
Inferring and Comparing Game Difficulty Curves
using Player-vs-Level Match Data

Anurag Sarkar
Northeastern University

Boston, USA
sarkar.an@husky.neu.edu

Seth Cooper
Northeastern University

Boston, USA
se.cooper@northeastern.edu

Abstract—Prior work has focused on formalizing difficulty
curves by using function composition to give precise definitions
to curves and their transformations. However, the proposed
framework was demonstrated using a single game, and the
curves and transformations were defined with respect to the
game’s ratings-based dynamic difficulty system. In this work,
we infer difficulty curves from gameplay data using a method
that is based on the aforementioned difficulty system but that
can also be generalized to other games for which information
on player-vs-level win/loss outcomes is available. Moreover, since
this method uses the same difficulty mechanism as past work,
it lets us similarly leverage function composition to compare
difficulty curves across games, having either a fixed or dynamic
level ordering, using a clearly defined vocabulary. We use four
different games to demonstrate our method, which relies on an
adjustment to traditional playback of ratings-based match data,
which we also present in this work.

Index Terms—difficulty curve; rating systems; gameplay data

I. INTRODUCTION

Traditional methods of defining optimal difficulty curves
for games typically rely on an iterative process of manual
refinement via several rounds of playtesting [1]. Such methods
lack precise ways of capturing what it means to modify curves
to affect difficulty. Past work [2] addressed this by using func-
tion composition to model curves and their transformations in
order to move towards a formal way of examining difficulty
curves and offer a precise vocabulary of discussing changes to
curves in order to trade-off different design goals. However,
the curves used were defined in terms of the ratings-based
dynamic difficulty system of the specific game, Paradox.

In this paper, we extend this prior work to infer game
difficulty curves from player-vs-level (PvL) match data in a
game-independent manner. Specifically, we use the Glicko-
2 rating system [3] to playback PvL match data from four
different games and infer their difficulty curves using the
formulation employed in the prior work. As in that work,
this lets us use function composition to discuss and compare
curves across games using a precise vocabulary by fitting
parameterized versions of these curves to gameplay data.
Further, use of rating systems via match playback lets us apply
the approach to games with both static and dynamic difficulty.

We also applied an approach to address a survivorship issue
during playback that caused harder levels of the games to

(a) Paradox (b) Iowa James

(c) Signaligner (d) Foldit
Fig. 1. Screenshots from the four games used in this work.

appear easier, as only more advanced players made it to those
levels. Our approach addresses this by generating phantom
matches between players and the levels they don’t end up
playing. This adjusted playback lets us use rating systems to
elicit difficulty curves using data about player-vs-level win/loss
outcomes, for any game for which such data is available,
regardless of whether that game uses a ratings-based difficulty
system, as well as independent of whether the game uses a
fixed or dynamic difficulty progression. This work contributes
a generic method to infer difficulty curves of games from
gameplay data, and a technique for comparing those curves.

II. BACKGROUND
A. Difficulty Balancing using Rating Systems

Use of rating systems like Elo [4] and Glicko-2 [3] for
balancing difficulty was motivated by the specific constraints
to difficulty adjustment in human computation games (HCGs)
where levels model real problems and are not readily modifi-
able [5]. In such usage, players and levels are assigned ratings
indicating skill and difficulty respectively. Ratings are updated
during gameplay based on outcomes of player attempts at
levels. This enables dynamic difficulty adjustment (DDA)
by allowing the use of matchmaking to match players with
levels compatible with their skill. Prior work has demonstrated
the effectiveness of ratings-based systems for DDA [6] and
difficulty curve refinement [2] in HCGs. Here, since ratings are
used to determine the difficulty progression, a game’s difficulty
curve can be defined in terms of the rating system rather than

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

in terms specific to the game. Thus, ratings-based curves could
be used to compare difficulty across games using a common
vocabulary if difficulty is framed in terms of the rating system.

