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Abstract—Procedural generation of virtual worlds is an 

important aspect of game development since decades, typically 

for increasing replayability or for speeding up the level creation 

process. However, the utilization of this potential has always 

been a great challenge due to the difficult controllability of the 

underlying algorithms or limitations to specific level geometries, 

like 2D regular structures. In this paper, we present a novel 

approach for semi-automatic generation of a wide variety of 

2D/3D corridor and room systems. The underlying processing 

pipeline is based on a separation between a user-guided 

generation of a graph-based abstract level structure and a fully-

automatic construction of the corresponding geometry using a 

pre-modeled component library. The core algorithm is built on 

the computation of an extended minimal spanning tree, which 

can be controlled by a set of intuitive vertex and edge 

parameters. First experimental results have shown that our 

incremental generation pipeline allows the efficient creation of 

complex indoor levels, minimizing limitations on level and game 

designers’ creativity.  
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I. INTRODUCTION 

Video game worlds are becoming more and more 
complex, driven by advances in game engineering, high-
performance graphics hardware and increasing demands on 
player experience [1]. As an example, Rockstar Games’ „Red 
Dead Redemption 2“ required about eight years of partly 
manual development time for the game content [2]. One 
consequence for game development companies is thus the 
growing challenge between meeting high-quality 
requirements and achieving reasonably short production 
times. This makes automation techniques for content creation 
more and more important. In this work, we therefore 
concentrate on procedural world generation and in particular 
on indoor levels, consisting of corridors and interconnected 
rooms. The first procedural level generation methods in games 
date back to the 1980s, but these first solutions were difficult 
to control for non-expert users [3, 4]. Incremental procedural 
improvements of the level design were not practically feasible, 
so that usually time-consuming manual post-processing was 
still necessary [5]. In addition, many of the techniques were 
limited to simple 2D mazes or planar dungeons, so that more 
complex or three-dimensional game worlds could only be 
implemented by complicated assembling of individually 
generated fragments, which sometimes led to restriction in 
creativity [6]. One example is Bethesda Game Studios’ highly 
rated title “The Elder Scrolls IV: Oblivion”, partly criticized 
for its repetitive and generic dungeon design [7]. 

Our approach implements an iterative procedural 
generation pipeline based on a graph data structure, called the 
level graph. It represents the abstract model of a static indoor 
level: Vertices correspond to positions of junctions and rooms, 
edges to connecting hallways. Generation takes places within 
a user-defined hull mesh, which can be any 3D model, e.g. 
from a simple bounding box for a rectangular maze to a closed 
terrain model that is supposed to contain a mine level with 
multiple floors. Using hull meshes makes it possible to take 
advantage of the “focus-in-context” principle: After each 
iteration the user gets the possibility to adjust the current result 
via regeneration, manual modification or to concentrate on 
another local area of the graph [8]. The structure of the level 
is defined by the execution of one or a series of the following 
main graph algorithms: 1. construction of a fully connected 
random base graph, 2. computation of a minimal spanning tree 
(MST), and 3. insertion of cycle-forming edges. Using such a 
multistep process allows to control the generation by a set of 
user-prioritized vertex and edge parameters that can be 
mapped to easily understandable, yet finely structured 
geometric properties. Examples are angles, lengths and 
variables that affect the distribution of individual graph 
elements. Parameter violations and mutual geometric 
intersections are mathematically modeled as edge weights and 
implicitly resolved in the computation of the MST, which 
gives us a basis for a level that is as violation-free as possible. 

The final part involves the construction of the geometric 
representation of the level by converting the level graph into a 
polygonal model. This process requires a set of pre-modeled 
3D components, each labeled e.g. as a room, corridor or door. 
It is executed fully automatically, including stitching of 
multiple corridor components to cover long hallways and 
constructing room entrances using Boolean operators from 
Constructive Solid Geometry modeling [9, 10]. 

After presentation of the related work in the following 
section, a more detailed description of our processing pipeline, 
including the corresponding generation parameters, can be 
found in section 3. The subsequent topics comprise the 
implementation of our prototype in the Unity 3D game engine 
and the presentation of qualitative and quantitative results in 
section 4 [11]. We conclude our paper with a final discussion 
in section 5, followed by an outlook on future work. 

