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Abstract—Rolling Horizon Evolutionary Algorithm (RHEA)
is an online planning method for real-time game playing; its
performance is closely related to the planning horizon and the
search cost allowed. In this paper, we propose to learn a prior
for RHEA in an offline manner by training a value network
and a policy network. The value network is used to reduce the
planning horizon by providing an estimation of future rewards,
and the policy network is used to initialize the population, which
helps to narrow down the search scope. The proposed algorithm,
named prior-based RHEA (p-RHEA), trains policy and value
networks by performing planning and learning iteratively. In
the planning stage, the horizon-limited search is performed to
improve the policies and collect training samples with the help of
the learned networks. In the learning stage, the policy network
and value network are trained with the collected samples to
learn better prior knowledge. Experimental results on OpenAI
MuJoCo tasks show that the performance of the proposed p-
RHEA is significantly improved compared to that of RHEA.

Index Terms—Rolling Horizon Evolutionary Algorithm, Re-
inforcement Learning, Covariance Matrix Adaptation Evolution
Strategy, MuJoCo tasks

I. INTRODUCTION

Games make an excellent domain for testing Artificial
Intelligence techniques, due to their varying complexity and
wide range of problems presented. In real-time game domains,
Rolling Horizon Evolutionary Algorithm (RHEA) [1], [2] has
been viewed as a suitable alternative to MCTS [3], [4], both of
which can be performed in real time with little or no domain
knowledge. Recent research in RHEA [5], [6] is advancing
this method to produce better results than the vanilla version
and get closer to the dominant performance of MCTS.

RHEA approach encodes a sequence of actions into an indi-
vidual, then adopts Evolutionary Algorithms (EA) to optimize
the action sequences directly. The individuals are evaluated by
simulating actions ahead using a Forward Model (FM). After
the population has been evolved for some predefined budget,
the agent selects the first action of the best individual as the
move to take in the real game. Within the same budget of
FM calls, the performance of RHEA is closely related to its
planning horizon H . A shorter planning horizon allows RHEA

* Corresponding author. The code and experimental data of the proposed
p-RHEA algorithm are available at https://github.com/for-xintong/p-RHEA.

to iterate more generations, thus has more opportunities to
find a better solution. But at the same time, it considers only
the short-term rewards, which probably weaken the agent’s
performance as the agent may be too greedy to overlook the
long-term rewards. A longer planning horizon allows RHEA
to plan from a more global perspective, but it can only iterate
a few generations and the search is less accurate.

To tackle the above problem, in this paper, an algorithm
named prior-based RHEA (p-RHEA) is proposed to enhance
RHEA in two ways. First, a value network is introduced to
estimate the future rewards after H steps, in order to provide
a long-term view with limited planning horizon. Second, a
policy network is trained to initialize the population for RHEA,
which can narrow down the search to high-probability actions
and save the search budget. These two neural networks are
trained by performing planning and learning in an iterative
way. In each cycle, p-RHEA performs planning in simulated
games with the prior knowledge provided by policy and value
networks, while the samples generated in search are collected
to train the neural networks to learn better prior knowledge.
By iteratively performing planning and learning, p-RHEA
continuously gets better samples and better neural networks.

The rest of this paper is organized as follows: Section II
briefly introduces the existing methods for games. Section III
introduces the background closely related to our work. Section
IV shows the details of the proposed p-RHEA algorithm, and
section V gives the experimental setup and results analysis.
Finally, further discussions are presented in Section VI.

II. RELATED WORKS

A. Model-based planning methods

Model-based planning approaches do not need training but
require a Forward Model to allow the agent to simulate
before taking a move. MCTS [3], [4] is a typical model-based
planning method. In each simulation iteration, it performs four
steps: selection, expansion, evaluation and backup. When the
iterations have finished, the action with the highest average
reward or the maximum number of visits will be executed.
Vanilla RHEA [1], [2] optimizes a series of fixed-length
action sequences with corresponding cumulative rewards as
their fitness, then selects the first action of the best individual
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as the move to take. Some enhancements have been intro-
duced to the vanilla version in [5], including bandit-based
mutation, statistical tree, shift buffer and rollout. Furthermore,
dynamic length rollout is proposed in [7] to tackle sparse
rewards. And two different seeding technologies, One Step
Look Ahead Seeding (1SLA-S) and Monte Carlo Tree Search
Seeding (MCTS-S), are explored in [6]. The results suggest
that both seeding variants offer a significant improvement in
performance compared with random initialization.