B. Difficulty Curves and Function Composition
Recent work [2] looked at formalizing the definition, re-

finement and transformation of difficulty curves using func-
tion composition. That approach applied basic translation
and scaling functions to the game’s existing difficulty curve
to generate new curves, offering a precise way of defining
and transforming curves and discussing comparisons and
relationships between different curves and their effects on
gameplay. However, that work only looked at Paradox with
the methodology not demonstrated as generalizable to other
games where the difficulty progression and curve are not
defined in terms of a rating system. The method presented
in this current work aims to fit rating system-based difficulty
curves on existing gameplay data for several games in order to
compare and discuss curves across games using this function
composition-based formulation.

III. APPROACH

In our approach, first, gameplay data is collected for a
game. Next, the data is used to create data points describing a
mapping from player skill to difficulty for that game. Finally,
a parameterized curve is fit to the data points. These steps are
described below.

A. Collecting Gameplay Data
Gameplay data for our method consisted of match data for

each game where each instance of a player playing a level was
treated as a match. Each match in the data is described by an
entry consisting of the timestamp of the match, the player, the
level and the outcome, i.e. if the player won or lost the level.

B. Sampling from Player Skill to Difficulty
Difficulty curves can be viewed as functions that map from

player skill to difficulty. Thus, to fit curves onto match data
for a game, we sample the mapping from player skill to
game difficulty. As in prior work, we use Glicko-2 ratings
to represent player skill and the player’s loss rate (i.e. how
often a player will lose a match) to represent difficulty. Sam-
pling this mapping allows us to use a ratings-based difficulty
framework for the purpose of leveraging function composition
for inferring and comparing curves.

1) Playback: The gathered match data for a game is played
back using the pyglicko2 Python implementation [7] of the
Glicko-2 system with each player and level starting with a
default rating of 1500. Playback generates ratings for players
and levels based on PvL outcomes which can be used to
determine a player’s probability of losing a level. This in turn
can be viewed as the difficulty of that level for that player. A
level’s rating is thus an estimate of the player skill required to
win against that level. In other words, the lower the player’s
rating is compared to that of the level, the harder that level
should be for them. Thus, playing back match data for a
game should ideally allow inferring the game’s difficulty curve
through the lens of player and level ratings. During playback,
each match in the gameplay data is used to create a sample of

the game’s difficulty curve by recording the current estimate
of the player’s skill before the match and whether the player
won or lost that match. All of these samples (including those
from the phantom matches described below) are then grouped
in to bins by rating and the average player loss rate for each
bin is computed. We used bin sizes of 50 Glicko-2 rating units.

2) Phantom Matches: In both fixed and dynamic difficulty
progressions however, only the more skilled players usually
reach or get matched up with the harder levels. Thus, in match
data, this gets reflected as the harder levels being involved with
matches only with these skilled players who are more likely
than the average player to win against these levels and cause
their ratings to go down. Hence, regular playback of match
data for games with a fixed or dynamic difficulty progression
may suffer from survivorship issues—only the skilled players
that survive past the easy and moderately difficult levels end up
playing the hardest levels in the game thus causing the latter
to end up with ratings that are not indicative of their true
difficulty. Since this survivorship issue is caused by harder
levels being played only by highly skilled players, which
skews the ratings for the hard levels, to fix this problem, we
create a phantom match for each PvL pairing that did not take
place in the actual gameplay, i.e. a PvL instance for which
there was no entry in the match data. For each such phantom
match between player p and level l, we determined its result
as follows:
• During playback, note lowest rated player x that beat l
• If p’s final rating ≥ x’s rating, p wins, else p loses
The phantom matches thus allow harder levels to ‘get back’

wins against lower skilled players who dropped out before
reaching these levels, or never got good enough to match up
against them. Hence, the combined match data for each game
consisted of the real matches plus these phantom matches.
C. Fitting Curves to Sampled Data

Once we have the binned samples from player rating to loss
rate, we can fit a curve to these data points. In this work we use
a logistic function, previously used for DDA in Paradox [6],
that maps from player rating to the probability of the player
losing at that rating (i.e. the loss rate). This rate is a measure
of difficulty as it determines how hard the next match will
be for that player. The logistic function represents a smoothly
changing difficulty curve. The baseline difficulty curve was
taken from prior work in Paradox [2] and is given by:

f(x) =
1

1 + eα(β−x)
(1)

where x is the player’s rating and α and β are constants
set to ∼0.006 and 1850 respectively so that players with a
starting rating of x = 1500 have a low 10% chance of losing.

