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Abstract—Procedural Content Generation is an active area of
research, with more interest being given recently to methods
able to produce interesting content in a general context (without
task-specific knowledge). To this extent, we focus on procedural
level generators within the General Video Game Al framework
(GVGAI). This paper proposes several topics of interest. First,
a comparison baseline for GVGAI level generators, which is
more flexible and robust than the existing alternatives. Second, a
composite fitness evaluation function for levels based on Al play-
testing. Third, a new parameterized generator, and a Meta Gen-
erator for performing parameter search on such generators are
introduced. We compare the Meta Generator against random and
constructive generator baselines, using the new fitness function,
on 3 GVGAI games: Butterflies, Freeway and The Snowman.
The Meta Generator is suggested to perform on par with or
better than the baselines, depending on the game. Encouraged
by these results, the Meta Generator will be submitted to the
2019 GVGALI Level Generation competition.

Index Terms—GVGALI, level generation, genetic algorithm

I. INTRODUCTION

Procedural Content Generation (PCG), and especially pro-
cedural generation of video game levels, has been popular
for decades. While its traditions stretch all the way back
to the ASCII dungeons of Rogue, PCG has seen a new
dawn in combination with different techniques from Artificial
Intelligence [1]. In the last years, research has focused on
methods that generate content in a general way, in an attempt
to reduce the amount of domain knowledge used. The aim of
this research is to focus more on the generation algorithms
rather than in specific heuristics. A clear example of this is
the General Video Game Al (GVGAI) framework. GVGAI
is a benchmark that, among other challenges, proposes the in-
vestigation of general methods for procedural level generation.
Within this context, the level generation track [2] prompts the
generator to generate a level for previously unseen games.

The GVGALI framework provides several sample generators
for levels, including genetic and constructor generators. A
common practice for participants is to tune the parameters,
architecture or fitness functions of these sample generators.
This paper proposes a new generator that aims at facilitating
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testing and boosting novel generator architectures by using
Al-assisted play testing.

In particular, this paper makes four contributions. Firstly,
it proposes a fitness function for evaluating the quality of
generated levels, that uses an array of weighted factors.
Secondly, it proposes a method for boosting any fast and
resource light level generator algorithm: Using this or any
other fitness function for selecting the best out of many
generated results. Building on these two, it proposes a Meta
Generator that optimises the parameters of fast resource light
generators, using a fitness function for levels generated to
estimate the quality of the generator parameters. Lastly, we
propose a fast parametrisable level generator for the Meta
Generator to optimise, that builds on the principles of an
existing benchmark generator from the GVGAI framework.

The structure of this paper is as follows: Section II gives
a brief introduction of the GVGAI framework and the level
generation competition track. Section III provides an overview
of the related work in this area. Then, Section IV describes
the proposed level generators employed in the experiments,
which results are discussed in Section V. Finally, conclusions
and opportunities for further work are detailed in Section VI.

II. GVGAI

The General Video Game Al (GVGAI) framework is a Java
benchmark, evolved from the original Py-VGDL implemented
by Tom Schaul [3], which proposes a series of Al challenges

Fig. 1: Human-designed levels for GVGAI games (left: The
Snowman; top right: Butterflies; bottom right: Freeway).
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Fig. 2: VGDL levels: The Snowman (left), Butterflies (right).

around the concept of general game Al In particular, GVGAI
offers a platform for learning, planning and content generation
problems in games described in the Video Game Description
Language. Each one of the problems have been proposed to
the community in the form of competitions [4], [5] and the
framework is widely used for research and education [6].

A. Games

The GVGAI framework counts, at the time of writing,
more than 180 single and two-player games, with 5 levels
each. The games are written in the Video Game Description
Language (VGDL), which allows games to be easily created
around sprites with certain properties and behaviours and their
interactions. These elements are described in VGDL using
two files (game and level definition). The game description
file is composed of four different sets. The Sprite Set defines
properties for the different entities in the game. The Interaction
Set describes the effects produced by sprite collisions, such as
destroying sprites or causing score changes. The Termination
Set defines the conditions that lead to an end-game state,
determining also if the game is won or lost for the player(s).
Finally, the Level Mapping specifies the connections between
sprites and ascii characters used in the level definition file.

