
Learning to Select Mates in
Evolving Non-playable Characters

Dylan R. Ashley0, Valliappa Chockalingam0, Braedy Kuzma0, Vadim Bulitko
Department of Computing Science

University of Alberta
Edmonton, Alberta, T6G 2E8, Canada

{dashley, valliapp, braedy, bulitko}@ualberta.ca

Abstract—Procedural content generation (PCG) is an active
area of research with the potential to significantly reduce
game development costs as well as create game experiences
meaningfully personalized to each player. Evolutionary methods
are a promising method of generating content procedurally. In
particular asynchronous evolution of AI agents in an artificial
life (A-life) setting is notably similar to the online evolution of
non-playable characters in a video game. In this paper, we are
concerned with improving the efficiency of evolution via more
effective mate selection. In the spirit of PCG, we genetically
encode each agent’s preference for mating partners and thereby
allowing the mate-selection process to evolve. We evaluate this
approach in a simple predator-prey A-life environment and
demonstrate that the ability to evolve a per-agent mate-selection
preference function indeed significantly increases the extinction
time of the population. Additionally, an inspection of the evolved
preference function parameters shows that agents evolve to favor
mates who have survival traits.

Index Terms—artificial intelligence, character generation, evo-
lutionary computation, machine learning, multi-agent systems,
reinforcement learning

I. INTRODUCTION

Procedural content generation (PCG) has the potential to
reduce game-development costs as well as tailor the game
content to each individual player [1]–[6]. Evolutionary search
has been used for procedurally generating appearances [7] and
even behaviour policies of non-playable characters (NPCs) [8],
[9]. Artificial life (A-life) often combines several machine-
learning methods in an asynchronous manner [10] representa-
tive of an game-time evolution of NPCs [11], [12].

Developing artificial intelligence (AI) in video games can
also be viewed as a stepping stone towards the development
of AI at large [13]. Indeed, our modern world is increasingly
becoming saturated with smart, interconnected, AI-driven de-
vices. With the emergence of vast networks of such agents
comes the potential of interesting emergent behavior among
them. This potential raises important questions. What will
this behavior look like? Will only simple behavior develop
or could we see something complex emerging? How will this
impact our society? A-life simulations are one way to study
such phenomena. A-life allows the study of both single- and
multi-agent learning at multiple timescales: within an agent’s

0Co-authors contributed equally.

lifetime (e.g., via reinforcement learning), as well as across
generations of agents via genetic search [10]. The potential
of emergent collective behavior is a powerful provision of
A-life since even simple agents acting according to simple
rules can produce a population that exhibits complex behavior
(e.g., Conway’s Game of Life [14] and Wolfram’s cellular
automaton rule 110 [15]).

Making evolution more efficient is a key problem especially
when the evolution of NPCs happens during playtime and
has to be visibly responsive to a player’s actions [9], [11].
One technique for increasing efficiency of evolution is better
mate selection which is critical for ensuring the diversity of
the gene pool as well as protecting innovation as it matures.
For instance, the NEAT algorithm uses speciation as a part of
its mating strategy [16]. One could port speciation and other
hand-designed mate-selection strategies to A-life.1 However,
in the spirit of procedural content generation, we propose a
different approach: we genetically encode a preference func-
tion in each agent thus allowing evolution to find good mate-
selection strategies. Since the preference function is specific
to each agent, our approach allows for evolving an ensemble
of complementary mate-preference strategies in a population.
We implement and evaluate our approach in an A-life setting
for the reasons listed earlier in this section. We note that a
similar approach can be applied in a synchronous evolution
scenario with discrete generations such as a scenario where
NEAT would be applied.

Note that this paper is an extended version of a two-page
abstract [17].