Additionally, for function composition, we used two trans-
formation functions: tδ(x) = x+ δ, which deflates or inflates
the curve by translating the player rating by δ; and sσ,c(x) =
σ(x− c) + c, which smooths or steepens the curve by scaling
the player rating by σ around c (we used a constant 1500
for c). Composing one or both of these with f(x) generates
different curves. Details of such transformations are given in

0

0.2

0.4

0.6

0.8

1

-500 0 500 1000 1500 2000 2500

Pl
ay

er
 Lo

ss
 R

at
e

Player Rating

Synthetic (with phantom)

Synthetic (without phantom)

Baseline

Fig. 2. Synthetic data with and without phantom matches. Lines are the fit
curves and points are binned samples.

0

0.2

0.4

0.6

0.8

1

-500 0 500 1000 1500 2000 2500

Pl
ay

er
 Lo

ss
 R

at
e

Player Rating

Paradox challenge (with phantom)

Paradox challenge (without phantom)

Baseline

Fig. 3. Data from Paradox challenge levels with and without phantom
matches. Lines are fit curves and points are binned samples.

[2]. By composing the functions as f ◦tδ ◦sσ , we get difficulty
curves parameterized by δ and σ. We then fit difficulty curves
to the binned sample data by optimizing δ and σ to minimize
the root mean squared error between the curve value at the
center of each bin and the mean player loss rate in the bin.

IV. VALIDATING PHANTOM MATCHES

For validating our phantom match methodology, we used
a synthetically generated dataset and data from the challenge
(i.e. non-tutorial) segment of Paradox. In both cases, we know
that the underlying baseline difficulty curve (δ = 0, σ = 1)
was used to generate matches, and thus we should recover
parameter values close to those when fitting the curve.

A. Synthetic Data
To create the synthetic dataset, we generated 50 players with

uniformly random Glicko-2 ratings between 900 and 2100 and
61 levels with ratings ranging from 0 to 3000 in increments of
50. Note that these were their true ratings indicating their skill
and difficulty, but for matchmaking, each player and level was
still given an estimated starting rating of 1500. To simulate
matches, we randomly selected a player, used the estimated
ratings to determine which level to serve, but used the true
ratings to simulate whether the player won or lost against that
level. To simulate players stopping playing, we set a drop rate
proportional to their true rating, so that lower-skilled players
were more likely to stop playing. If a player lost a match, they
stopped playing based on their drop rate. This models how in
actual gameplay, players who are performing poorly may be
more likely to stop playing than those who are doing well.
We continued simulating matches in this manner until there
were no remaining players. This process was run five times

and all the matches combined. The resulting binned samples
and fit curves are shown in Figure 2 and curve data are given
in Table I. Notably, using the phantom matches produces a
curve fit very close to the baseline, while without the phantom
matches, the game appears easier for higher-rated players.

B. Paradox
For validation, we also used gameplay data from the chal-

lenge portion of Paradox gathered from prior work. Here,
we would again expect the curve that fits to this data to be
similar to the baseline since the latter was used for DDA-based
matchmaking in the game’s challenge section. The resulting
binned samples and fit curves are shown in Figure 3 and curve
data are given in Table I. Without the phantom matches, the
curve appears inverted; using the phantom matches however
produces a curve fit much closer to the underlying baseline.