Levels are described in their own ascii files. Each character
in a file is mapped to one or more sprites as indicated in
the Level Mapping. Figure 2 shows examples of VGDL levels
representing their initial states. Figure 1 shows the 3 different
GVGALI games used in this study. Their variety also shows the
complexity and expressiveness that achievable with VGDL:

e The Snowman: This is a deterministic game in which the
player must push different parts of a snowman (body,
trunk and head) into a platform, in the natural body to
head order. Parts of the level may be locked that can only
be opened if the player collects a key. Points are awarded
for correctly placing each part of the snowman.

o Butterflies: This is a stochastic game in which the player
must capture as many butterflies as possible before all
cocoons in the level are opened, in which case the game
is lost (cocoons open on contact with butterflies to create
new butterflies). When all butterflies are captured, the
game is over and won. All butterflies move at random.
Points are awarded for each butterfly captured.

e Freeway: A version of the original with the same name,
this stochastic game puts the player in control of an agent
that must cross consecutive roads with incoming traffic.
Every time the player gets hit by a vehicle, they lose 1
life (out of 5 available). The player wins if they are able
to reach the randomly positioned goal at the other end of
the crossings. In contrast to the others, this game has no
score, only a victory condition.

B. Game-Playing Agents

The framework exposes an API for planning agents, which
includes access to a forward model (FM). This forward model
can be used to simulate possible future states of the game
when supplied with an action to execute from any state. In
the competition setting, each agent has a certain established
time to return an action before being disqualified.

GVGALI includes a series of sample controllers to help
practitioners in the creation of agents for the benchmarks.
Among these controllers, one can find simple ones, like
RANDOM (which executes random actions at each time step),
DONOTHING, where action NIL (or no-op) is applied at each
step, and One Step Lookahead (OSLA). The latter sample
controller explores every game state reachable from the current
state using the FM, evaluating it with a heuristic that promotes
proximity to certain sprites. In this study, DONOTHING and
OSLA are 2 of the 3 agents used to evaluate generated levels.

The third controller is YOLOBOT, which is not provided
with the framework. Instead, YOLOBOT was a (multiple)
competition winner submission developed by Joppen et al. [7].
This approach is a combination of two different methods: a
heuristic-guided Best First Search used in deterministic games,
and a Monte Carlo Tree Search (MCTS; [8]) used for stochas-
tic environments. Used in conjunction with informed priors
and rollouts, backtracking and pruning, this agent was able
to win three editions of the Single-Player Planning GVGAI
competition. The reader is referred to [7] for details.

C. GVGAI Level Generation

The Level Generation track was introduced in 2016 with the
objective of proposing a challenge for automatic generation
of levels for any game that is given [2]. Participants submit
generators that must produce a level for games (unknown a
priori) in no more than 5 hours of CPU computation. During
this time, the generator can make use of planning agents to
play-test potential levels to be returned.

Generators have access to the following game information:

o Avatar sprites, controlled by the player.

¢ Solid sprites, static in the game.

o Harmful sprites, which kill the player (or can create
sprites that would Kkill the player).

« Collectible sprites, which can be picked up by the player.

o Other sprites that do not fall in the previous categories.

Additionally, the generator is provided with access to the
level mapping, the interaction and termination sets. In return,
the generator must provide a 2-dimensional array of characters
that forms the level, in the same format as those shown in



Figure 2. The GVGAI Level Generation track was initially
proposed in tandem with three distinct level generators [2]:

o RANDOM: This generator picks a level size by looking at
how many sprite types exist. After surrounding the board
in a solid frame, it places at least one of each sprite type
on the board. It makes sure to keep around 80% of the
space open. If there is additional space left over after
these initial constraints are met, the remaining space is
filled randomly from the set of sprites. This approach has
the advantage that, without looking into the semantics of
the sprites, all sprites that are vital for completing the
level (goal sprites) are likely to be included in the level.
It’s also likely that the avatar has space to move.

o CONSTRUCTIVE: This generator uses the same level size
selection, and includes a frame of static sprites. It also
builds connected walls coming out of the frame, while
making sure that all open space on the board is connected.
This makes for more interesting and deliberate-looking
levels for games that rely on labyrinth- and room-like
structure. The constructive generator places enemies at a
distance from the avatar, to make sure the player doesn’t
die immediately after spawning. It does not, however,
guarantee that all sprites will be used at least once.

o GENETIC: This generator initializes a population of lev-
els using the constructive or random generator, before
performing evolution using a fitness function. It keeps
one population for infeasible levels, and one for feasible
levels, that do not mix. The fitness evaluation function
is based on two factors, which will be compared to our
own proposed fitness function in the methods section.