II. PROBLEM FORMULATION

We investigate how learning mate-selection strategies can
increase the efficiency of evolutionary search. When using
PCG techniques to evolve NPCs in video games, the evolution-
ary efficiency of the method used can be critical. For example,
in Darwin’s Demons NPC opponents are evolved based on
what was challenging for the player [11]. If the evolution
of the NPCs is too slow then the novelty of the evolved
opponents would be lost. In addition to potentially providing

1While A-life eliminates the basic genetic search’s need for an explicitly
designed fitness function (in A-life the fitness function is implicitly induced
by the physics of the environment), it still requires a mechanism for mate
selection for sexual agent reproduction.

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

better evolutionary efficiency, learning rather than hand-coding
mate-selection strategies is desirable as it reduces the potential
burden on the individuals employing these methods, further
increasing their applicability to games.

In this work, population extinction time serves as a proxy
for evolutionary efficiency such that a high average popula-
tion extinction time for one method would indicate that the
evolutionary efficiency of that method is high. Our objective
function T maps solution methods for mate-selection to the
expected lifetime of the resulting population. Our goal is to
maximize T . Thus, in our experiments, we test empirically
whether using different mate selection strategies results in
changes in an estimate of the expected survival time of a
population. To get a sense of the robustness of mate selection
choices, we also look to the distribution of survival times of
populations when using different mate selection strategies. The
hypothesis is that when agents can decide which other agents
to mate with (i.e., when they are afforded the ability to learn a
mate-selection strategy), the average population survival time
increases.

III. RELATED WORK

Previous work empirically evaluated several methods of
performing mate selection in conventional genetic algo-
rithms [18]. However, to the best of our knowledge, none of
the evaluated methods examined involves learning to perform
mate selection. If potential parents can predict the fitness of
their offspring, then they can learn to use that information in
selecting their mates [19]. However, obtaining a reliable such
prediction may be difficult at the agent level.

Mate preference on the basis of songs has been ex-
plored [20]. Males’ genomes are either their song itself or
a neural network that generates songs. Females’ genomes are
transition matrices which rank the aesthetic quality of different
note transitions. Mating occurs synchronously, and there are
no survival pressures on the agents; males only seek to be
appealing to females which may limit the applicability of this
approach to an A-life environment.

Related to the idea of mate selection is the study of
cooperation. In a previous study [21] agents on a lattice are
forced to interact with other agents in their vicinity. However,
the agents they interact with may cooperate with them or may
defect. The authors show that when agents simply move away
from partners that defect and cooperate with partners that
cooperate with them, they are able to successfully increase
the amount of time they spend with cooperative partners.

Also related to cooperation, previous work [22] also studied
how humans select partners in a real-world cooperation-based
game. It demonstrated that, in the context of the game,
humans will put a considerable amount of effort into finding
cooperative partners and that humans will put more effort into
finding partners when the selection process is unidirectional
rather than bidirectional.

IV. PROPOSED APPROACH

We will now present our solution approach, starting with
some additional definitions and notation, followed by a short

intuition describing the fundamental motivations behind our
approach and then the specific algorithmic details.

A. Definitions and Notation

Here, we continue our discussion in Section II with addi-
tional definitions and notation for our solution method. Let us
first generally consider how an agent behaves as mating is one
of many agent behaviours. Biologically, agents can generally
be described by their genomes. So, mathematically, suppose
we look at an agent n from a population A. Let its genome be
denoted Gn ∈ G, the genome space where all agents’ genomes
lie. Gn can be viewed as a vector that contains features that
parameterize agent n’s behaviour among other things like its
appearance. The particularly important part here in terms of
learning and evolution is that the behaviour policy of the agent
is genetically encoded.

Now, genomes are much too large for general decision
making in social interactions and are not directly observable.
In selecting mates, humans for example describe themselves
and observe others only through condensed profiles as opposed
to an entire genome.

Suppose agents can each express themselves though their
own profile function Prof : G → Λ where Λ is the set
of all profiles. One view of mate selection or relationship
assessment is to think about agents having the need to combine
information from the profiles of other agents and information
from their own profiles to figure out their compatibility. We
define a merging function Mer : Λ× Λ→M where M is an
arbitrary set of vectors of real numbers which contain features
about how two agents relate. Finally, for an agents’ decision
making about whether to mate, we let each agent have a
preference function Pref : M → R where the scalar represents
the preference an agent has for a particular combination of
agents (through the proxy of a vector describing features about
how the two agents’ profiles relate.)