V. APPLICATION
A. Games

To apply our approach, we used gameplay data from four
games: three puzzle human computation games (HCGs)—
Paradox, Signaligner and Foldit—each with varying mechan-
ics and gameplay, and one platformer—Iowa James. Screen-
shots of each game are shown in Figure 1. We gathered
match data from existing gameplay data collected previously
through Amazon Mechanical Turk for Paradox, Signaligner
and Iowa James and through the version of Foldit available
on its website (https://fold.it). Each game is described below.

Paradox is a 2D puzzle HCG where levels represent boolean
maximum satisfiability problems. Players try to complete
levels by satisfying a target number of constraints via assigning
boolean values to variables using various tools. For gameplay
match data, a player completing a level is a win for the player.
If a player fails to reach the target score for a level before
moving on to the next one, it is a loss for the player. The
tutorial levels follow a fixed order while the challenge levels
follow a dynamic difficulty ordering based on Glicko-2 ratings.
Gameplay details can be found in prior research [6] that used
the game. In this section of analysis, we used the full game
consisting of 8 tutorial and 50 challenge levels.

Iowa James [8] is a platformer consisting of 14 levels
following a fixed, increasing difficulty progression. Each level
has a variety of hazards that the player must avoid in order
to reach a treasure chest at the end, which lets the player
move on to the next level. Players have unlimited lives during
playthrough. For each level, if the player reaches the chest,
regardless of the number of times they died, it is considered
a win for the player. If the player quits without reaching the
chest, it is taken as a loss for the player on that level.

Signaligner is a 2D puzzle HCG where players annotate raw
accelerometer data with activity labels by splitting, merging,
and aligning accelerometer data signal blocks in order to group
together similar looking ones. Players can submit their answer
when they think they have the blocks organized correctly. The
game is relatively short with players given four tutorial levels
where they can submit as many answers as they want until
submitting a correct one, at which point they play one of seven

0

0.2

0.4

0.6

0.8

1

-500 0 500 1000 1500 2000 2500

Pl
ay

er
 Lo

ss
 R

at
e

Player Rating

Paradox full

Iowa James

Signal igner

Foldit

Fig. 4. Fit difficulty curves for each game. Points represent binned samples.

possible challenge levels with only one chance to answer. If
they submit a correct answer, they win, else they lose.

Foldit [9] is an HCG based on protein folding and design,
where players attempt to interactively fold and pack protein
structures as efficiently as possible. The game contains a set of
37 tutorial levels meant to introduce the game, which we used
in this analysis. The player’s score in a level is based on the
energy of their current fold, and players win a tutorial level by
reaching a target score. The game’s tutorial level progression
is the same for all players, but players have choices at some
branching points and can replay previous levels, via a level
select screen.

B. Curve Comparisons and Transformations
Plots of the fit curves for each game, along with the

binned samples, are shown in Figure 4. Curve data are given
in Table I. Using the terminology from [2], Foldit has the
smoothest difficulty with the other three games exhibiting
steeper difficulty curves. Among these three, Iowa James has
an inflated (i.e. higher) difficulty compared to Signaligner and
Paradox and consequently, Paradox has a deflated (i.e. lower)
difficulty compared to the other two.

Further, the curves for Paradox and Foldit have the highest
RMSE as the binned samples go up and down suggesting that
a single curve does not fit their data well and multiple curves
might better represent their difficulty. Overall, the ability to
compare difficulty curves of multiple games and discuss how
they relate to each other in this precise and generic way
demonstrates the utility of our approach.

VI. CONCLUSION AND FUTURE WORK

We presented a method of inferring a game’s difficulty
curve using its gameplay data. Since the curve is defined
as a function mapping from player skill to difficulty and
is independent of the game’s level ordering, the method is
applicable whether the game has a fixed or dynamic difficulty
progression. We consider several avenues for future work.