II. RELATED WORK 

The techniques of procedural content generation in game 
development are mostly restricted to specific types of world 
elements. For example, previous approaches are used for the 
generation of landscapes, vegetation, game rules or mechanics 
[5]. Especially for the procedural generation of indoor maps 



numerous different approaches already exist: Dormans and  
van der Linden et al. use generative graph grammar to create 
room and corridor systems [12–14]. Johnson et al. use cellular 
automata to generate infinite cave levels [15]. Search-based 
evolutionary algorithms for dungeon generation were also 
investigated by different researchers [16–20]. Roden and 
Parberry proposed a constrained-based pipeline for generation 
of underground levels using sub-graph topologies [21]. 
Hilliard et al. developed two other algorithms, they called 
Span* and Growth [22]: The first one combines the minimal 
spanning tree computation with A* search. The second 
approach is based on simultaneous expansion of room and 
hallway elements. Both algorithms are only designed for 
array-based 2D-tile maps.  

Linden et al. surveys the current state of research regarding 
procedural generation of dungeons, identifying 3D content as 
the less investigated topic [6]. Only a few researchers address 
this challenge, but their solutions are ad-hoc, implemented 
only for a particular game [14, 21]. The survey also points out 
another shortcoming of most of the discussed methods: 
Typically, the parameters for controlling the procedural 
generation are hard to understand for non-expert users and 
require a deep technical understanding, like choosing the 
appropriate fitness function for evolutionary optimization 
[23]. Another recent survey, which however only focuses on 
2D maps, can be found in the work of Monaghan [24].  

The aforementioned approach of Roden and Parberry 
shares most similarities with our work [21]: Their generation 
process creates levels using also undirected graphs embedded 
in 3D space. Constraints on the graph topology are used to 
control the generation. In contrast to our approach, graph 
nodes are utilized to place complete, prefabricated geometry 
sections of the target level. Other differences that characterize 
our work are a wide variety of control parameters, a pipeline 
supporting incremental generation and the possibility to 
combine procedural content with manually placed geometry. 

III. PROCEDURAL LEVEL GENERATION PIPELINE 

In the following sections, we describe the individual steps 
for the computation of the level graph data structure, followed 
by the generation of the final geometric representation. Each 
of the steps can be repeated as often as desired. Thereby, it is 
possible to focus processing on specific parts of the structure 
using a bounding volume that is defined by a three-
dimensional hull mesh. Graph elements can also be added, 
removed, connected or modified manually, e.g. by setting a 
vertex at a specific position in the level that must be reachable 
by the player in any case. 

A. Generation of the Base Graph 

The base graph is used to describe the first abstract 
structure of the indoor level, where vertices are later mapped 
to rooms and edges to corridors. The base graph does not yet 
represent the final appearance of the level: It is randomly 
connected and contains just all possible candidate edges, from 
which the definite ones are then extracted in the next pipeline 
step. Its vertex set is generated automatically using jittering 
[25]. For this purpose, the current hull mesh is overlaid with 
an axis-aligned 3D grid. Then, graph vertices are instantiated 
randomly within the jitter cells and clipped w.r.t. the hull 
surface (and manually placed 3D models, if available). This 
process is determined by the following key parameters, 
mainly for controlling the density and irregularity rooms or 
junctions of the level: (a) 3D resolution of the grid,  

(b) probability for the instantiation of a vertex in a cell and  
(c) maximum vertex distance to the cell center. To create 
levels with a higher degree of irregularity, it is necessary to 
choose a lower grid resolution. However, in order to still 
achieve high vertex densities in such cases, the following two 
additional parameters are available to the level designer:  
(d) number range for instantiation of multiple vertices per cell 
and (e) maximum count of retries for failed clipping tests with 
the hull or user models. 