In this work, we particularly consider situations where
agents evaluate combinations with itself for the purpose of
mating. Similar to allowing agents to design their own reward
functions [10], giving agents a way to select mates can help
in maximizing population survival time. With this in mind,
we focus on the preference network and evolve it over time,
while considering different merging functions and fixing the
profile function. We consider parameterized neural networks
for the preference networks, use relevant portions of genomes
as profiles and consider various merging functions based on
viewing it as a function of two vectors (profiles) that we either
might want to be similar (to exploit similarities that might be
useful for longer living offspring) or dissimilar (to be more
diverse and consider how incorporating differences might be
beneficial).

There are two intentional limitations in the problem for-
mulation above. First, the preference function operates on
information from two profiles and does not consider other
attributes such as what the agents may have learned during
their lifetimes such as their action functions in Evolutionary
Reinforcment Learning [10]. Second, we do not allow choice

in how agents present themselves to other agents (by fixing
the profile functions). For instance, different agents cannot sing
different songs to other agents to attract them as it happens
with real-life birds or certain computational simulations [20].
Future work will lift both limitations.

B. Intuition

Mate-selection affects learning across generations as the
choices of whether to mate or not affects the composition
of future populations and hence the mate-selection strategy
can impact the overall survival time of populations. Instead
of hand-coding a mate selection policy into A-life agents we
propose to find it via genetic search. We do so by giving
each agent a preference function which maps merged profiles
of agents and candidate mates to a preference value. The
function is encoded genetically in each agent’s genes. This
allows it to (i) be agent-specific and (ii) evolve over time.
We conjecture that a preference function that leads to longer
surviving offspring gives such individuals an advantage and
thus will spread in the population and increase the population
survival time relative to a baseline mate-selection mechanism.

C. Algorithmic Details

ERL Background. We formulate our agents and the envi-
ronment in an Evolutionary Reinforcement Learning (ERL)
setting, similar to the original [10]. The genomes that encode
agent behaviour consist of the initial weights for an action
function Qµ and the weights for an evaluation function Vθ
where the subscripts µ and θ denote the weights that param-
eterize functions Q and V .
Vθ(s) serves as an estimate for the value of state s ∈ S (i.e.,

the expected cumulative reward given that an agent starts from
s). This evaluation function is learned using evolution. Thus,
θ and hence Vθ remains the same during the lifetime of an
agent and only change as crossover and mutation operations
cause offspring to be born with differing θ’s.

On the other hand, Qµ changes over an agent’s lifetime.
Particularly, agents learn Qµ using an RL algorithm where
the reward for a transition from state s to state s′ when taking
action a is given by Vθ(s

′) − Vθ(s). The role of Qµ can be
thought of as encouraging action a in state s if Vθ(s′) > Vθ(s).

In A-life, while there is no explicit fitness function we
define, by virtue of the environment being designed with
certain dynamics, we can induce various desired behaviors.
For example, in a predator-prey setting where the prey possess
genomes encoding their behavior, following Darwin’s theory
of evolution [23], the fittest agents have the most chances to
reproduce, and their evaluation functions will consequently be
the ones most seen in the population. The resulting effect is,
as time goes on, most agents will learn evaluation functions
whose corresponding reward functions, if maximized correctly
by all agents, causes the average population survival time to
increase.

ERL A-life Simulation. Algorithm 1 describes the simulation
for agents with preferential mate-selection capabilities. While

Algorithm 1: A-life Environment Simulation of Agents
with Preferential Mate Selection
Input : number of initial agents, max energy,
world size, Mer, filter, epsilon
Output : (Int) population survival time

1 Na ← number initial agents, t← 0, A← ∅
2 randomly initialize networks: Vθ, Qµ,Prefρ
3 genome ← [θ, µ, ρ]
4 location ← random location in world(world size)
5 agent ← Agent.init(genome, max energy, location)
6 A← A ∪ {agent}
7 while Na > 0 do
8 for nm ∈ A do
9 s, no ← Env.get state(nm,filter(nm, ...))