III. RELATED WORK

Previous entries to the GVGAI Level Generation competi-
tion [2] have not been very effective at creating interesting
or even playable levels [6]. However, some approaches do
succeed in producing quality results. Neufeld et al. [9] use
a (u + A) evolutionary algorithm to evolve the rules used
by an Answer Set Programming (ASP) level generator in
GVGALI These levels are then evaluated using a simulation-
based method: the fitness of each level is the difference of
average scores obtained by vanilla Monte Carlo Tree Search
and a random player. Their results showcase the benefits of
the concept, although we identify the computational overhead
of translating VGDL games into ASP rules as a drawback,
especially in the context of the GVGAI competition. This
paper uses a similar approach, compatible with the GVGAI
competition and applied to a parameterized random generator.

Four out of six submissions to the GVGAI Level Generation
competition are based on evolutionary algorithms, using Al
simulations for evaluating generated levels [6], although they
have not yet been successful in winning the competition. Given
previous promising approaches [9], we focus on improving
simulation-based evolutionary methods for this task.

A different approach used in the Level Generation competi-
tion is using design patterns within various techniques. Sharif
et al. [10] analyse the games in GVGALI to identify interesting

design patterns, such as solid sprites often forming rooms
(almost fully enclosing a section of a level) or collectible
sprites often being placed together. Beaupre et al. [11] later
use such design pattern analysis to develop general generators
which produce levels inspired by the human designs. They use
the sample constructive generator provided with the GVGAI
framework to generate an initial population of levels, which are
evaluated based on the patterns they contain. This population
is then evolved to match the pattern weights extracted from the
existing GVGAI corpus of games. A final human evaluation of
the resultant level shows preference towards the pattern-based
levels. However, there is no indication as to the level quality in
terms of playablity. We choose to focus on simulation-based
evaluations to take into consideration the impact on player
game-play, but we consider design patterns additions as a path
for further extending the current work.

Several authors explore the use of Relative Algorithm
Performance Profiles (RAPP) [12] to evaluate generated games
or levels: the difference in performance between proficient and
less skilled players is often seen as an indicator of a game’s
skill depth, with higher skill depth being a desired quality
of generated game content. Nielsen et al. [12] compare the
relative performance of seven different agents on a set of
VGDL games and their results support the correlation between
higher-quality games and a larger difference between good and
less-skilled players. More recently, Liu et al. [13] use a similar
measure to evolve game parameters instead, with similarly
good results. Inspired by positive results, we use this same
notion in the fitness function and measure the difference in win
rate and score between YOLOBOT [7], a high-performing
bot in the GVGAI planning competition, and two simple
agents, One-Step Look Ahead (OSLA) and DO NOTHING.
See Section II-B for details of agents used in this work.

One of the aspects we consider in this paper is the impor-
tance of using the right parameters for the generator. Manuel et
al. [14] evolve level generators for Super Mario Bros interac-
tively, with human supervision. They use both a measure of the
playablity of generated levels (using simulation-based evalua-
tion) as well as the human preference input in order to evolve
better levels. We take a similar approach, while excluding the
human factor in order for our method to be compatible with
the GVGAI competition and entirely autonomous, while also
testing our Meta Generator’s performance on several games.
While most generator optimizers use fairly simple evolutionary
algorithms, Lucas et al. [15] propose a model-based approach
for tuning game parameters. Both GVGAI games and agents
can be stochastic, which introduces considerable noise in
the evaluation. Additionally, simulation-based evaluations are
expensive, as (potentially multiple) games have to be run in
order to test the quality of the generated solutions. The N-
Tuple Bandit Evolutionary Algorithm (NTBEA) is shown to
perform well in noisy environments as well as being sample
efficient [16], which could lead to better results within the
short timespan allowed in the GVGAI competition. NTBEA
has further been shown to produce good results when op-
timising player experience (represented by score curves) in



GVGAI games [17], thus we consider this as the next step for
improving our method further.