The construction of the edge set is based on a growth 
algorithm, which starts from an arbitrary or manually defined 
seed vertex. It successively selects random vertices as targets 
for undirected edge connection from a nearest neighbor set. 
This set is recreated locally each time for the current source 
vertex. To avoid construction of equivalent edges, subsequent 
neighbor sets are built only from remaining graph vertices,  
i.e. that have no connection to the current source vertex. 
Growth is carried out using breath-first traversal [26]. This 
results in potentially fewer geometric intersections due to a 
more balanced edge expansion (Figure 1). To guarantee full 
graph connectivity, the algorithm only terminates when the set 
of remaining vertices becomes empty. A special case are 
vertices that have been placed manually on a 3D user model. 
All such vertices that are attached to the same model are 
interpreted as room entrances and assumed as implicitly 
interconnected (Figure 2, left). The edge growth process is 
ruled by the following parameters, primarily for controlling 
the density, spatial expansion and angular spreads of corridors 
of the later level: (a) minimal and maximal size for the nearest 
neighbor sets, (b) vertex degree range, (c) minimal and 
maximal angle between incident edges and (d) between edges 
and the 3D ground plane. 

As an example, setting both angle interval limits that are 
listed under point (c) to 90 degrees and under (d) to 0 degrees 
will result in the generation of classic, i.e. planar and 
rectangular, mazes (Figure 2, right).  

 
        

Fig. 2. Left: Green vertices represent implicitly interconnected room 

entrances of a user model (grey). Right: Example of a rectangular maze. 

       
Fig. 1. Example of edge growing using depth-first (left) versus breath-

first traversal (right). Intersecting edges (geometric violations) are red. 

 



B. Weighting and Computation of the Minimum Span Tree 

The next pipeline stage involves the computation of a 
minimal spanning tree (MST) from the base graph. The MST 
is a cycle-free graph that connects all vertices. It can be 
interpreted as a level skeleton, more or less like a rig in skeletal 
animation, where each point can be reached via exactly one 
unique path [27]. MST algorithms require weighted edges and 
compute a tree with minimum total weight. In this work we 
exploit this fact by interpreting edge weights as violations of 
design preferences. Violations can be geometric intersections 
and unsatisfied parameter settings. To detect intersections, 
elements of the base graph are implicitly enclosed with simple 
proxy geometries: vertices with spheres and edges with 
cylinders, each with user-defined radii. All possible 
combinations of the following geometries are considered for 
edge intersection tests: vertices, other edges, current hull mesh 
and manually placed 3D models. Incident edges represent a 
special case: Here, overlaps are only considered outside the 
proxy geometry of the corresponding vertex, since otherwise 
intersections would always occur (Figure 3, left). 
Additionally, another parameter is introduced to control the 
MST generation: maximally allowed relative deviation of 
each edge length from the corresponding average value. This 
parameter can only be applied after the complete construction 
of the base edge set. It is used to determine the regularity of 
prospective corridor lengths (Figure 3, right).  

Already during base graph generation, the number of 
violations is tried to be minimized as follows: On edge 
construction, randomly picked target vertices (from the 
current nearest neighbor set) are at first excluded in case of a 
violation. This vertex picking is repeated until all elements of 
the nearest neighbor set have been tested. Thereafter, if the 
number of constructed edges is less than the required degree 
minimum, edges with less violations are preferably included 
in the base graph. Obviously, violations cannot be completely 
avoided. Typical cases are geometric intersections caused by 

too high grid resolutions for vertex generation or too high 
vertex degree counts for edge construction. Another example 
refers to conflicting parameter settings, like wide angles 
between incident edges versus high vertex degrees.  

The occurrence of violations can be minimized by 
executing the MST algorithm. In this context, the user can 
control this process by specifying preferences regarding the 
tolerance of individual violation types. This is accomplished 
by introducing numeric penalty factors for each violation 
category, i.e. for geometric intersections and for each base 
graph generation parameter. Then, prior to the computation of 
the MST, the final edge weights of the base graph are 
calculated using a linear combination of selective violation 
factors: Let 𝑤𝑖 ∈ ℝ be the weight for the i-th base graph edge, 
𝑓𝑡 ∈ ℝ  the penalty factor for violation type 𝑡 ∈ 𝑇  and 
𝑠𝑖: 𝑡 → {0,1}  the corresponding selection function, which 
assigns each violation type the value 0 or 1, depending on its 
occurrence for the current edge under consideration. Thus 𝑤𝑖  
is calculated with the following formula:  

  𝑤𝑖 = ∑ 𝑠𝑖(𝑡) ∙ 𝑓𝑡𝑡𝜖𝑇   (1) 

In our work we use Prim’s algorithm to compute the MST 
from the weighted base graph [28]. Figure 4 shows an 
example result for a planar base graph. 