We fit a single curve to the data for each game, but a
difficulty curve might more closely follow a sawtooth pattern,
common in such curves [10], that is better captured using
multiple piecewise curves. This would enable inferring sep-
arate curves for segments of a game that differ in difficulty.
Additionally, the drop rate for generating synthetic data was

TABLE I
MATCH COUNTS AND PARAMETER VALUES FOR EACH FIT CURVE SHOWN
IN FIGURES 2-4. Matches AND Phantom REFER TO NUMBER OF ACTUAL

AND PHANTOM MATCHES RESPECTIVELY.

Game Matches Phantom RMSE σ (scale) δ (transl.)
Synthetic 484 1732 0.07 0.96 50

(w/ phantom)
Synthetic 484 0 0.04 0.76 -98

(w/o phantom)
Paradox Chal. 661 1404 0.11 0.73 152
(w/ phantom)

Paradox Chal. 661 0 0.08 -0.46 336
(w/o phantom)

Paradox 1125 1938 0.13 0.73 58
Iowa James 6276 54204 0.06 0.75 357
Signaligner 415 1202 0.09 0.83 203

Foldit 296011 236539 0.13 0.07 230

set heuristically. Future work could look into empirically
confirming this rate. We also used binary win/loss for PvL
outcomes as we did not want to use a heuristically set scoring
mechanism. Future work could thus explore if continuous
outcomes can help in inferring more accurate difficulty curves.
Lastly, future work can also explore further impact and any
biases from using phantom matches.

ACKNOWLEDGEMENTS
We thank all the players. This work was supported by the National

Science Foundation under grant numbers 1652537 and 1629879.
Components of research reported in this work were supported by
the National Cancer Institute and the National Institute of Biomedical
Imaging and Bioengineering of the National Institutes of Health under
award numbers UH2CA203780 and UH2EB024407. The content is
solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

REFERENCES
[1] M.-V. Aponte, G. Levieux, and S. Natkin, “Measuring the level of

difficulty in single player video games,” Entertainment Computing,
vol. 2, 2011.

[2] A. Sarkar and S. Cooper, “Transforming game difficulty curves using
function composition,” in Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, 2019.

[3] M. E. Glickman, “Dynamic paired comparison models with stochastic
variances,” Journal of Applied Statistics, vol. 28, no. 6, pp. 673–689,
Aug. 2001.

[4] A. E. Elo, The rating of chessplayers, past and present. Arco, 1978.
[5] S. Cooper, S. Deterding, and T. Tsapakos, “Player rating systems for

balancing human computation games: testing the effect of bipartiteness,”
in Proceedings of the 1st International Joint Conference of DiGRA and
FDG, 2016.

[6] A. Sarkar, M. Williams, S. Deterding, and S. Cooper, “Engagement
effects of player rating system-based matchmaking for level ordering
in human computation games,” in Proceedings of the 12th International
Conference on the Foundations of Digital Games, 2017.

[7] R. Kirkman, “pyglicko2: a Python Implementation of the Glicko-2 algo-
rithm,” 2010. [Online]. Available: https://code.google.com/p/pyglicko2/

[8] A. Sarkar, V. Sriram, R. Padte, J. Cao, and S. Cooper, “Desire-path
inspired procedural placement of coins in a platformer game,” in
Proceedings of the Fifth Workshop on Experimental AI in Games, 2018.

[9] B. Koepnick, J. Flatten, T. Husain, A. Ford, D.-A. Silva, M. J. Bick,
A. Bauer, G. Liu, Y. Ishida, A. Boykov, R. D. Estep, S. Kleinfelter,
T. Nrgrd-Solano, L. Wei, F. Players, G. T. Montelione, F. DiMaio,
Z. Popovic, F. Khatib, S. Cooper, and D. Baker, “De novo protein design
by citizen scientists,” Nature, vol. 570, no. 7761, pp. 390–394, Jun. 2019.

[10] C. Linehan, G. Bellord, B. Kirman, Z. H. Morford, and B. Roche,
“Learning curves: analysing pace and challenge in four successful puzzle
games,” in Proceedings of the First ACM SIGCHI Annual Symposium
on Computer-human Interaction in Play, 2014, pp. 181–190.