B. Model-free learning methods
Model-free learning approaches need training but do not

require a Forward Model. The agent always goes from a
reset state to a terminal state, then starts over. Model-free
reinforcement learning (RL) methods are typical representa-
tives of this category. Deep Q-network (DQN) [8] is a value-
based RL method; it aims to approximate the optimal action-
value function to make decisions. In contrast to value-based
methods, policy-based RL methods such as Asynchronous
Advantage Actor-critic (A3C) [9] and Proximal Policy Op-
timization (PPO) [10] directly parameterize the policy and
update the parameters by performing gradient ascent on the
expected value of the total cumulative reward. There are
also gradient-free methods to optimize the parameters of the
policy network, such as CEM [11] and NES [12]. These
population-based approaches often face the problem called
”curse of dimensionality”, because each individual encodes
a deep neural network. ERL [13] and CEM-RL [14] combine
gradient-free and gradient-based methods for policy search.
They are hybrid algorithms that leverage the population of an
EA to provide diversified samples to train an RL agent, and
reinsert the RL agent into the EA population periodically to
inject gradient information into the EA.

C. Combined methods
Combined approaches here refer to methods that combine

planning and learning, which can take advantage of both
model-based and model-free methods. They learn from the
samples generated by model-based planning, and the knowl-
edge gained can, in turn, be used for a better search. AlphaGo
[15] and AlphaGo Zero [16] use a neural network to guide
the search of MCTS in the game of Go. The neural network
improves the strength of tree search, resulting in higher
quality move selection. POLO [17] combines local trajectory
optimization with global value function learning and explains
how approximate value function can help reduce the planning
horizon and allow for better policies beyond local solutions.
Model-based RL methods can also be put into this category.
To leverage planning in unknown environments, PlaNet [18]
and SimPLe [19] present a model-based agent that learns a
latent dynamics model from image observations and chooses
actions by fast planning in latent space.

III. BACKGROUND

A. Rolling Horizon Evolutionary Algorithm
Here we introduce the main idea of RHEA approach and the

implementation details. In each state s, RHEA can be viewed

as facing a trajectory optimization problem:

π̂(s) = argmax
a0:H−1|s0=s

E
[H−1∑
t=0

γtr(st, at) + γHrf (sH)

]
(1)

where r(st, at) represents the reward obtained by performing
action at under state st and rf (sH) represents a terminal or
final reward function which can be estimated by performing
rollouts. γ ∈ (0, 1) is the discount factor. A smaller γ means
greater weights are given to the more recent rewards. We
encode a sequence of actions into an individual and then
use a specific EA to optimize the policy in (1). Fitness
values are calculated by executing the sequence of actions
of the individual using the Forward Model, until all actions
are executed or a terminal game state is reached. As the
sequence is optimized, denoted by a∗0:H−1, the first action a∗0
is executed, and the procedure is repeated.

In the initialization stage of the next cycle, a shift buffer
technology [5] is adopted: each action sequence in the current
population is shifted one position to the left and a new random
action is added to the right to form a new individual.

B. Policy evaluation and policy improvement

Here we introduce some basic concepts of policy iteration
[20], which are necessary for our p-RHEA. We first introduce a
policy π(s), it inputs the current state s and outputs the action
that should be taken under state s. Then we introduce a value
function Vπ(s) that estimates how good the state s is under
policy π(s). It should be noted that a value function is defined
with respect to a particular policy. The value of state s under
policy π(s) is the average discounted reward accumulated by
following the policy from the state:

Vπ(s) = E
[ ∞∑
t=0

γtr(st, π(st))
∣∣ s0 = s

]
(2)

Given the policy, we can update its value function in any
state s, which is called policy evaluation:

V newπ (s) = E
[
r(s, π(s)) + γVπ(s

′
)

]
(3)

where s
′

is the state encountered after state s under policy
π(s). The purpose of computing the value function for a policy
is to help find a better policy:

πnew(s) = argmax
a

E
[
r(s, a) + γVπ(s

′
)

]
(4)

This process of getting a new policy that improves on an
original policy, by making it greedy with respect to the value
function of the original policy, is called policy improvement.
Once a policy π(s) has been improved using Vπ(s) to yield a
better policy πnew(s), we can then compute V newπ (s) and use
it again to yield an even better policy. We can thus obtain a
sequence of improved policies and value functions. This way
of finding an optimal policy is called policy iteration.



