
978-1-7281-1884-0/19/$31.00 ©2019 IEEE

Level Graph – Incremental Procedural Generation

of Indoor Levels using Minimum Spanning Trees

Bartosz von Rymon Lipinski

Game Tech Lab

Nuremberg Institute of Technology

Nuremberg, Germany

bartosz.vonrymonlipinski@th-nuernberg.de

Johannes Roth

Mimimi Games GmbH

Munich, Germany

j.roth@mimimi.games

Simon Seibt

Game Tech Lab

Nuremberg Institute of Technology

Nuremberg, Germany

simon.seibt@th-nuernberg.de

Dominik Abé

Mimimi Games GmbH

Munich, Germany

d.abe@mimimi.games

Abstract—Procedural generation of virtual worlds is an

important aspect of game development since decades, typically

for increasing replayability or for speeding up the level creation

process. However, the utilization of this potential has always

been a great challenge due to the difficult controllability of the

underlying algorithms or limitations to specific level geometries,

like 2D regular structures. In this paper, we present a novel

approach for semi-automatic generation of a wide variety of

2D/3D corridor and room systems. The underlying processing

pipeline is based on a separation between a user-guided

generation of a graph-based abstract level structure and a fully-

automatic construction of the corresponding geometry using a

pre-modeled component library. The core algorithm is built on

the computation of an extended minimal spanning tree, which

can be controlled by a set of intuitive vertex and edge

parameters. First experimental results have shown that our

incremental generation pipeline allows the efficient creation of

complex indoor levels, minimizing limitations on level and game

designers’ creativity.

Keywords—Procedural content generation, level design, game

development, graph algorithm, geometry generation

I. INTRODUCTION

Video game worlds are becoming more and more
complex, driven by advances in game engineering, high-
performance graphics hardware and increasing demands on
player experience [1]. As an example, Rockstar Games’ „Red
Dead Redemption 2“ required about eight years of partly
manual development time for the game content [2]. One
consequence for game development companies is thus the
growing challenge between meeting high-quality
requirements and achieving reasonably short production
times. This makes automation techniques for content creation
more and more important. In this work, we therefore
concentrate on procedural world generation and in particular
on indoor levels, consisting of corridors and interconnected
rooms. The first procedural level generation methods in games
date back to the 1980s, but these first solutions were difficult
to control for non-expert users [3, 4]. Incremental procedural
improvements of the level design were not practically feasible,
so that usually time-consuming manual post-processing was
still necessary [5]. In addition, many of the techniques were
limited to simple 2D mazes or planar dungeons, so that more
complex or three-dimensional game worlds could only be
implemented by complicated assembling of individually
generated fragments, which sometimes led to restriction in
creativity [6]. One example is Bethesda Game Studios’ highly
rated title “The Elder Scrolls IV: Oblivion”, partly criticized
for its repetitive and generic dungeon design [7].

Our approach implements an iterative procedural
generation pipeline based on a graph data structure, called the
level graph. It represents the abstract model of a static indoor
level: Vertices correspond to positions of junctions and rooms,
edges to connecting hallways. Generation takes places within
a user-defined hull mesh, which can be any 3D model, e.g.
from a simple bounding box for a rectangular maze to a closed
terrain model that is supposed to contain a mine level with
multiple floors. Using hull meshes makes it possible to take
advantage of the “focus-in-context” principle: After each
iteration the user gets the possibility to adjust the current result
via regeneration, manual modification or to concentrate on
another local area of the graph [8]. The structure of the level
is defined by the execution of one or a series of the following
main graph algorithms: 1. construction of a fully connected
random base graph, 2. computation of a minimal spanning tree
(MST), and 3. insertion of cycle-forming edges. Using such a
multistep process allows to control the generation by a set of
user-prioritized vertex and edge parameters that can be
mapped to easily understandable, yet finely structured
geometric properties. Examples are angles, lengths and
variables that affect the distribution of individual graph
elements. Parameter violations and mutual geometric
intersections are mathematically modeled as edge weights and
implicitly resolved in the computation of the MST, which
gives us a basis for a level that is as violation-free as possible.

