Autoencoder and Evolutionary Algorithm for Level Generation in
Lode Runner

Sarjak Thakkar, Changxing Cao, Lifan Wang, Tae Jong Choi, Julian Togelius
New York University
New York, USA
{tsarjak, cc5766, Iw2435, tc3045, julian.togelius}@nyu.edu

Abstract—Procedural content generation can be used to
create arbitrarily large amounts of game levels automati-
cally, but traditionally the PCG algorithms needed to be
developed or adapted for each game manually. Procedural
Content Generation via Machine Learning (PCGML) har-
nesses the power of machine learning to semi-automate the
development of PCG solutions, training on existing game
content so as to create new content from the trained models.
One of the machine learning techniques that have been
suggested for this purpose is the autoencoder. However,
very limited work has been done to explore the potential
of autoencoders for PCGML. In this paper, we train au-
toencoders on levels for the platform game Lode Runner,
and use them to generate levels. Compared to previous
work, we use a multi-channel approach to represent content
in full fidelity, and we compare standard and variational
autoencoders. We also evolve the values of the hidden layer
of trained autoencoders in order to find levels with desired
properties.

I. INTRODUCTION

Procedural content generation (PCG) techniques are
used for game content for several reasons, including
introducing variation to the player, enabling particular
game aesthetics, and automating some parts of game
development. Most PCG algorithms need to be devel-
oped or tailored to each game. In contrast, PCGML uses
machine learning to generate content, using models
trained on existing content [1].

One machine learning method that has only been
cursorily investigated for PCGML is the autoencoder,
a type of neural network used for feature compres-
sion. It was recently proposed to use autoencoders
for tasks such as level generation, level repairing, and
level recognition [2]. However, that study really only
scratched the surface. Among other things, the autoen-
coder in that study using a single channel for all types
of tiles, severely limiting the usefulness of the method.

In this paper, we build on the recent research on
using autoencoders for PCG [2]. We propose a multi-
channel encoding for autoencoders to learn the struc-
ture and properties of the levels of Lode Runner.
Concretely, the proposed method uses a five channel
encoding to separately learn the patterns of the bricks,
ladders, ropes, enemies, golds of the levels of Lode

978-1-7281-1884-0/19/$31.00 (©2019 IEEE

Runner. In addition, we hse a multi-population evo-
lutionary algorithm that contains patch-wise crossover
and latent variable mutation operators, which can re-
tain some interesting features of original levels while
inserting less predictable variations. Our experimental
results showed that the proposed method is able to
create diverse levels. Besides, we found out that vari-
ational autoencoders prone to generate more complex
levels than vanilla autoencoders.

II. RELATED WORK

In the past, Summerville et al. used LSTMs on the
string representation of the map for PCG [3]. Snodgrass
et al. suggested learning statistical patterns from exist-
ing levels generated by humans, and use those patterns
for training Markov Chains and for generating new
levels from such Markov Chains [4]. In 2016, Font et al.
suggested using evolutionary methods for generating
levels by using two-phase level encoding [5]. In 2017,
Samuel Alvernaz et al. trained an autoencoder to create
a comparatively low-dimensional representation of the
environment observation, and then use CMA-ES to
train neural network controllers acting on this input
data [6]. The bottom line of all these approaches is that
different representations of the same game combined
with different algorithms achieve varying results.

On the other hand, Lode Runner has a much larger
variety of chunks, and Lode Runner maps rely heavily
on puzzle-like structures and mazes in the level de-
sign [7]. However, our approach of using variational
autoencoder to learn the complex underlying structure
of Lode Runner levels, coupled with an evolutionary
algorithm to increase the playability score of the levels,
generated good results. Notably, we find most of the
raw generated levels from autoencoder as not playable
until the evolution step is carried out. We will show
more details of the technique we used in the following
sections.

III. OUR APPROACH

We selected a game called Lode Runner in order
to evaluate our approach. We used the multi-channel
encoding for the 150 original levels and trained an
autoencoder using that data. The autoencoder is used

to generate a pool of 10,000 levels by inputting ran-
dom seeds to the decoder. We evolved these levels by
passing them through the evolutionary process.

A. Multi-Channel Encoding

While selecting the format of level data to be used
for an autoencoder, the primary goal was to make the
computation for encoding and decoding more logically
feasible and reduce as much complexity as possible.
In order to achieve this, we divided each level into
various blocks that represent entities such as bricks,
ladders, ropes, etc. By doing so, we reduced each level
to a small size of 22x32 blocks. This representation can
be considered as a 2D string, where each character of
the string represents a block of a level (Fig. 1). For
example, we used ‘b’ for a brick and ’-’ for a rope. The
string representation enables our autoencoder to learn
the underlying structure of a level.