IV. LEVEL GENERATORS

This section describes the methods used in our experiments,
and details our contributions: The POPULATION GENERATOR,
the parameterized PERCENTAGE-WISE GENERATOR (PWGQG),
the META GENERATOR, and the fitness evaluation function.

A. Population Generator Baselines

One of the problems when building level generators for the
GVGAI Level Generation competition is that after the genera-
tor is built and the fitness evaluation function is designed, there
is no good baseline measure to compare the generator’s output
quality with. Out of the baseline generators given by the com-
petition organizers, while the GA relies on a fitness function
and validates the playability of all levels before returning them,
the random and constructive generators produce a single level
without playtesting or validating it. From this point on we will
refer to the latter approach as one—shot generation.
Our hypothesis is that, even without performing any genetic
operations, testing and validating levels is a large part of the
performance difference between the genetic algorithm and the
one-shot generators. This motivated us to build a framework
around continuous one-shot generators (called the Population
Generator), as well as a fitness function for noisy evaluation
of generated levels. This turns a one-shot generator into a
continuously improving generator that can keep generating
and testing levels for any amount of time. When time runs
out, it returns the best level in the population, according to
the fitness function.Fitness values are normalized across the
entire population of levels generated for a game.

B. Percentage-Wise Generator

The Percentage-Wise Generator (PWGQG) is the base genera-
tor used in our experiments. The PWG was designed with a
desire to minimize the assumptions we make about the game
we are generating levels for, and to increase generality by
minimizing the reliance on human-injected bias. The sample
constructive generator in the GVGAI Level Generation com-
petition is a counter example. Because of these considerations,
the PWG is based loosely on the random level generator.
The biggest difference is that it is parameterised, taking into
account the following when generating levels:

o Percentage of each sprite that should be used.

o Whether the (z,y) coordinates of each sprite should be
sampled from a Gaussian distribution.

o Mean of the distribution.

o Standard deviation of the distribution.

o Size of the level and whether a border of static wall
should be placed around the level.

Details of the parameter search space are depicted in Table I
(float parameters are continuous, bounded between 0 and 1).
The Mean and St.dev parameters are scaled by the Width and
Height parameters. The PWG only uses information about
three types of sprites: the avatar, walls, and open space. In

TABLE I: Generator parameter search space

Parameter Type Search space

Sprite usagen,, Float [0,1]

z-Gaussian sampling, ~ Boolean true, false

y-Gaussian sampling,,  Boolean true, false
z-Distribution meany, Float [0,1]
y-Distribution mean,, Float [0,1]
x-Distribution st.dev, Float [0,1]
y-Distribution st.dev,, Float [0,1]

Level border Boolean true, false
‘Width Integer [4,18]
Height Integer [4,18]

terms of injected bias, the PWG knows that exactly one avatar
must exist, that a frame of static walls is an option (enabling
the frame is a boolean parameter), and that having more than
half of the area of the level being covered by open space is a
good place to start the optimisation process. It is not, however,
told anything about the purpose or function of any of these
sprites or their interactions. The GVGAI Level Generation
competition explicitly gives access to this knowledge, and
several other generators use it. We chose to avoid using it
in order to make our method as general and requiring as little
information as possible.

C. Meta Generator

The Meta Generator relies on optimising the parameters of
other level generators (in our case, the PWG). The fitness eval-
uation of the sub-generators involves generating and evaluating
levels using the fitness function described in Section IV-D. By
addressing the generator optimisation task, the level generation
task is implicitly addressed as well.

1) Motivation: The level search space for GVGAI games
is large, and current methods for simulation-based level fitness
evaluation are relatively expensive. Thus we hypothesize that
genetic level generators rely on having a good population
initialization in order to find a “good” (according to a fitness
function) solution within the allocated time. It would therefore
be optimal to have a much faster generator that delivers many
good levels, before using a genetic algorithm to improve upon
them to find one high-quality level. Having a generator that
can quickly and consistently make levels that are even close
to being good for any never-seen-before games is difficult.

The idea behind the Meta Generator is to optimise the
parameters of a fast generator. The best levels generated during
the search can be used as the initialization set for genetic
search in the level space, or the best level found so far can
be returned directly. Additionally, this system can be used to
supply a player with a continuous stream of levels, by running
the optimized Meta Generator in the background during play.