IV. METHOD

As mentioned before, the proposed p-RHEA method has
two neural networks to learn and store prior knowledge
compared to RHEA approach. The policy network p(a|s; θ)
takes the current state as input and outputs the probability
distribution of the action that should be taken under the state.
The value network Vπ(s; θv) also takes the current state as
input but outputs a scalar which estimates the expected future
cumulative reward from the state. We use θ and θv to represent
the parameters of the policy network and value network,
respectively. These two neural networks are initialized to
random weights, and we do not share parameters between
policy and value networks. The proposed p-RHEA method
consists of two stages: training (Section IV-B) and real play
(Section IV-A).

A. Online planning with the learned prior knowledge

Given the policy network and value network, we can run
p-RHEA online, similar to the RHEA process. The objective
of online planning is shown as follow:

π(s) = argmax
a0:H−1|s0=s

E
[H−1∑
t=0

γtr(st, at) + γHVπ(sH ; θv)

]
(5)

where s is the current state and a0:H−1 represents the action
sequence p-RHEA is trying to optimize. After optimization,
the first action a0 will be performed at current state, then
p-RHEA continues to the next cycle. The online planning
process of p-RHEA is concluded below:

1) Initialize the population using the prior probability pro-
vided by the policy network. Specifically, the current
state s0 is first fed into the policy network to obtain
a probability distribution, then an action a0 is sampled
from the distribution and executed to reach the next state
s1. After H steps, a sequence of actions is sampled,
which can be encoded into an individual. This process
is repeated for NP (population size) times to get a
population.

2) Evolve the population with a specific EA. Individuals
are evaluated by performing the sequence of actions in
the simulated environment. The fitness of an individual
is defined as R =

∑H−1
t=0 γtr(st, at) + γHVπ(sH ; θv).

Future rewards after H steps are estimated by the value
network.

3) When the evolution is complete, we record the best
individual a∗0:H and its fitness R∗. Then we take a step
a∗ = a∗0, and the game moves to the next state.

4) Repeat the above steps until a terminal state is encoun-
tered, which indicates the end of the game.

We use CMA-ES [21] for action sequence optimization,
which utilizes a multivariate Gaussian distribution to model
the correlation between variables and is proved to perform
well on continuous optimization problems.
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Fig. 1. High level training schematic of p-RHEA, highlighting the combina-
tion of planning (green) and learning (yellow)

B. Offline training to learn better prior knowledge

The training flow of the proposed p-RHEA approach is
shown in Fig. 1, it performs planning and learning in an itera-
tive way. In each simulation cycle, planning is first performed
with the prior knowledge provided by policy and value net-
works. The sample pair (s, a∗, R∗) generated by the search is
stored into a replay buffer D for training, with old experiences
discarded if the buffer becomes full. The experience replay
mechanism used here can remove correlations in the sample
sequence [8]. From the perspective of RL, lookahead search
can be similarly considered to be both a policy improvement
operator and a policy evaluation operator: After the planning
stage, we get an improved policy for state s and a new value
estimate of state s under policy π(s).

πnew(s) = a∗, V newπ (s) = R∗ (6)

After every T steps of planning in the game and collecting
experience, the policy network and value network are updated
by learning from minibatches sampled uniformly from the
replay buffer. In the learning stage, the parameters of the
policy network θ are adjusted to maximize the similarity of
the probability distribution p(a|s; θ) to the optimized action
a∗. The parameters of the value network θv are adjusted to
minimize the error between the new value estimate R∗ and the
old value estimate Vπ(s; θv). Specifically, the neural networks
are trained by RMSProp optimizer [22] on a loss function that
sums over the maximum likelihood loss and mean squared
error, respectively:

Loss = E
[
− log p(a∗|s; θ) + 1

2
(R∗ − Vπ(s; θv))2

]
(7)

The offline training of p-RHEA is a closed loop process. In
the planning stage, the prior knowledge provided by the policy
network and value network is used to achieve faster and more
global search, while the sample pairs generated by search can
in turn be used to train the networks in the learning stage
to provide better prior knowledge. Through such iterations,



we continually get better samples and better prior knowledge,
and finally we can expect far better performance than in the
beginning.