Each character of a string is then later converted to a
binary encoding for separate channels. In other words,
the proposed method uses separate channels for bricks,
ladders, ropes, etc. Each channel has 1 at the position
depending on whether the particular block exists in
a level, and 0 otherwise. This representation can be
compared to the RGB channels of a color image. We
used five channels for the proposed method. Fig. 2
shows a brick and ladder encodings of a level.

¢

SCORE OOO0O000 LIVES OO LEVL OO02

Fig. 1: Example of String Representation of Level

Fig. 2: Bricks (Red) and Ladders (Green) Encoding

B. Variational Autoencoder

Autoencoders have been used a variety of fields
such as images, sounds, music. The representation
of any data in the latent variable of an autoencoder
can be used to reconstruct the original data from it.

Parent Level 1 Parent Level 2

X | X | X o o] o
X X X o 0 (o]
X | X X o] O o
Crossover
X X X
X X X
X | 0 (o]

Mutate
Variational Latent Space Variational
Encoder Decoder

Second Generation Level

Fig. 3: Evolutionary Process of Proposed Method

Diederik et al. showed that the posterior inference can
be made especially efficient by fitting an approximate
inference mode [8]. The variational autoencoder is more
advanced as it creates a distribution for each latent
variable [9]. Hence, the variational autoencoder is able
to reproduce images with more variations, compared to
the vanilla autoencoder. We employed the variational
autoencoder in the proposed method. One is to produce
a large dataset that is up to 10,000 images as a global
gene pool before the evolutionary process; the other is
used in the evolutionary process to perform mutation
on the latent representation of the level.

C. Evolutionary Process

After creating a global gene pool, the proposed
method uses the evolutionary operators such as
crossover and mutation to generate playable levels.
For the level generation in Lode Runner, the proposed
method uses the specially designed crossover and mu-
tation operators, fitness function, and multi-population
structure, which will be explained in the following
subsections.

1) Crossover and Mutation Operators: In order to retain
some interesting features of original levels, we applied
a patch-wise crossover. As illustrated in Fig. 3, the
parent images are divided into nine patches, and a
child image inherits the first seven patches from parent
1 and the last two from parent 2. For the mutation,
the proposed method takes the child image, passes
it through the autoencoder, and randomly mutate its
latent variable. The parameters for the crossover and
mutation operators can be found in Table I. Fig. 3
illustrates the process of the mutation operator.

2) Fitness Function: This section describes the fitness
function of the proposed method, which is consists of
playability and connectivity.

o Playability: We employed a path-finding algorithm

(PFA) to check if all the golds of a generated level

TABLE I: Used Control Parameters

Crossover | Mutation | Population | Number of
Rate Rate Size Generations
0.78 0.1 32 150

can be collected. If they can be collected, the level
is playable; otherwise, not playable.

o Connectivity: The connectivity measure evaluates
the percentage of coordinate points in a generated
level that can be reached.

The proposed method checks the playability measure
first, and only playable levels are chosen to evolve.
After that, the proposed method applies the connec-
tivity measure in order to evaluate the fitness of each
playable level. In other words, the more blocks are
connected, the higher fitness scores are returned. We
employed a PFA to check what proportion of the
coordinate in a level is reachable.

3) Multi-Population Structure: Since we faced the
lack of variations in generated levels from one evo-
lution iteration, we applied a multi-population struc-
ture to avoid the premature convergence. The pro-
posed method maintains ten populations separately
and evolves ten unique and better image sets, which
are then passed onto the next iteration. Since each of the
ten populations contains its unique local characteristics,
combining them creates more diverse image sets with
several different characteristics revealed. Fig 4 shows
the multi-population structure.

10,000 images ‘

Random sampl / \F{Wple

: Evolution
Evolution e 0o 0 0 0 populati
; opulation
Population 10 separate evolution - P
size:32 size: 32
BM %ge
Evolution
Population
size: 10

Final 10 population

Fig. 4: Multi-Population Structure of Proposed Method

D. Path Finding Algorithm

A PFA in the proposed method is to check the
playability and connectivity of generated levels. Based
on the rules regarding the player movement in Lode
Runner, we developed an algorithm, which acts as a
playing agent. Some of those rules include - the player
can move only up or down on the ladder; the player
can dig the bricks; if the player falls off the edge of

a brick, it keeps falling until it reaches a rope, ladder
or brick. We employed A* algorithm as a PFA of the
proposed method to find the shortest path for collecting
all golds. Fig 5 is the solution path of an original
level from A* algorithm. An extension of this approach,
where the PFA tries to reach every block of the level
helps to determine the connectivity of the level.