The final part involves the construction of the geometric
representation of the level by converting the level graph into a
polygonal model. This process requires a set of pre-modeled
3D components, each labeled e.g. as a room, corridor or door.
It is executed fully automatically, including stitching of
multiple corridor components to cover long hallways and
constructing room entrances using Boolean operators from
Constructive Solid Geometry modeling [9, 10].

After presentation of the related work in the following
section, a more detailed description of our processing pipeline,
including the corresponding generation parameters, can be
found in section 3. The subsequent topics comprise the
implementation of our prototype in the Unity 3D game engine
and the presentation of qualitative and quantitative results in
section 4 [11]. We conclude our paper with a final discussion
in section 5, followed by an outlook on future work.

II. RELATED WORK

The techniques of procedural content generation in game
development are mostly restricted to specific types of world
elements. For example, previous approaches are used for the
generation of landscapes, vegetation, game rules or mechanics
[5]. Especially for the procedural generation of indoor maps

numerous different approaches already exist: Dormans and
van der Linden et al. use generative graph grammar to create
room and corridor systems [12–14]. Johnson et al. use cellular
automata to generate infinite cave levels [15]. Search-based
evolutionary algorithms for dungeon generation were also
investigated by different researchers [16–20]. Roden and
Parberry proposed a constrained-based pipeline for generation
of underground levels using sub-graph topologies [21].
Hilliard et al. developed two other algorithms, they called
Span* and Growth [22]: The first one combines the minimal
spanning tree computation with A* search. The second
approach is based on simultaneous expansion of room and
hallway elements. Both algorithms are only designed for
array-based 2D-tile maps.

Linden et al. surveys the current state of research regarding
procedural generation of dungeons, identifying 3D content as
the less investigated topic [6]. Only a few researchers address
this challenge, but their solutions are ad-hoc, implemented
only for a particular game [14, 21]. The survey also points out
another shortcoming of most of the discussed methods:
Typically, the parameters for controlling the procedural
generation are hard to understand for non-expert users and
require a deep technical understanding, like choosing the
appropriate fitness function for evolutionary optimization
[23]. Another recent survey, which however only focuses on
2D maps, can be found in the work of Monaghan [24].

The aforementioned approach of Roden and Parberry
shares most similarities with our work [21]: Their generation
process creates levels using also undirected graphs embedded
in 3D space. Constraints on the graph topology are used to
control the generation. In contrast to our approach, graph
nodes are utilized to place complete, prefabricated geometry
sections of the target level. Other differences that characterize
our work are a wide variety of control parameters, a pipeline
supporting incremental generation and the possibility to
combine procedural content with manually placed geometry.

III. PROCEDURAL LEVEL GENERATION PIPELINE

In the following sections, we describe the individual steps
for the computation of the level graph data structure, followed
by the generation of the final geometric representation. Each
of the steps can be repeated as often as desired. Thereby, it is
possible to focus processing on specific parts of the structure
using a bounding volume that is defined by a three-
dimensional hull mesh. Graph elements can also be added,
removed, connected or modified manually, e.g. by setting a
vertex at a specific position in the level that must be reachable
by the player in any case.

A. Generation of the Base Graph

The base graph is used to describe the first abstract
structure of the indoor level, where vertices are later mapped
to rooms and edges to corridors. The base graph does not yet
represent the final appearance of the level: It is randomly
connected and contains just all possible candidate edges, from
which the definite ones are then extracted in the next pipeline
step. Its vertex set is generated automatically using jittering
[25]. For this purpose, the current hull mesh is overlaid with
an axis-aligned 3D grid. Then, graph vertices are instantiated
randomly within the jitter cells and clipped w.r.t. the hull
surface (and manually placed 3D models, if available). This
process is determined by the following key parameters,
mainly for controlling the density and irregularity rooms or
junctions of the level: (a) 3D resolution of the grid,

(b) probability for the instantiation of a vertex in a cell and
(c) maximum vertex distance to the cell center. To create
levels with a higher degree of irregularity, it is necessary to
choose a lower grid resolution. However, in order to still
achieve high vertex densities in such cases, the following two
additional parameters are available to the level designer:
(d) number range for instantiation of multiple vertices per cell
and (e) maximum count of retries for failed clipping tests with
the hull or user models.

