch’s boundaries. Then, the
agent moves the cursor in a triangular shape. The slow sphere
is not exploited by the agent nor harms it.



VII. DISCUSSION

The best performance is delivered by the bucket and the
multiagent approach. High instability is observed for the
threshold one. Due to the much longer training times of
the multiagents, the bucket approach is recommended. This
outcome is due to the less complex nature of discrete actions,
which are easier to explore. However, a trade-off has to be
made in terms of precision and complexity concerning the
number of atomic actions of a bucket (curse of dimensional-
ity). The results of SB show that 11 actions outperform its
competing experiments using 3 and 41 actions. 41 actions
are too complex to achieve the same performance using the
same training time, while only 3 actions lack in precision (i.e.
approaching targets). Concerning the threshold approach, it
can be observed that the thresholds 0.1 and 0.5, which are
applied to the absolute action value, achieve worse results than
the 0.0 threshold. The multiagent approach comes with the
drawbacks of training a redundant model as well as putting
further effort into the design of the observation space and the
reward signals.

Next to the benchmarked approaches, the benchmarks them-
selves can be discussed. SB made the differences among the
approaches apparent, while BRO is too little of a challenge due
to the very similar performances by the bucket and multiagent
approaches. For the agents playing that environment, it is
simply enough to keep constantly clicking and moving in
a triangular shape. The environment needs more dynamics
to demand a more precise agent behavior - for instance the
complete game of BRO. Nearly no impact is contributed by
the agent’s blink ability and the slow sphere. Having to click
on foes, which unpredictably move or blink, is much harder
in comparison to the consistent behavior of the birds in SB.

VIII. CONCLUSION

Throughout this paper, three approaches for enabling con-
current discrete and continuous actions in DRL were exam-
ined. The threshold approach discretizes a continuous action
to achieve the behavior of a discrete one. Multiple discrete
actions replace a continuous one based on the bucket approach.
Lastly, the multiagent combines several agents to support dis-
crete and continuous actions concurrently. These approaches
were challenged by two novel environments, where the agent
is in charge of controlling a mouse cursor to play a video
game. As for the outcome of the conducted experiments, the
bucket approach is the most recommendable, as it achieved
stable training results while not taking as long to train as the
multiagent approach. Also, the multiagent draws more effort
into account for designing appropriate observation spaces and
reward signals. Due to high instability and low performance,
the threshold approach is inferior to the other ones. In conclu-
sion, the underlying contributions establish the first steps of
solving the problem of mimicking human input devices.

A. Future Work

To let agents play video games generally, supplementary
work is necessary. Based on the provided contributions, the

next step is too change the observation space to visual ob-
servations. The action space would be based on the bucket
approach while using the unit circle locomotion implementa-
tion. Once this setup achieves reasonable results, approaches
can be developed to let an agent learn to play more than one
game. As the agents already succeed in both environments,
more complexity can be introduced. For example BRO could
be implemented as complete game, which draws topics of
competitive multiagents into account like opponent sampling
[11]. Also, clicking on unpredictably behaving foes is more
challenging. SB could implement more dynamics of its role-
model, like moving the camera to travel the environment.
Further, procedural content generation could be employed to
replace the hard coded levels. This is beneficial to avoid
overfitting and to measure the generalization capabilities of
the trained agent [12].

REFERENCES

[1] OpenAl, “Openai five,” 2018, available at https://blog.openai.com/
openai-five/ retrieved March 21, 2019.

[2] J. Harmer, L. Gissln, H. Holst, J. Bergdahl, T. Olsson, K. Sj,
and M. Nordin, “Imitation learning with concurrent actions in
3d games,” CoRR, vol. abs/1803.05402, 2018. [Online]. Available:
https://arxiv.org/abs/1803.05402

[3] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mat-
tar, and D. Lange, “Unity: A general platform for intelligent
agents,” 2018, *arXiv preprint arXiv:1809.02627.* https://github.com/
Unity-Technologies/ml-agents.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning,” CoRR, vol. abs/1509.02971, 2015. [Online].
Available: http://arxiv.org/abs/1509.02971

[5] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” CoRR, vol. abs/1602.01783, 2016. [Online].
Available: http://arxiv.org/abs/1602.01783

[6] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017. [Online]. Available: http://arxiv.org/abs/1707.06347

[7]1 A. Tavakoli, F. Pardo, and P. Kormushev, “Action branching architectures
for deep reinforcement learning,” CoRR, vol. abs/1711.08946, 2017.
[Online]. Available: http://arxiv.org/abs/1711.08946

[8] M. J. Hausknecht and P. Stone, “Deep reinforcement learning
in parameterized action space,” CoRR, vol. abs/1511.04143, 2015.
[Online]. Available: http://arxiv.org/abs/1511.04143

[9] J. Xiong, Q. Wang, Z. Yang, P. Sun, L. Han, Y. Zheng, H. Fu,

T. Zhang, J. Liu, and H. Liu, “Parametrized deep q-networks

learning: Reinforcement learning with discrete-continuous hybrid

action space,” CoRR, vol. abs/1810.06394, 2018. [Online]. Available:
http://arxiv.org/abs/1810.06394

O. Vinyals, 1. Babuschkin, J. Chung, M. Mathieu, M. Jader-

berg, W. Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Pow-

ell, T. Ewalds, D. Horgan, M. Kroiss, I. Danihelka, J. Agapiou,

J. Oh, V. Dalibard, D. Choi, L. Sifre, Y. Sulsky, S. Vezhnevets,

J. Molloy, T. Cai, D. Budden, T. Paine, C. Gulcehre, Z. Wang,

T. Pfaff, T. Pohlen, Y. Wu, D. Yogatama, J. Cohen, K. McKin-

ney, O. Smith, T. Schaul, T. Lillicrap, C. Apps, K. Kavukcuoglu,

D. Hassabis, and D. Silver, “Alphastar: Mastering the real-time

strategy game starcraft ii,” 2019, available at https://deepmind.com/

blog/alphastar-mastering-real-time-strategy- game-starcraft-ii/ retrieved

March 7, 2019.

T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch, “Emergent

complexity via multi-agent competition,” CoRR, vol. abs/1710.03748,

2017. [Online]. Available: http://arxiv.org/abs/1710.03748

A. Juliani, A. Khalifa, V. Berges, J. Harper, H. Henry, A. Crespi,

J. Togelius, and D. Lange, “Obstacle tower: A generalization challenge

in vision, control, and planning,” CoRR, vol. abs/1902.01378, 2019.

[Online]. Available: http://arxiv.org/abs/1902.01378

[10]

[11]

[12]