Fig. 5: Shortest Path from A* Algorithm

IV. RESULTS
A. Results of Proposed Method with Variational Autoen-
coder

Fig. 6(a) consists of four randomly chosen levels
out of 10,000 generated levels from the variational
autoencoder (before evolution) with the parameters as
described in Table II.

TABLE II: Parameters of Variational Autoencoder

Training Noise Learning | Number of
Data Dimension Rate Epochs
300 16 le-3 1000

From Fig. 6(a) we can observe the variational autoen-
coder results. In these results, the left-upper one is not
valid because all of the golds cannot be collected. As
we mentioned above, only playable levels are used to
generate child levels. Fig. 7(b) consists of two randomly
chosen results after the evolutionary process combined
with the variational autoencoder. Since the vanilla and
variational autoencoders generate levels with varying
densities, we decided to use them separately to gen-
erate dense or sparse levels as hard and easy levels,
shown in the next.

B. Results of Proposed Method with Vanilla Autoencoder

Fig. 7(a) consists of two randomly chosen results af-
ter the evolutionary process combined with the vanilla
autoencoder, which are sparse and easy for rookies.
From Fig. 7(b), we can see that the results generated
with variational autoencoder are dense and hard for
rookies.

1) Level Differences Between Variational and Vanilla Au-
toencoders: Compared to a vanilla autoencoder, a vari-
ational autoencoder adds regularization constraints to
the encoding process by forcing the generated implicit
vector to follow a standard normal distribution. On

i
II” H HH i e

H i
I PR

H|
H| II” HHH
H " H H

(b) Vanilla Autoencoder with Uniform Noise

Fig. 6: Results of Variational and Vanilla Autoencoders

applying evolutionary algorithm on variational autoen-
coder, generated levels grow more branches of details
with small mutations in the latent space, eventually
making generations different. On the other hand, the
vanilla autoencoder does not regularize the implicit
vector, as a result of which, the mutation results in
lesser details.

C. Similarity of Generated Levels to Original Levels

We compared all of the 330 generated levels with the
original levels of the game, block by block (ignoring
the blank space) to calculate the similarity proportion.
Table III shows the mean similarity and the number of
generated levels that are over 30% and 50% similar to
any of the existing levels of the game, respectively.

TABLE III: Similarity of Generated Levels

Mean Num Levels Num Levels
Similarity | >30% Similarity | >50% Similarity
Variational 25.36% 73 / 330 3 /330
Vanilla 27.05% 130 / 330 38 / 330

V. CONCLUSIONS

In this paper, we proposed a multi-channel encoding
for an autoencoder with a multi-population evolu-
tionary algorithm to generate levels for Lode Run-
ner. We used patch-wise crossover and latent variable

B

(b) Sample Levels Generated by Variational Autoencoder

Fig. 7: Results After Evolutionary Process

mutation, which helps to retain some interesting fea-
tures of original levels while inserting less predictable
variations. Our experimental results showed that the
proposed method can create large amounts of signifi-
cantly different playable levels. We also discussed the
difference in generated levels of the variational and
vanilla autoencoders. For future work, we will apply
the proposed method to other games such as Super
Mario Bros and Mario Kart.

REFERENCES

[1] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgard, A. K.
Hoover, A. Isaksen, A. Nealen, and]. Togelius, “Procedural con-
tent generation via machine learning (pcgml),” IEEE Transactions
on Games, vol. 10, no. 3, pp. 257-270, 2018.

[2] R.Jain, A. Isaksen, C. Holmgard, and J. Togelius, “Autoencoders
for level generation, repair, and recognition.”

[3] A.]J. Summerville and M. Mateas, “Super mario as a string:
Platformer level generation via Istms,” 2016.

[4] S. Snodgrass and S. Ontanén, “Experiments in map generation
using markov chains.”

[5] J. M. Font, R. Izquierdo, D. Manrique, and]. Togelius, “Con-
strained level generation through grammar-based evolutionary
algorithms,” in European Conference on the Applications of Evolu-
tionary Computation. Springer, 2016, pp. 558-573.

[6] S. Alvernaz and J. Togelius, “ Autoencoder-augmented neuroevo-
lution for visual doom playing,” in 2017 IEEE Conference on
Computational Intelligence and Games (CIG), Aug 2017, pp. 1-8.

[7] S. Snodgrass and S. Ontanon, “A hierarchical mdmc approach to
2d video game map generation,” in Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference, 2015.

[8] D. P. Kingma and M. Welling, “Auto-Encoding Variational
Bayes,” Dec 2013, p. arXiv:1312.6114.

[9] I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin,
D. Vazquez, and A. Courville, “PixelVAE: A Latent Variable
Model for Natural Images,” arXiv e-prints, p. arXiv:1611.05013,
Nov 2016.