The construction of the edge set is based on a growth
algorithm, which starts from an arbitrary or manually defined
seed vertex. It successively selects random vertices as targets
for undirected edge connection from a nearest neighbor set.
This set is recreated locally each time for the current source
vertex. To avoid construction of equivalent edges, subsequent
neighbor sets are built only from remaining graph vertices,
i.e. that have no connection to the current source vertex.
Growth is carried out using breath-first traversal [26]. This
results in potentially fewer geometric intersections due to a
more balanced edge expansion (Figure 1). To guarantee full
graph connectivity, the algorithm only terminates when the set
of remaining vertices becomes empty. A special case are
vertices that have been placed manually on a 3D user model.
All such vertices that are attached to the same model are
interpreted as room entrances and assumed as implicitly
interconnected (Figure 2, left). The edge growth process is
ruled by the following parameters, primarily for controlling
the density, spatial expansion and angular spreads of corridors
of the later level: (a) minimal and maximal size for the nearest
neighbor sets, (b) vertex degree range, (c) minimal and
maximal angle between incident edges and (d) between edges
and the 3D ground plane.

As an example, setting both angle interval limits that are
listed under point (c) to 90 degrees and under (d) to 0 degrees
will result in the generation of classic, i.e. planar and
rectangular, mazes (Figure 2, right).

Fig. 2. Left: Green vertices represent implicitly interconnected room

entrances of a user model (grey). Right: Example of a rectangular maze.

Fig. 1. Example of edge growing using depth-first (left) versus breath-

first traversal (right). Intersecting edges (geometric violations) are red.

B. Weighting and Computation of the Minimum Span Tree

The next pipeline stage involves the computation of a
minimal spanning tree (MST) from the base graph. The MST
is a cycle-free graph that connects all vertices. It can be
interpreted as a level skeleton, more or less like a rig in skeletal
animation, where each point can be reached via exactly one
unique path [27]. MST algorithms require weighted edges and
compute a tree with minimum total weight. In this work we
exploit this fact by interpreting edge weights as violations of
design preferences. Violations can be geometric intersections
and unsatisfied parameter settings. To detect intersections,
elements of the base graph are implicitly enclosed with simple
proxy geometries: vertices with spheres and edges with
cylinders, each with user-defined radii. All possible
combinations of the following geometries are considered for
edge intersection tests: vertices, other edges, current hull mesh
and manually placed 3D models. Incident edges represent a
special case: Here, overlaps are only considered outside the
proxy geometry of the corresponding vertex, since otherwise
intersections would always occur (Figure 3, left).
Additionally, another parameter is introduced to control the
MST generation: maximally allowed relative deviation of
each edge length from the corresponding average value. This
parameter can only be applied after the complete construction
of the base edge set. It is used to determine the regularity of
prospective corridor lengths (Figure 3, right).

Already during base graph generation, the number of
violations is tried to be minimized as follows: On edge
construction, randomly picked target vertices (from the
current nearest neighbor set) are at first excluded in case of a
violation. This vertex picking is repeated until all elements of
the nearest neighbor set have been tested. Thereafter, if the
number of constructed edges is less than the required degree
minimum, edges with less violations are preferably included
in the base graph. Obviously, violations cannot be completely
avoided. Typical cases are geometric intersections caused by

too high grid resolutions for vertex generation or too high
vertex degree counts for edge construction. Another example
refers to conflicting parameter settings, like wide angles
between incident edges versus high vertex degrees.

The occurrence of violations can be minimized by
executing the MST algorithm. In this context, the user can
control this process by specifying preferences regarding the
tolerance of individual violation types. This is accomplished
by introducing numeric penalty factors for each violation
category, i.e. for geometric intersections and for each base
graph generation parameter. Then, prior to the computation of
the MST, the final edge weights of the base graph are
calculated using a linear combination of selective violation
factors: Let 𝑤𝑖 ∈ ℝ be the weight for the i-th base graph edge,
𝑓𝑡 ∈ ℝ the penalty factor for violation type 𝑡 ∈ 𝑇 and
𝑠𝑖: 𝑡 → {0,1} the corresponding selection function, which
assigns each violation type the value 0 or 1, depending on its
occurrence for the current edge under consideration. Thus 𝑤𝑖
is calculated with the following formula:

 𝑤𝑖 = ∑ 𝑠𝑖(𝑡) ∙ 𝑓𝑡𝑡𝜖𝑇 (1)

In our work we use Prim’s algorithm to compute the MST
from the weighted base graph [28]. Figure 4 shows an
example result for a planar base graph.