2) Generator Population and Level Population: When opti-
mising the parameters for the PWG, we maintain a population
of generator parameters. This population keeps track of which
generators produced what levels, so that we can calculate
the fitness of each generator as the average fitness of the
levels it has produced. A combined population of all the
levels generated and evaluated so far by the Meta Generator
is also maintained. Just like for the Population Generators, the



information from all the levels generated is used to calculate
the fitness of each individual level, normalized across the
population of levels generated for a game.

3) Parameter Optimisation Algorithm: The Meta Generator
uses mutation and crossover to search the parameter space of
the PWG. It uses Upper Confidence Bounds (UCB; [18]) to
select in which direction to guide its search. The UCB formula
is depicted in Equation 1, split into 2 terms for exploitation
(first) and exploration (second). V; is the value estimation of
the generator 7. This value is the average fitness of the levels
generated so far, and the assumption is that it translates to the
generator being a good candidate for crossover and mutation.
C is the exploration parameter, which is set to v/2. N is how
many levels have been generated in total, and n; is how many
levels have been generated by the generator.

In N

g

UcCB=V,+C €))

The UCB value balances exploration of areas that have
not been explored and the exploitation of areas that are
promising. As outlined in Algorithm 1, the Meta Generator
focuses its search on the generator with the highest UCB value,
using a (1,)\) roulette wheel (fitness proportionate) selection
strategy. This means the generator with the highest UCB value
is picked, and A other generators are selected and crossed
with the top generator. Each time a generator is selected for
reproduction, one more level is generated using its parameters
before continuing. This encourages the noisy fitness evaluation
of the more promising generator parameters to become more
accurate, which means we avoid repeatedly using parameters
for crossover that are objectively unfit, but inaccurately evalu-
ated. In the case where all results of crossovers and mutations
are worse than the previous population, forcing the existing
generators to keep producing levels further ensures that we
keep exploiting our current best generators.

D. Noisy Level Fitness Evaluation

The fitness evaluation function for levels is a compound
measure of 8 factors, that are calculated from the data of
several General Video Game Al agents playing the level (see
Section II-B for details of agents used).

o f1 WIN FACTOR: This factor measures how much better
YOLOBOT performs than OSLA and DO NOTHING, in
terms of win percentage (every game in GVGALI can be
won or lost).

e fa SCORE FACTOR: This factor measures how much bet-
ter YOLOBOT performs than OSLA and DO NOTHING
in terms of game score. Looking at the difference between
the performance of agents with various skill levels as an
indicator of game skill depth has been tried before in
adversarial games [13] and single player games [12].

e f3 DANGER FACTOR: This factor measures how close
the Al is to death on average throughout the game. The
danger score at a given frame is calculated by doing
m random roll-outs of length n, and seeing how many
of them end up in death. The DANGER FACTOR is

Algorithm 1 Meta Generator pseudo code. It optimizes level
generator parameters, returns the level with the highest fitness.

Input: Parameterised one-shot generator g
Input: Fitness function f

Input: Time budget ¢

Output: A GVGAI Level.

1: gPop < initialize Population(g)

2: [Pop < Empty

3: while time < ¢ do

4. generator < gPop.maxUCB()

5. level + generator.generateLevel()

6:  fitness < f(level)

7. [Pop.add(level, fitness)

8:  gPop.update(g,level)

9:  parents « rouletteSelect(\, gPop)
10:  of fspring < crossover(g, parents)
11:  of fspring.mutate()

12:  for child in of fspring do

13: levels < child.generate(n)
14: fitnesses « f(levels)
15: lPop.add(levels, fitnesses)

16: gPop.add(child, levels)
17:  end for

18: end while

19: level « [Pop.best()

20: return [evel

the average danger score for the round. While game
Al evaluations have been used before to estimate the
difficulty of games [19], danger should not be confused
with difficulty. An agent can have a 100% win rate, and
still experience a high sense of danger throughout the
game. Conversely, it can also experience no danger at
all, up until the point at which it loses the game.

e fi DANGER RATE FACTOR: This factor measures the
presence of danger rather than the degree of it. It returns
the percentage of time the Al is within reach of death,
i.e. any one of the danger-measuring roll-outs at a game
tick ends in death.

e f5 INTERACTION FACTOR: This factor measures how
many interactions take place between the avatar, its
spawned attacks (missiles, sword strikes), and the other
sprites in the level. The assumption is that having more
interactions is more interesting.

e fs UNIQUE INTERACTION FACTOR: It measures how
many unique types of interactions the avatar and its
spawned attacks have with the environment. The assump-
tion is that a player is more stimulated by a level that
encourages more of these interaction types to take place.

e f7 LENGTH FACTOR: If a level is solvable, it is desirable
that the solution takes longer. The assumption is that a
longer solution is less likely to feel trivial to the player.

e fs SOLVABILITY FACTOR: It indicates if any of the three



Al agents could solve the level in any of their attempts.