C. Summary of p-RHEA algorithm

The proposed p-RHEA algorithm has two distinct charac-
teristics. (i) Policy prior: using a policy network to initialize
the population. The initial population of p-RHEA is guided
in a more promising region (may also get stuck in local
optimum), thus can save many search costs compared to
random initialization. Unlike seeding technologies such as
1SLA-S and MCTS-S, this method consumes mush less FM
calls. But our method requires forward propagation of the
policy network to add the prior knowledge into p-RHEA,
which is not as fast as the shift buffer technology. (ii) Value
prior: using a value network to estimate future rewards. With
the help of the value network, p-RHEA can plan from a more
global perspective and skip some local optimum while limiting
the planning horizon. Compared to the rollout technology, our
method does not require additional FM calls.

p-RHEA requires an additional training stage compared to
RHEA, but once training is completed, p-RHEA is expected
to achieve better performance with less search cost and shorter
planning horizon in real play stage. Two tricks are used when
training our p-RHEA. First, the value prior is added after a
certain number of samples (more than or equal to Vstart) have
been collected, before which Vπ(sH ; θv) can be considered
equal to zero. This ensures the initial search will not be biased
due to random initialization of the value network. A randomly
initialized policy network does not introduce bias into the
search and is effective from the beginning. Second, after the
sequence a∗0:H−1 is optimized, not only the first action but the
first T = bH/2c actions will be executed. Correspondingly,
the sample pairs {(st, a∗t , R∗t ), t = 0, 1, .., T−1} will be added
to the replay buffer. One can refer to Algorithm 1 in the
Appendix for more details. This change only occurs during
the training stage, with the aim of speeding up the collection
of samples and reducing the time required for training. The
training performance of p-RHEA may be affected as a result,
but good prior knowledge can still be learned for real play, as
shown in the next section.

V. EXPERIMENTAL STUDIES AND RESULTS

In this section, we perform the evaluation and comparison
of the proposed algorithm in several continuous control tasks.
These tasks are simulated with the OpenAI MuJoCo physics
engine [23] and aim to control the movement of various
multi-joint robots, such as ant, swimmer, walker, etc. The
states of the environment are the generalized positions and
velocities of the simulated robots. At each step, the controller
needs to control the simulated robot by setting the torques
of the joints (i.e. each action is a real-valued vector), then
the environment will simulate to the next state and return a
reward. The controller has an access to the Forward Model,
but the analytical expression of the reward is unknown.

A. Comparing p-RHEA with RHEA

RHEA with shift buffer is chosen as the baseline of
this study. In order to compare p-RHEA with RHEA more
thoroughly, two RHEAs with different planning horizons are
implemented. The former one has a planning horizon of 50 and
a budget of 25000 FM calls, in order to reflect the extreme
performance of RHEA. The latter one has a planning horizon
of 20 and a budget of 4000 FM calls, in order to reflect
the performance that is achievable in real time. CMA-ES
is selected for trajectory optimization with a population size
(NP ) of 10. The means and standard deviations (calculated
from 25 independent runs) of these two RHEAs are listed in
columns 2 and 3 of Table I, respectively.

The p-RHEA approach is implemented using CMA-ES as
well, but only looks ahead 20 steps and is given a budget of
1000 FM calls. Considering that the forward propagation of
the neural networks in p-RHEA takes some time, such a setting
ensures that the proposed p-RHEA algorithm is faster in the
real play stage than RHEA (H = 20). It is worth noting that
we distinguish the training budget from the playing budget
in p-RHEA, because the training stage can be done offline
and the game itself has some randomness at initialization.
To represent the policy, we use a fully-connected multilayer
perceptron (MLP) with two hidden layers of 128 units and
ReLU nonlinearities to output the mean vector of the Gaussian
distribution. The log-standard deviation is parameterized by a
global vector independent of the state, as done in [24], [25].
The value network is also constructed with two hidden layers
of 128 units and ReLU nonlinearities to output a scalar. For
other parameters about the p-RHEA algorithm, please refer to
Table II in the Appendix.