C. Construction of the Level Graph and Merging

Due to its cycle-free property, the MST can already be
interpreted as a labyrinth level. But in practice, dungeon-like
game worlds often allow tours, offering the player alternative
routes for level exploration. This limitation can be solved in
the last pipeline stage by adding extra, hence cycle-forming,
edges. Therefore, original base graph edges, which have been
discarded during MST construction, can be reinserted into the
graph. However, cycle-forming is now performed in a
controlled manner: First, just a user-defined percentage of the
base graph edges is considered for reinsertion. Secondly,
edges with lower weights are selected with higher priority.
And thirdly, edges with comparable weights can be picked
randomly or based on a length prioritization (i.e. short versus
long hallways), depending on the designer's preference.

The resulting cyclic graph can also contain edges with
violations, just like the MST described in the previous section.
So, in the final pipeline stage, the user can decide to neglect
the graph connectivity criterion and instead discard violating
edges (with non-zero weight) and associated incident vertices.
This is implemented by inspecting vertices that belong to both,
an edge i with weight 𝑤𝑖 = 0, and another edge j with weight
𝑤𝑗 > 0 : If a subgraph, spanned by the violating edge j,

contains too few non-violating edges, then all its vertices and
edges are deleted (including edge j). The intensity of this
graph cleaning process is determined by the following two
user parameters: (a) threshold for the minimum number of
non-violating subgraph edges and (b) minimum spanning
edge weight for consideration (Figure 5).

The result is called the level graph and can either be used
to generate the final geometric representation, or it can be
connected to other previously generated level graphs. This
connection, which we refer to as graph merging, can be used
for facilitating procedural generation of complex indoor
systems, consisting of multiple separately pre-generated and
individually parameterized level structures. Therefore, all
pipeline stages can be re-executed. However, graph merging
excludes relationships within the same previously generated

Fig. 3. Left: The red hatched area illustrates a geometric intersection of
incident edges. Right: The lengths of the red edges exceed the maximally

allowed relative deviation from the average length value.

Fig. 4. Left: Example of a planar base graph (with rectangular edges)

Right: A resulting minimum spanning tree.

vertex set. For example, the edge growth algorithm then only
constructs connections between vertices of a newly-generated
base graph and only between different pre-generated graphs.
Figure 6 shows an example of a level structure that was
created by merging two differently constructed graphs.

D. Conversion to Geometric Representation

The final indoor level is generated by conversion of the
level graph data structure to a geometric representation. This
process requires a set of pre-modeled 3D components: rooms
(or junctions), dead ends, horizontal and vertical corridors
(typically hallways and staircases), doors and gap fillers. Each
of these components must be uniquely labeled, as it is used
specifically during conversion: Graph vertices are mapped to
rooms or dead ends, depending on whether the vertex degree
is greater than one; edges to vertical or horizontal corridors,
depending on the helix angle. Doors and gap fillers are used
to join corridors and rooms. If there are multiple components
with the same label (and of same size), then one is picked
randomly for each conversion step.

The process begins with the instantiation of a room or dead
end model for each vertex. These objects are oriented to one

randomly selected incident graph edge. In case of a geometric
room intersection, the algorithm tries to resolve it by selecting
a smaller model, if available. The next step is the conversion
of edges to corridor models. Depending on the length of the
current edge, the following Constructive Solid Geometry
(CSG) operations are executed: Trimming of too long corridor
models or random stitching of several too short elements. And
finally, CSG operations are also used to connect rooms and
corridors, where door components are placed at the
corresponding junctions and used to cut out room entrances.
If the angular deviation between a room and a corridor is too
large, then gap filler components are inserted in order to obtain
a closed 3D model.

An overview of the entire incremental procedural
generation pipeline, including base graph vertex generation,
edge growth, graph weighting, MST computation, cycle-
forming, graph cleaning, level graph merging and geometrical
conversion is shown in Figure 7.