All factors (except fg) are measured over a number of sim-
ulations, and because the agent and the games are stochastic,
results may vary. The total fitness score of a level is calculated
according to Equation 2 (solvability is excluded), where w,,
is the weight of the n-th factor. Each individual factor is
normalized in the range [0,1], according to all other observed
values for that factor for the same game. The weights should
preferably be adjusted in accordance with human preference,
but, for the lack of such data, they were set, from w; to wrz,
as follows: (3,2,2,1,1,1,1).

22:1 fr * Wy
7
Y et Wn

This puts fitness in the range [0, 1]. If the level is unsolvable,
the fitness becomes fr — 1, putting it in the range [—1,0].
This is done to reflect that any solvable level is better than an
unsolvable level: the player should be able to win.

fL= 2

V. EXPERIMENTS

The goal of the experiments is to compare the performance
of the random and constructive generators against the Meta
Generator proposed in this paper, when provided with a 5
hour budget as in the GVGAI Level Generation competition.
Each of these 3 generators was set to generate levels for 3 Eh
is repeated 5 times. The experiments were performed on IBM
System X iDataPlex dx360 M3 Server nodes, where each had
one Intel Xeon E5645 processor core allocated to it, and a
maximum of 2GB of RAM of JVM Heap Memory.

A. Results

Figure 3 shows the average fitness (over 5 runs) of the best
level generated so far (the one that would be returned at that
point), by each of the generators. The difference between the
performance of the three generators depends on the game.

1) Butterflies: Butterflies is a simple game in which a ran-
dom spread of sprites can lead to a level that is challenging and
plays well. It therefore makes sense that the Meta Generator
only makes marginal gains on the baselines. When we analyse
the levels generated by each of the generators, it becomes
apparent that the small difference in fitness actually accounts
for the fact that the Meta Generator is able to build levels
of much larger size. The random and constructive generators
restrict the size of their levels because of the small number
of sprite types. A larger level makes for longer games, and
due to the Length Factor (f7) this adds to the fitness on
solvable levels. We see the larger levels produced by the
Meta Generator as more enjoyable for humans than the very
compact ones produced by the baselines.

2) Freeway: Freeway is a more complicated game. In
addition to also being stochastic, it has many more sprite types.
In addition to this, traditional Freeway levels are all structured
in a specific way: the car spawners are located in key places
in order for the game to be recognizable and make sense to
humans. While random scattering of sprites works well for
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Fig. 3: The average fitness of the best level of each generator
over the course of 5 hours of continuous generation. From top
to bottom: Butterflies, Freeway and The Snowman. Colored
area indicates standard deviations.

Butterflies, it does not for Freeway. The constructive generator
uses and builds in a specific way that is good for dungeon-
style maps, but it is not effective in Freeway as we can see
in Figure 3 b). From the lower middle fitness distribution in
Figure 5 we can see that the constructive generator produces
a considerable amount of low fitness (but playable) levels,
as well as some levels on par with the other generators.
Interestingly, when inspecting the final generation of Freeway
levels, the constructive generator is the only one that managed
to construct a level that is somewhat sensible (more on this
later). The Meta Generator and its PWGs have no way of
biasing the levels produced to have patterned structure and
spacing the sprites in a certain way, which is what we imagine
is most beneficial for Freeway.

3) The Snowman: The Snowman is the only puzzle game
out of the three. It is also the game where the largest difference
in fitness is observed. The Meta Generator outperforms the
constructive and random generators, who do not generate
any levels that are solvable by YOLOBOT. While the Meta
Generator starts out poorly as well, it explores different
generator parameter until it finds a playable level, and starts
using the parameters of the successful PWG as a basis for
further exploration. As can be observed in the right-most row
of histograms in Figure 5, this leads to not only one or two
playable levels, but a sizable population of playable levels.
Upon further inspection, it turns out that the levels generated
by the constructive and random generators are actually fairly



simple to solve for humans, but they are consistently too
large and too cluttered for YOLOBOT to solve. The Meta
Generator is the only one out of the three that manages to
create smaller, relatively uncluttered levels that YOLOBOT
can solve, because it is free to change the size of the level
and cover percentage of all the sprite types.