The training curves of p-RHEA, calculated from 5 indepen-
dent runs, are shown in red in Fig. 2. As a comparison, we
show the performance of RHEA (with shift buffer technology)
in blue in Fig. 2. Note that the score curves of RHEA are
horizontal because RHEA does not require learning. In order
to be consistent with the setting of p-RHEA in the training
stage, RHEA also optimizes a 20-step trajectory and then
takes the first 10 steps. We can see that the performance of
p-RHEA quickly surpasses that of RHEA through training,
which means useful prior knowledge is being learned by the
neural networks.

Then we test the performance of p-RHEA for real play. At
this time, p-RHEA optimizes a 20-step trajectory and only
takes the first action to execute. The means and standard
deviations of 25 runs with the learned neural networks are
listed in column 7 of Table I. To determine the statistical
significance of the differences in performance, we performed
a Wilcoxon rank-sum test [26] with Holm p-value adjustment
and significance level of 0.05. The results that are significantly
better than others are marked in bold.

When comparing the performance of RHEA with different
search budgets, we can see that the results of looking ahead
50 steps are significantly better than those of looking ahead
20 steps, except on the Ant-v2 task. As mentioned before, a



TABLE I
PERFORMANCE OF P-RHEA AND COMPARISON ALGORITHMS ON MUJOCO TASKS

RHEA+shift
H=50

RHEA+shift
H=20 policy only p-RHEA

(without value)
p-RHEA

(without policy)
p-RHEA

H=20
Ant-v2 2681± 299 4891± 75 593± 297 2593± 244 2011± 265 3229± 202

HalfCheetah-v2 17586±1481 6857± 379 103± 43 2169± 518 2916± 416 3162± 411
Hopper-v2 439± 82 285± 14 85± 53 339± 33 1466± 132 2795± 727

Humanoid-v2 2135± 1064 716± 113 152± 35 602± 96 3757± 1405 4531± 878
InvertedPendulum-v2 1000± 0 321± 257 695± 291 374± 223 172± 164 1000± 0

InvertedDoublePendulum-v2 3056± 1828 607± 118 5894± 4248 852± 41 375± 128 9344± 3
Swimmer-v2 52± 4 43± 2 130± 3 46± 2 71± 3 138± 4
Walker2d-v2 1089± 560 182± 39 308± 84 221± 65 2257± 1275 3901± 639

Fig. 2. Training curves of p-RHEA on the MuJoCo tasks (red), with the
performance of RHEA as the control group (blue). The horizontal axis
represents the number of FM calls (in millions) and the vertical axis represents
the game score.

longer planning horizon allows RHEA to plan from a more
global perspective and is expected for better performance. But
for Ant-v2 task, it has eight joints to control. When looking
ahead 50 steps, CMA-ES has to deal with a 400-dimensional
problem which is quite difficult to optimize, and this may be
the reason why the RHEA with longer planning horizon is
worse than that with shorter planning horizon.

When comparing the performance of p-RHEA and RHEA,
we can see that p-RHEA is generally better than RHEA
approach, although under fewer FM calls. p-RHEA can benefit
from the value prior and policy prior, which allow it to plan
from a more global perspective and with less search cost. For

example, without the global information provided by policy
and value networks, the simulated robot controlled by RHEA
will soon fall down due to seeking for high short-term rewards
on the Hopper-v2 task and get trapped in local optimum
due to avoiding big negative rewards on the Swimmer-v2
task. These two are typically tasks that involve deceptive
rewards. In contrast, p-RHEA performs well on these two
tasks by taking advantage of the prior knowledge learned,
a video demonstration of how p-RHEA acts on the Hopper-
v2 and Swimmer-v2 tasks is available here1. On the Ant-v2
and HalfCheetah-v2 tasks, however, p-RHEA behaves worse
than RHEA. We checked carefully and found it is because
p-RHEA looks ahead 20 steps and then take the first ten
steps instead of the first one during training. This trick, as
mentioned before, can reduce the time required for training.
Taking ten steps per cycle performs well on other tasks, but on
the Ant-v2 and HalfCheetah-v2 tasks, it makes the simulated
robots sometimes fail to turn over. A video demonstration of
how the number of steps taken can affect the performance on
the HalfCheetah-v2 task is available here2. In conclusion, p-
RHEA can benefit from the value prior to identify deceptive
rewards and benefit from the policy prior to narrow down
the search to high-probability actions, and finally shows a
boost in performance over RHEA enhanced with shift buffer
technology.