C. Construction of the Level Graph and Merging 

Due to its cycle-free property, the MST can already be 
interpreted as a labyrinth level. But in practice, dungeon-like 
game worlds often allow tours, offering the player alternative 
routes for level exploration. This limitation can be solved in 
the last pipeline stage by adding extra, hence cycle-forming, 
edges. Therefore, original base graph edges, which have been 
discarded during MST construction, can be reinserted into the 
graph. However, cycle-forming is now performed in a 
controlled manner: First, just a user-defined percentage of the 
base graph edges is considered for reinsertion. Secondly, 
edges with lower weights are selected with higher priority. 
And thirdly, edges with comparable weights can be picked 
randomly or based on a length prioritization (i.e. short versus 
long hallways), depending on the designer's preference. 

The resulting cyclic graph can also contain edges with 
violations, just like the MST described in the previous section. 
So, in the final pipeline stage, the user can decide to neglect 
the graph connectivity criterion and instead discard violating 
edges (with non-zero weight) and associated incident vertices. 
This is implemented by inspecting vertices that belong to both, 
an edge i with weight 𝑤𝑖 = 0, and another edge j with weight 
𝑤𝑗 > 0 : If a subgraph, spanned by the violating edge j, 

contains too few non-violating edges, then all its vertices and 
edges are deleted (including edge j). The intensity of this 
graph cleaning process is determined by the following two 
user parameters: (a) threshold for the minimum number of 
non-violating subgraph edges and (b) minimum spanning 
edge weight for consideration (Figure 5).  

The result is called the level graph and can either be used 
to generate the final geometric representation, or it can be 
connected to other previously generated level graphs. This 
connection, which we refer to as graph merging, can be used 
for facilitating procedural generation of complex indoor 
systems, consisting of multiple separately pre-generated and 
individually parameterized level structures. Therefore, all 
pipeline stages can be re-executed. However, graph merging 
excludes relationships within the same previously generated 

Fig. 3. Left: The red hatched area illustrates a geometric intersection of 
incident edges. Right: The lengths of the red edges exceed the maximally 

allowed relative deviation from the average length value.   

         
Fig. 4. Left: Example of a planar base graph (with rectangular edges)  

Right: A resulting minimum spanning tree. 

          



vertex set. For example, the edge growth algorithm then only 
constructs connections between vertices of a newly-generated 
base graph and only between different pre-generated graphs. 
Figure 6 shows an example of a level structure that was 
created by merging two differently constructed graphs. 

D. Conversion to Geometric Representation 

The final indoor level is generated by conversion of the 
level graph data structure to a geometric representation. This 
process requires a set of pre-modeled 3D components: rooms 
(or junctions), dead ends, horizontal and vertical corridors 
(typically hallways and staircases), doors and gap fillers. Each 
of these components must be uniquely labeled, as it is used 
specifically during conversion: Graph vertices are mapped to 
rooms or dead ends, depending on whether the vertex degree 
is greater than one; edges to vertical or horizontal corridors, 
depending on the helix angle. Doors and gap fillers are used 
to join corridors and rooms. If there are multiple components 
with the same label (and of same size), then one is picked 
randomly for each conversion step.  