4) Summing up: The constructive generator brings a
stronger bias into its levels, and that seems to disadvantage
it slightly going up against the less biased random and Meta
generators. The random generator also has a strong bias in size
and cover percentages that disadvantages it in a situation like
this, where there is an opportunity to sample a large amount
of different combinations and test their fruitfulness. The Meta
Generator achieves a similar performance to random, although
outperforming both baselines in The Snowman.

B. Generated Levels

Observe in Figure 4 examples of levels returned at the
end of 5 hours of generation, by each of the generators.
For Butterflies, we can see how the size restrictions imposed
by the random and constructive generators limit them from
discovering the benefit of a larger level. For Freeway, we can
see that the basic idea of the game is completely deconstructed,
as the floor tiles where the goal and player can spawn (light
grey) are spread out completely, and are dangerously placed.
In Freeway levels, YOLOBOT is superhuman at avoiding fast
moving danger, so implementing a more human-like behaviour
with longer reaction time similar to [2] might help bias the
levels to be less hectic. The constructive generator (right)
surprised by creating one level where 3 out of 4 spawn points
are safe from traffic, but this is purely by chance. While the
levels generated by the Meta generator on the two other games
differ visually from the Population Generators, the similarity
between the Random and Meta on Freeway is striking. For The
Snowman, we observed that levels returned by the random and
constructive generators were generally cluttered and large. The
size is determined by the sprite set, and the percentage of the
board that is to be filled with sprites is not variable. The Meta
Generator tended to return sparser and smaller levels.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we describe a fitness evaluation function based
on several factors, which is used by 3 different generators to
evaluate the quality of generated levels in the General Video
Game Al framework (GVGAI): random, constructive and our
proposed Meta Generator. The Meta Generator builds upon a
parameterized version of the random generator and evolves its
parameters in order to produce better levels. The random and
constructive generators are tested in continuous runs over 5
hours (as per the GVGAI Level Generation competition rules)
in 3 GVGAI games, Butterflies, Freeway and The Snowman
and are shown to perform similarly or worse than the Meta
Generator (using the same budget), depending on the game.

The constructive generator brings a strong bias into its
levels, which seems to disadvantage it going up against the
Random and Meta generators. The Meta Generator gains in

Fig. 4: A sample of the best levels returned at the end of
5 hours. From top to bottom: Butterflies, Freeway and The
Snowman. From left to right: Meta, Random, Constructive.

fitness over both the Population Generators from its extra
flexibility, and this flexibility seems to have a larger impact in
games that are more difficult to produce levels for.

The next experiment lined up is to compare the performance
of the Meta Generator against a strong genetic level generator,
such as the original GVGAI genetic baseline [2], using com-
parable one-shot generators for population initialization. This
Meta Generator will be entered into the 2019 GVGAI Level
Generation competition, where it can be tested rigorously
against other generators. A detailed comparison with previous
competition entries is also considered for future work.

The parameter optimisation performed by the Meta Gen-
erator could be further improved. A more powerful method
such as The N-Tuple Bandit Algorithm (NTBEA) [15] [20]
could be used, which has been shown to work well for online
parameter tuning [21]. One line of work would be using a
population of NTBEAs larger than the thread pool. After a
thread completes a step on one NTBEA instance, the thread
picks which Meta Generator instance to work on next by using
UCB to select from those available.

The weighting of the factors in the current fitness function
could also be adjusted so that the fitness score aligns better
with human experience. Browne and Maire [22] focused on
human experience in their approach, which contributed to the
creation of the award-winning board game Yavalath. It can be
applied similarly to the evaluation of video game levels, by
extracting features of human play together with their explicit
preference indications for a level.
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Fig. 5: The fitness distributions of all generators on all games. Each row contains one generator, each column one game. From
top to bottom: Meta, Random, Constructive. From left to right: Butterflies, Freeway, The Snowman.
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