IV. IMPLEMENTATION AND RESULTS

Our procedural generation pipeline was implemented
using the C# programming language as a plug-in for the Unity
3D game engine [11]. The current version of the graphical user
interface is on the development stage of a scientific prototype,
but already allows the parameterization and triggering of all
described processes. By encapsulating all graph elements in
corresponding game engine objects, all settings and the
execution of corresponding algorithms can be accomplished
with Unity’s “Inspector Window”. Furthermore, the “Scene
View” is used for visualization of current generation results as
well as for defining the hull mesh, manual manipulation of the
graph structure and placement of user-defined models.

Figures 8 to 12 show our first experimental results: The
generation of the 2D maze is based on 7 by 7 regularly and

Fig. 5. Top-Left: Graph cleaning disabled. The other images show cleaned
level graphs based on various thresholds for non-violating edges (Tnv):

Top-Right: Tnv = 0, Bottom-Left: Tnv = 1, Bottom-Right: Tnv = 2.

Fig. 6. Merging of two different level graphs (with black and grey vertices).

Green edges illustrate new connections resulting from graph merging.

Fig. 7. Overview of our procedural level generation pipeline, including the main pipeline stages and corresponding processes (UML activity diagram).

planarly arranged base graph vertices, edge growth with
perpendicular corridors and insertion of 50% cycle-forming
edges. The structure of the 3D cube is inspired by the “Borg
cube”, known from the TV series “Star Trek”. It is supposed
to illustrate the capability of our method to generate three-
dimensional levels in a single step. In our case, it actually
corresponds to a 3D version of the rectangular 2D maze. The
dungeon represents a more practical level design example. It
shows a dwarf mine in a fantasy setting, located inside a
mountain. The black area was used to define the hull mesh for
base graph generation. The grey round object is a manually
placed 3D arena model that was also taken into account during
level graph construction and considered e.g. in intersection
testing. The different mine sections were generated iteratively
with specific parameters. The resulting individual level graphs
were connected to each other by graph merging to form the
final level. A close-up of the dungeon (arena section) is shown
in Figure 11. The last presented result is a space station. It is
not intended to be a playable level, but rather an example for
procedural generation of highly complex structures in order to
test the computational potential of our method. Comparable to
the previous case, multiple procedural generation iterations
were performed, only this time using primitive bounding
volume hull meshes (spheres and cuboids). Table I shows an
overview of the base graph complexities used to generate the
presented examples. Since minimal spanning trees (MSTs)
and level graphs are respective subgraphs, their complexity
values would not exceed the presented results. The estimates
of memory consumption are based on an edge list
representation. The total memory consumption of the final
level is essentially determined by the geometric complexity of
the underlying 3D component set.

Table II summarizes time measurements for the main
pipeline stages, i.e. base graph generation (including vertex
and edge sets), MST computation (with graph-weighting) and
level graph construction (including graph cleaning and
cycling-forming). All measurements were performed on a
gaming laptop with an Intel Core i7-8750H CPU, Nvidia GTX
1070 Max-Q (8GB) graphics card and 32 GBs RAM, running
the Microsoft Windows 10 operating system (version 1809).
It becomes apparent that the performance of the level graph
pipeline is basically adequate for practical use, and especially
for iterative procedural generation. Typically, the measured
time values are clearly below one second. An exception is the
space station due to its artificially high complexity (and not
yet implemented spatial acceleration data structures). The
bottleneck in the current (non-optimized) implementation is
the geometric conversion, and in particular the execution of

the Constructive Solid Geometry (CSG) operations. The
measured times range from about 3.5 minutes for the dungeon
level to ca. 5 hours for the space station. Although CSG
operations only need to be executed once after completion of
the level design, the particular results are not yet satisfactory
and require optimization. Table III gives an overview of the
worst-case time complexities of used graph algorithms (for
vertex set V, edge set E, maximum graph degree ∆(𝐺)). [29]

V. CONCLUSIONS AND FUTURE WORK

Our level generation pipeline proves to be versatile and
basically suitable for practical use. Level designers can extend
their established working methods by utilizing the presented
procedural techniques. This creates the potential to increase
time efficiency and make the construction of indoor levels
more convenient by exploiting iterativity and controlled
randomness through re-running of steps and selecting the most
promising results. The presented time measurements show
that runtimes for generating the graph structures are small
enough to implement our iterative level design approach.
Similarly, the corresponding data structures require little
memory resources, which are almost negligible in the context
of the memory sizes required for 3D geometric models.