10 Profm ← [θm, µm]
11 Profo ← [θo, µo]
12 other agent pref←

nm.Prefρ(Mer(Profm,Profo))
13 q0, ..., q|A| ← nm.Qµ([s, other agent pref])
14 a← EpsGreedy([q0, ..., q|A|], ε)
15 if a = Action Mate then
16 genome←

Crossover(nm.genome, no.genome) +
Mutation()

17 A← A ∪ Agent.init(genome,max energy,
location nearby(nm.location))

18 Na ← Na + 1

19 s′ ← Env.step(nm, a)
20 Vt ← nm.Vθ([s, other agent pref])
21 nm.Qµ.train(s, s′, a, Vt − Vt−1)

22 for a ∈ A do
23 if a.energy ≤ 0 then
24 Na ← Na − 1
25 A← A \ {a}

26 t← t+ 1

27 return t

these agents are the prey in predator-prey environments in our
experiments, the general idea can be extended beyond such
environments.

First, we initialize Na with the initial number of agents
given as input to the algorithm. This variable is used to
keep track of the number of agents. Then, we perform a
loop to initialize the initial agents. Within this loop, we
first initialize parametric functions for state evaluation, action
selection and preference evaluation (line 2). Given that we
use neural networks to parameterize these functions in our
experiments, we refer to Vθ, Qµ and Prefρ as the evaluation
network, action network and preference network respectively.
Function Vθ, the evaluation network, outputs a scalar given a
state, Vθ : S → R, quantifying how good it is to be in a given
state through a prediction of expected cumulative reward.

The action network Qµ defines the agent’s state-action value
function and outputs a scalar for each action: Qµ : S → R|A|
that quantifies how good it is to to take action a in state s and
thereafter follow the policy Qµ, again through a prediction of
the expected cumulative reward. Note that here the network
outputs the action-value for all the actions given a state,
thereby avoiding the need to do multiple forward passes.
Finally, the preference network Prefρ outputs a scalar prefer-
ence value given information about candidate agents through
their profiles, in particular outputs of the merging function
where one argument is their own profile. In particular, the
myself agent nm computes Prefρ(Mer(Profm,Profo)) using its
preference network. Here, Profm is the myself agent’s profile
and Profo is the other agent’s profile. The merging functions,
Mer, we use are handcrafted distance functions like norms.
They are described in more detail in Section V-B.

We initialize the genome of the agent with the weights
of the different networks in line 3. As in the original ERL
formulation [10], the evaluation network stays fixed over
an agent’s lifetime whereas the action network changes its
weights as the agent learns by interacting with the environ-
ment. The preference network does not change during and
agent’s lifetime.

Initialization of the environment is completed in lines 4-6
by setting the agents to random locations and giving them
a predefined maximum amount of energy. Next, the main
evolutionary loop begins where agents observe and act in the
world. Let agent nm be the agent being considered in the
loop. We first query the environment to get the state for agent
nm and a candidate agent based on a filter function (line
9). Without the loss of generality, the pseudocode assumes
a single candidate agent, no.

Mate Selection. As formulated in Section II, our preference
functions operate on agent profiles. In our experiments, we
use profile functions that map to a subset of the genome. In
particular, the profiles we use are vectors containing θ and µ,
the weights of the value network and the initial weights of
the action network respectively.2 Hence, the merging function
takes two vectors of length |µ| + |θ| and outputs a vector in
M which, as noted in Section IV, is a vector space consisting
of vectors whose sizes can vary based on the choice of the
merging function. The profile computation for the selecting
agent nm and the candidate agent no is done in lines 10 and
11. The resulting profiles are Profm and Profo.