B. Performance of p-RHEA with different components

In order to study the role of the policy network and value
network in p-RHEA separately, we evaluate three variants of p-
RHEA. The first variant (V1) only uses the policy network for
decision making. Specifically, the current game state is input
into the policy network to obtain a Gaussian distribution of the
action, and then the mean of the Gaussian distribution is taken
as the next action to perform. This method does not require
online planning and does not consume FM calls. The second
variant (V2) removes the value network from p-RHEA, that is,
set Vπ(sH ; θv) = 0. All other parameters are consistent with
p-RHEA. The third variant (V3) removes the policy network
from p-RHEA, which means that its population is randomly
initialized. This method is actually a bit problematic because
a value function is defined with respect to a particular policy.
According to definition (2), Vπ(s; θv) represents the average

1https://github.com/for-xintong/p-RHEA-video1
2https://github.com/for-xintong/p-RHEA-video2



discounted reward accumulated by following the given policy
from the state s, so it cannot be used without the given policy
or with a random policy. We list the results of the above
three variants in the 4-6 columns of table I. The means and
standard deviations are derived from 25 independent runs with
the learned neural networks.

We can draw some useful conclusions. (i) The performance
of V1, V2, and V3 is far worse than that of p-RHEA, which
is natural because the policy network and value network
are trained to work together. (ii) The performance of V2 is
closer to that of RHEA (H = 20) compared to V1. For
example, in the InvertedDoublePendulum-v2 and Swimmer-v2
tasks, although the policy networks are able to provide good
population initialization, V2 will still choose the action that
can maximize the short-term reward (thus result in a low game
score) due to the lack of an estimate of future rewards in the
optimization objective. (iii) V3 behaves relatively poorly when
V1 performs well, such as on the InvertedDoublePendulum-
v2 and Swimmer-v2 tasks. On these two tasks, the variance
of the Gaussian distribution output by the policy network is
small, so the policy itself is good enough to make decisions.
But in the later stage of training, only a small part of the
space is experienced and added to the replay buffer to train
the value network. For many randomly initialized states, the
value network is likely to give an unreliable value estimate
and therefore V3 does not perform well. (iv) Conversely, V3
performs relatively well when V1 is poorly performing, such
as on the Hopper-v2 and Humanoid-v2 tasks. On these two
tasks, the variance of the Gaussian distribution output by the
policy network is large, so the policy itself is not good enough
to make a decision. But diverse samples are experienced and
used for training the value network, so the value network
learned is sufficient to evaluate a large part of the states in
space. In other words, the learned value network can work
well with a random policy.

C. Visualizing the role of prior knowledge

In order to visualize how the prior knowledge can help
p-RHEA make better online planning, we draw the reward
curves of the p-RHEA and RHEA (H = 50) on the Swimmer-
v2 task, as shown in Fig. 3. The red lines represent the
cumulative reward, and the blue lines represent the single
step reward. Each single step reward is multiplied by 10 for
better visualization. In addition, we also show the pose of the
simulated robot at key time points.

An intuitive impression is that p-RHEA learned a fixed
swimming pattern with the help of prior knowledge. The re-
wards obtained by p-RHEA are very periodic, but the rewards
of RHEA seem to be irregular. For better analysis, we show
the reward function of Swimmer-v2, which consists of two
parts: a linear reward for forward progress vx and a quadratic
penalty on joint effort u.

r = vx − 10−5||u||2 (8)

The swimming cycle of p-RHEA can be divided into three
stages. (i) Closing the legs, which will make the swimmer

p-RHEA  H=20

RHEA  H=50

Fig. 3. Compare the rewards of p-RHEA and RHEA on Swimmer-v2

accelerate and result to a big positive reward. (ii) Floating,
which uses inertia to advance and corresponds to a small
positive reward. (iii) Opening the legs, which will produce
a large joint effect. Due to the low speed, the penalty item
plays a major role, and the environment returns a big negative
reward. The actions of opening the legs which currently appear
to be bad are chosen because the agent is informed by the
value network that there will be greater positive rewards in the
future. For example, when the cumulative reward is about 33,
the swimmer controlled by p-RHEA jumps out of the reward
trap with just one swimming cycle. In contrast, the swimmer
controlled by RHEA does not open its legs significantly, so
it is trapped in the local optimum, and the final swimming
distance is very short.