The elaborated parameters for controlling the procedural
generation pipeline are basically intuitive for understanding.
However, the currently implemented graphical user interface
is rather more suitable for advanced users with a mathematical
understanding of the pipeline stages. Here, it is necessary to
design an interface for non-experts in such a way that graph
parameters are mapped to simpler terms (e.g. “vertex degree”
to “corridor density”) or combined into easily understandable
meta-parameters. Likewise, predefined restrictions regarding
mutually exclusive parameter configurations, as well as an
immediate visualization of corresponding violations, would
be recommended for improvement. Future work also includes
further development of our geometric conversion algorithms
and in particular optimizations of the Constructive Solid
Geometry operations, which can be a time-critical bottleneck
for very complex levels. Examples are the support for more
flexible and configurable 3D components and use of spatial
acceleration techniques, respectively. Another useful future
development step would be the procedural placement of game
design elements, like enemies, non-player characters, pick-up
and cover objects. Finally, we plan to carry out additional
practical user tests, also to be able to conduct representative
comparative studies for evaluating the efficiency of our
procedural approach in relation to manual level design.

ACKNOWLEDGMENT

We would like to thank the Game Design faculty at the
Mediadesign University of Applied Sciences in Munich,
Germany, for supporting the implementation of our initial
level graph software prototype. We would also like to thank
Peter Eichinger from the University of Erlangen-Nuremberg,
who contributed to the further development of our software.

 Base graph MST Level graph

2D Maze 47 ms 21 ms 9 ms

3D Maze 574 ms 43 ms 21 ms

Dungeon 236 ms 33 ms 13 ms

Space station 43.75 s 381 ms 181 ms

Base graph Memory

usage (in MB) Nodes Edges

2D Maze 49 64 0.04

3D Maze 216 258 0.29

Dungeon 89 185 0.12

Space station 1056 2310 13.08

TABLE I. BASE GRAPH COMPLEXITIES AND MEMORY USAGES

TABLE II. TIME MEASUREMENTS FOR THE MAIN PIPELINE STAGES

 Time complexity

Vertex generation 𝑂(|𝑉|)

Weighted edge construction 𝑂(|𝐸|2)

Prim’s MST computation [29] 𝑂(|𝐸| ∙ 𝑙𝑜𝑔 |𝑉|)

Cycle-forming 𝑂(|𝐸|)

Graph cleaning 𝑂(∆(𝐺) ∙ |𝑉| ∙ |𝐸|)

TABLE III. TIME COMPLEXITIES OF USED GRAPH ALGORITHMS

Fig. 9. 3D maze – Example for one-step 3D level generation.

Fig. 8. 2D maze – Example of a planar, rectangular level.

Fig. 10. Dungeon – Practical level design example with multiple sections.

Fig. 11. Close-up of procedural dungeon (arena section).

Fig. 12. Space station – Example for procedural generation of highly complex 3D structures (iterative construction using simple hull mesh geometries).

REFERENCES

[1] M. Hendrikx, S. Meijer, J. van der Velden, and A. Iosup, “Procedural

Content Generation for Games: A Survey,” ACM Transactions on

Multimedia Computing, Communications, and Applications, vol. 9, no.
1, 1–22, 2013.

[2] B. Lister, Red Dead Redemption 2 Required 8 Years And A Massive

Team To Develop. [Online] Available: https://gamerant.com/red-dead-
redemption-2-8-years/. Accessed on: Mar. 18 2019.

[3] I. Bell and D. Braben, Elite. [Online] Available:
http://www.iancgbell.clara.net/elite/. Accessed on: Mar. 21 2019.

[4] M. Toy, G. Wichman, K. Arnold, and J. Lane, Rogue, 1980.

[5] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content
Generation in Games. Cham, s.l.: Springer International Publishing,
2016.

[6] R. van der Linden, R. Lopes, and R. Bidarra, “Procedural Generation
of Dungeons,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 6, no. 1, pp. 78–89, 2014.

[7] Bethesda Game Studios, The Elder Scrolls IV: Oblivion: Bethesda
Softworks, 2006.

[8] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Eds., Readings in

Information Visualization: Using Vision to Think. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc, 1999.