Suppose we have two agents nm (the ”myself” agent) and
no (the other agent being considered for mating) and let
their profiles be Profm and Profo. If nm observes the Profo

and passes it through its preference network Prefρ without
any transformation to it (i.e., Mer(Profo) = Profo), it could
be problematic as Profo alone is decoupled from the profile
of agent nm, Profm. Conceivably, the difference between a
potential mate’s profile and the selecting agent’s profile is
important in deciding whether to mate. Thus, to allow an

2For simplicity, we exclude the weights of the preference function from the
profile to avoid second-order preferences.

Fig. 1. How one agent calculates its preference for another agent. Here
nm represents weights maintained by the selecting agent and no represents
weights maintained by the candidate agent.

agent to take its own genome into account when computing
its preference for a candidate mate, the merging function takes
both profiles Profm and Profo as inputs. We consider several
hand-coded merging functions: Euclidean distance, element-
wise squared distance, element-wise absolute difference, and
the identity transformation which simply returns the profile of
the other agent (i.e., Mer(Profm,Profo) = Profo).

In the pseudocode the use of this function, Mer, can be
found in line 12. The schematic for calculating preferences
is illustrated in Figure 1. An agent decides to mate perhaps
based on the preference value passed to the state according to
the action selection method presented below.

Action Selection and Reinforcement Learning. As the orig-
inal ERL work [10] we support lifetime learning by updating
agent’s action-network weights as the agent interacts with
the environment. However, instead of their complementary
reinforcement backpropagation we use Q-Learning [24]:

Q(s, a)← (1− α)Q(s, a) + α[r + γmax
a′

Q(s′, a′)]

where (s, a) is the state-action pair to be updated, s′ is the
next state, r is the reward, γ is the discount factor, and
α is a step-size hyperparameter. To allow for exploration,
we use ε-greedy action selection strategy whereby a random
action is chosen with probability ε ∈ (0, 1) and the greedy
action, arg maxaQ(s, a) is chosen with probability 1 − ε
(line 14). To compute the reward r we use a difference in
state evaluations at consecutive time steps. We use a squared
loss as in DQN [25]:

µ← µ− α∇µE
[(
Vθ(s

′)− Vθ(s)+

+ γmax
a′

Qµ(s′, a′)−Qµ(s, a)
)2]

Evolution. The evolution process takes place when the mate
action is chosen by an agent (lines 16 to 18). We crossover the
two agents’ genomes and perform mutation as well by aver-
aging the genomes of the parents and applying element-wise
gaussian noise. We complete the mate action by initializing
the agent with a location close to the parent agents, updating
the agent set A and incrementing the agent counter.

The simulation keeps track of the energy of the agents,
decrementing the agent counter and removing agents from the
agent set when an agent’s energy falls to 0 (lines 23 – 25).

V. EMPIRICAL EVALUATION

Experiments are conducted in a wolf-sheep predation model
similar to the predator-prey environment used by Ackley and
Littman [10] and implemented in NetLogo [26].

A. Simulation Environment

Our tile-based simulation world (61 × 61 tiles) consists of
tiles of grass, sheep and wolves (Figure 2). Grass is initialized
with equal probability in either a grown or ungrown state. At
initialization, one hundred sheep (shown as white icons) and
one wolf (shown as black icons) are distributed throughout the
world.

Sheep move around the environment and eat grass. Wolves
move around the environment and eat sheep. Each agent
always occupies a single tile. Several agents can share a tile.
Grass is either present or absent. Grass present in a tile can
be eaten by a sheep and will re-grow after a certain number
of time steps (drawn uniformly randomly from a pre-specified
range). Each sheep and wolf have a level of energy which
is reduced with each agent’s action except possibly eating.
When the energy drops to 0 the agent dies. A wolf attacking a
sheep decreases its energy by a certain amount. If the resulting
sheep energy drops to 0, the sheep dies and the wolf eats it and
replenishes its own energy. No energy is received for attacking
a sheep. Wolves reproduce asexually when their energy is
above a certain threshold. Sheep, on the other hand, require
selecting a mate and taking the mating action to produce an
offspring. When mating, both sheep and wolves incur a flat
energy cost that is taken from the initiating parent and is used
as the offspring’s inital energy.