VI. CONCLUSIONS AND FURTHER DISCUSSIONS

In this paper, we proposed a new method called p-RHEA
for real-time game playing, which combines the strengths of
planning and learning and shows clear advantages in continu-
ous control tasks. In the training stage, p-RHEA iteratively



executes planning and learning in simulated games. With
such iterations, p-RHEA is constantly learning from its own
experience and performing better and better. In the real play
stage, p-RHEA uses the learned value prior to make more
global planning while with a shorter planning horizon. In
addition to this, p-RHEA uses the learned policy prior to
narrow down the search to more promising region and can
save considerable search costs.

In the experimental part, we first compared the RHEA
and p-RHEA methods. Benefiting from the prior knowledge
learned, p-RHEA can achieve better performance than RHEA
with much less budget of FM calls, especially on tasks with
deceptive rewards. Then the role of the policy network and
value network in the p-RHEA algorithm is studied separately.
We explained that the value network is only responsible
for evaluating the states that policy network recommends
to experience, so these two neural networks should work
in coordination to show their power. Finally, we visually
demonstrated that the prior knowledge learned can help p-
RHEA plan from a more global perspective and jump out of
local optimums on the Swimmer-v2 task.

Concerning with the future work, we are trying to test
the performance of our p-RHEA algorithm in more complex
environments like video games and two-player games. In
addition, seeking for a better loss function seems to be a quite
promising direction. Considering that CMA-ES can return not
only the optimized action sequence but also the distribution
of these actions, we can try cross-entropy loss for the update
of the policy network and add additional constraints to make
the policy update smoother.
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APPENDIX

TABLE II
P-RHEA HYPERPARAMETERS USED ON MUJOCO TASKS

Hyperparameter Value
Planning horizon (H) 20

Dimension (D) H * action dim
Population size (NP ) 10

Budget of FM calls (B) 1000
Steps taken per cycle (T ) 1

Discount factor (γ) 0.99
Minibatch size 32

Replay buffer size (V ) 20000
Replay start size (Vstart) 5000

Training times per cycle (NT ) 50
RMSProp learning rate 3×10−3

RMSProp decay factor 0.99
Gradient clipping 0.5



Algorithm 1 Pseudocode of p-RHEA for each cycle
Require: Current environment state s, Policy network p(a|s; θ), Value network Vπ(s; θv),

Budget of FM calls B, Planning horizon H , Population size NP ,
Discount factor γ, Training times NT , Replay buffer D, Replay start size Vstart

1: Initialize the parameters of CMA-ES
2: while not exceeding the budget B do
3: if it is the first generation of p-RHEA then
4: Initialize NP H-steps action sequences using the policy network
5: Encode each action sequence into an individual to form a population
6: else
7: Use the mean vector and covariance matrix of CMA-ES to generate a population
8: end if
9: for i← 1 to NP do

10: Set environment state, i.e. s0 = s
11: Decode individual i into an action sequence, {a0, a1, ..., aH−1}
12: for t← 0 to H − 1 do
13: Interact with the environment: rt, st+1 = Env.step(at|st)
14: if st+1 is a terminal state then
15: break
16: end if
17: end for
18: Length of legal action sequence: L = t+ 1

19: RL =

{
0 , sL is a terminal state || size of buffer D < Vstart

Vπ(sL; θ), otherwise
20: for t← L− 1 to 0 do
21: Rt = rt + γRt+1

22: end for
23: Use R0 as the fitness of individual i
24: end for
25: Select µ = bNP/2c elite individuals to update the parameters of CMA-ES
26: end while
27: Record the optimized action sequence {a∗0, a∗1, ..., a∗L∗}, state sequence {s0, s1, ..., sL∗}and reward

sequence {R∗0, R∗1, ..., R∗L∗} found by CMA-ES
28: Steps taken per cycle T = 1

(for training, set T = max{1, bL∗/2c} to speed up the collection of samples)
29: Set current environment state s = sT
30: Put sample pairs {(st, a∗t , R∗t ), t = 0, 1, .., T − 1} into the replay buffer D
31: for j ← 1 to NT do
32: if size of buffer D ≥ Vstart then
33: Randomly sample a minibatch from the replay buffer D
34: Train the policy network and value network based on the loss function (7)
35: end if
36: end for
37: return The current environment state s