[9] S. Krishnan and D. Manocha, “An Efficient Surface Intersection

Algorithm Based on Lower-dimensional Formulation,” ACM
Transactions on Graphics, vol. 16, no. 1, pp. 74–106, 1997.

[10] A. M. Pereira, M. C. Arruda, A. C. D. Miranda, W. W. Lira, and L. F.

Martha, “Boolean Operations on Multi-region Solids for Mesh
Generation,” Engineering with Computers, vol. 28, no. 3, pp. 225–239,
2012.

[11] Unity Technologies, Unity 3D. [Online] Available:
https://unity.com/de. Accessed on: Mar. 20 2019.

[12] J. Dormans, “Level Design As Model Transformation: A Strategy for
Automated Content Generation,” in Proceedings of the 2nd

International Workshop on Procedural Content Generation in Games,

2011, 2:1‐2:8.

[13] J. Dormans, “Adventures in Level Design,” in Proceedings of the 2010

Workshop on Procedural Content Generation in Games, Monterey,
California, 2010, pp. 1–8.

[14] R. van der Linden, R. Lopes, and R. Bidarra, “Designing Procedurally

Generated Levels,” in Proceedings of the 2nd Workshop on Artificial
Intelligence in the Game Design Process, 2013.

[15] L. Johnson, G. N. Yannakakis, and J. Togelius, “Cellular Automata for
Real-time Generation of Infinite Cave Levels,” in Proceedings of the

2010 Workshop on Procedural Content Generation in Games, 2010,
1–4.

[16] K. Hartsook, A. Zook, S. Das, and M. O. Riedl, “Toward Supporting

Stories with Procedurally Generated Game Worlds,” in IEEE
Conference on Computational Intelligence and Games, Seoul, Korea
(South), 2011, pp. 297–304.

[17] V. Valtchanov and J. A. Brown, “Evolving Dungeon Crawler Levels
with Relative Placement,” in Proceedings of the 5th International C*

Conference on Computer Science and Software Engineering,
Montreal, Quebec, Canada, 2012, pp. 27–35.

[18] D. Ashlock, C. Lee, and C. McGuinness, “Search-Based Procedural

Generation of Maze-Like Levels,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 3, no. 3, pp. 260–
273, 2011.

[19] C. McGuinness and D. Ashlock, “Decomposing the Level Generation
Problem with Tiles,” in IEEE Congress on Evolutionary Computation,
2011, pp. 849–856.

[20] A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient Sketchbook:

Computer-Aided Game Level Authoring,” in Proceedings of the 8th

International Conference on Foundations of Digital Games, 2013, pp.
213–220.

[21] T. Roden and I. Parberry, “From Artistry to Automation: A Structured

Methodology for Procedural Content Creation,” in Lecture Notes in
Computer Science, vol. 3166, Entertainment Computing, M.
Rauterberg, Ed., Berlin, Heidelberg: Springer, 2004, pp. 151–156.

[22] N. Hilliard, J. Salis, and H. ELAarag, “Algorithms for procedural

dungeon generation,” Journal of Computing Sciences in Colleges, vol.
33, no. 1, pp. 166–174, 2017.

[23] A. Baldwin, S. Dahlskog, J. M. Font, and J. Holmberg, “Mixed-
Initiative Procedural Generation of Dungeons Using Game Design

Patterns,” in IEEE Conference on Computational Intelligence and
Games, 2017, pp. 25–32.

[24] Z. Monaghan, “Comparing Procedural Content Generation Algorithms

for Creating Levels in Video Games,” Technological University
Dublin, School of Computing, 2019.

[25] J. F. Thompson, Ed., Handbook of Grid Generation. Boca Raton: CRC
Press, 1999.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. Cambridge, Mass.: MIT Press, 2009.

[27] A. Beane, 3D Animation Essentials. Hoboken: John Wiley & Sons,
2012.

[28] R. C. Prim, “Shortest Connection Networks and Some

Generalizations,” Bell System Technical Journal, vol. 36, no. 6, pp.
1389–1401, 1957.

[29] S. Pettie and V. Ramachandran, “An Optimal Minimum Spanning
Tree Algorithm,” Journal of the ACM, vol. 49, no. 1, pp. 16–34, 2002.