The process begins with the instantiation of a room or dead 
end model for each vertex. These objects are oriented to one 

randomly selected incident graph edge. In case of a geometric 
room intersection, the algorithm tries to resolve it by selecting 
a smaller model, if available. The next step is the conversion 
of edges to corridor models. Depending on the length of the 
current edge, the following Constructive Solid Geometry 
(CSG) operations are executed: Trimming of too long corridor 
models or random stitching of several too short elements. And 
finally, CSG operations are also used to connect rooms and 
corridors, where door components are placed at the 
corresponding junctions and used to cut out room entrances. 
If the angular deviation between a room and a corridor is too 
large, then gap filler components are inserted in order to obtain 
a closed 3D model. 

An overview of the entire incremental procedural 
generation pipeline, including base graph vertex generation, 
edge growth, graph weighting, MST computation, cycle-
forming, graph cleaning, level graph merging and geometrical 
conversion is shown in Figure 7. 

IV. IMPLEMENTATION AND RESULTS 

Our procedural generation pipeline was implemented 
using the C# programming language as a plug-in for the Unity 
3D game engine [11]. The current version of the graphical user 
interface is on the development stage of a scientific prototype, 
but already allows the parameterization and triggering of all 
described processes. By encapsulating all graph elements in 
corresponding game engine objects, all settings and the 
execution of corresponding algorithms can be accomplished 
with Unity’s “Inspector Window”. Furthermore, the “Scene 
View” is used for visualization of current generation results as 
well as for defining the hull mesh, manual manipulation of the 
graph structure and placement of user-defined models. 

Figures 8 to 12 show our first experimental results: The 
generation of the 2D maze is based on 7 by 7 regularly and 

          
 

          

Fig. 5. Top-Left: Graph cleaning disabled. The other images show cleaned 
level graphs based on various thresholds for non-violating edges (Tnv):    

Top-Right: Tnv = 0, Bottom-Left: Tnv = 1, Bottom-Right: Tnv = 2. 

 
Fig. 6.  Merging of two different level graphs (with black and grey vertices). 

Green edges illustrate new connections resulting from graph merging. 

 
Fig. 7.  Overview of our procedural level generation pipeline, including the main pipeline stages and corresponding processes (UML activity diagram). 



planarly arranged base graph vertices, edge growth with 
perpendicular corridors and insertion of 50% cycle-forming 
edges. The structure of the 3D cube is inspired by the “Borg 
cube”, known from the TV series “Star Trek”. It is supposed 
to illustrate the capability of our method to generate three-
dimensional levels in a single step. In our case, it actually 
corresponds to a 3D version of the rectangular 2D maze. The 
dungeon represents a more practical level design example. It 
shows a dwarf mine in a fantasy setting, located inside a 
mountain. The black area was used to define the hull mesh for 
base graph generation. The grey round object is a manually 
placed 3D arena model that was also taken into account during 
level graph construction and considered e.g. in intersection 
testing. The different mine sections were generated iteratively 
with specific parameters. The resulting individual level graphs 
were connected to each other by graph merging to form the 
final level. A close-up of the dungeon (arena section) is shown 
in Figure 11. The last presented result is a space station. It is 
not intended to be a playable level, but rather an example for 
procedural generation of highly complex structures in order to 
test the computational potential of our method. Comparable to 
the previous case, multiple procedural generation iterations 
were performed, only this time using primitive bounding 
volume hull meshes (spheres and cuboids). Table I shows an 
overview of the base graph complexities used to generate the 
presented examples. Since minimal spanning trees (MSTs) 
and level graphs are respective subgraphs, their complexity 
values would not exceed the presented results. The estimates 
of memory consumption are based on an edge list 
representation. The total memory consumption of the final 
level is essentially determined by the geometric complexity of 
the underlying 3D component set. 

Table II summarizes time measurements for the main 
pipeline stages, i.e. base graph generation (including vertex 
and edge sets), MST computation (with graph-weighting) and 
level graph construction (including graph cleaning and 
cycling-forming). All measurements were performed on a 
gaming laptop with an Intel Core i7-8750H CPU, Nvidia GTX 
1070 Max-Q (8GB) graphics card and 32 GBs RAM, running 
the Microsoft Windows 10 operating system (version 1809). 
It becomes apparent that the performance of the level graph 
pipeline is basically adequate for practical use, and especially 
for iterative procedural generation. Typically, the measured 
time values are clearly below one second. An exception is the 
space station due to its artificially high complexity (and not 
yet implemented spatial acceleration data structures). The 
bottleneck in the current (non-optimized) implementation is 
the geometric conversion, and in particular the execution of 

the Constructive Solid Geometry (CSG) operations. The 
measured times range from about 3.5 minutes for the dungeon 
level to ca. 5 hours for the space station. Although CSG 
operations only need to be executed once after completion of 
the level design, the particular results are not yet satisfactory 
and require optimization. Table III gives an overview of the 
worst-case time complexities of used graph algorithms (for 
vertex set V, edge set E, maximum graph degree ∆(𝐺)). [29] 

V. CONCLUSIONS AND FUTURE WORK 

Our level generation pipeline proves to be versatile and 
basically suitable for practical use. Level designers can extend 
their established working methods by utilizing the presented 
procedural techniques. This creates the potential to increase 
time efficiency and make the construction of indoor levels 
more convenient by exploiting iterativity and controlled 
randomness through re-running of steps and selecting the most 
promising results. The presented time measurements show 
that runtimes for generating the graph structures are small 
enough to implement our iterative level design approach. 
Similarly, the corresponding data structures require little 
memory resources, which are almost negligible in the context 
of the memory sizes required for 3D geometric models. 

The elaborated parameters for controlling the procedural 
generation pipeline are basically intuitive for understanding.  
However, the currently implemented graphical user interface 
is rather more suitable for advanced users with a mathematical 
understanding of the pipeline stages. Here, it is necessary to 
design an interface for non-experts in such a way that graph 
parameters are mapped to simpler terms (e.g. “vertex degree” 
to “corridor density”) or combined into easily understandable 
meta-parameters. Likewise, predefined restrictions regarding 
mutually exclusive parameter configurations, as well as an 
immediate visualization of corresponding violations, would 
be recommended for improvement. Future work also includes 
further development of our geometric conversion algorithms 
and in particular optimizations of the Constructive Solid 
Geometry operations, which can be a time-critical bottleneck 
for very complex levels. Examples are the support for more 
flexible and configurable 3D components and use of spatial 
acceleration techniques, respectively. Another useful future 
development step would be the procedural placement of game 
design elements, like enemies, non-player characters, pick-up 
and cover objects. Finally, we plan to carry out additional 
practical user tests, also to be able to conduct representative 
comparative studies for evaluating the efficiency of our 
procedural approach in relation to manual level design. 
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 Base graph MST Level graph 

2D Maze 47 ms 21 ms 9 ms 

3D Maze 574 ms 43 ms 21 ms 

Dungeon 236 ms 33 ms 13 ms 

Space station 43.75 s 381 ms 181 ms 

 

 
Base graph Memory 

usage (in MB) Nodes Edges 

2D Maze 49 64 0.04 

3D Maze 216 258 0.29 

Dungeon 89 185 0.12 

Space station 1056 2310 13.08 

 

TABLE I. BASE GRAPH COMPLEXITIES AND MEMORY USAGES 

TABLE II.  TIME MEASUREMENTS FOR THE MAIN PIPELINE STAGES 

 Time complexity 

Vertex generation 𝑂(|𝑉|) 

Weighted edge construction 𝑂(|𝐸|2) 

Prim’s MST computation [29]   𝑂(|𝐸| ∙ 𝑙𝑜𝑔 |𝑉|) 

Cycle-forming 𝑂(|𝐸|) 

Graph cleaning 𝑂(∆(𝐺) ∙ |𝑉| ∙ |𝐸|) 

 

TABLE III. TIME COMPLEXITIES OF USED GRAPH ALGORITHMS 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Fig. 9. 3D maze – Example for one-step 3D level generation.  

 

Fig. 8. 2D maze – Example of a planar, rectangular level. 

 

Fig. 10. Dungeon – Practical level design example with multiple sections. 

 

Fig. 11. Close-up of procedural dungeon (arena section). 

 

Fig. 12. Space station – Example for procedural generation of highly complex 3D structures (iterative construction using simple hull mesh geometries). 
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