Sheep also die randomly according to a discrete Weibull
distribution [27]. Its parameters were adjusted so that even if
a sheep were to avoid being eaten, there was approximately
10% probability for a sheep to survive past 500 time steps.
When all wolves die a new wolf is added to the simulation
at a random location. Thus, there is always at least one wolf
in the space, whereas if all sheep die then the simulation is
terminated. Wolves follow a simple, fixed behaviour policy the
enables them to chase and eat sheep consistently. In contrast,
sheep must learn how to eat or to avoid wolves. The learning
occurs at two temporal scales: across generations and within
an agent’s lifetime. Across generations the population evolves
better evaluation functions encoded by the evaluation network
weights and similarly evolves better initialization values for the
action network weights. Recall, we average parents’ genomes
and then perform mutation by adding normally distributed
random values to produce offspring genomes.

Learning within an agent’s lifetime is done by updat-
ing the action network via Q-learning using evolved eval-
uation functions. At each time step, a sheep observes
its current state and, using its action network, chooses
an action to perform. In this simulation, a sheep’s state

Fig. 2. A-life simulation with sheep, wolves and grass.

s ∈ S is a nine-tuple of information from its surround-
ings: (E, θSheep,∆Sheep, θWolf,∆Wolf, θGrass,∆Grass, P,A). The
elements of this tuple are repsectively: the sheep’s current
energy; the angle and distance to the closest sheep, wolf, and
grass tile; the preference score of the nearest sheep; and the
age of the eldest child of the sheep that it has seen. Including
this last element provides a rough means by which a sheep is
able to gauge its reproductive success.

A sheep can select an action from the action set containing
the actions move forwards, turn left, turn right, eat or mate.
Performing this action produces a new state which in turn is
used to generate a reward using the evaluation network.

We normalize the state features to ensure that the scale of
all features falls within reasonable ranges. For example, we
convert the angle (in degrees) to the closest entity to the range
[−180, 180] and then divide by 180 to get a value between
[−1, 1]. Similarly, we normalize distances according to the
size of the world, energy to [0, 1] using the maximum energy,
squash the scalar preferences using the hyperbolic tangent
function, and normalize the child age by the oldest age of
any sheep in the simulation. Because the world is quite small,
sheep have sufficient vision to see any other agent in the
world at each tick. However, for simplicity, we artificially
blind agents to everything but the closest sheep, wolf, and
tile of grass.

B. Baselines for Merging Functions

As baselines in our experiments, we use five hand-coded
merging functions. As described earlier, the merging function
Mer takes two profiles Profm,Profo as its inputs and returns a
vector in M . The baseline is a constant Merρ(Profm,Profo) =
0 (which implies random mate selection), the absolute dif-
ference between the profiles Mer(Profm,Profo) = |Profm −
Profo|, the squared difference (Profm−Profo)2, the Euclidean
distance ‖Profmi − Profo‖, and Profo itself.

TABLE I
POPULATION SURVIVAL TIMES AVERAGED OVER 125 TRIALS

Preference function Mean population survival time

Other genome 2589.5± 100.0
Absolute difference 2521.0± 94.3
Squared difference 2340.4± 90.0
Euclidean distance 1878.9± 64.5
Random 1761.0± 57.2

0 1000 2000 3000 4000 5000 6000
Population Age (ticks)

0

20

40

60

80

100

120

Po
pu

la
tio

ns
 S

ur
vi

vi
ng

Absolute Difference
Euclidean Distance
Other Genome
Random
Squared Difference

Fig. 3. Populations survival curves.

C. Results: Expected Population Survival Time

Figures 3, 4, and Table I show the results of experiments
in which the four different merging functions as well as the
random mating baseline were each run 125 times and the
simulations were allowed to proceed until extinction (i.e.,
when the sheep population declines to 0).

Figure 3 shows the survival curves for each preference
setting and Figure 4 shows the distribution of the survival
times. Notably random mating and Euclidean distance perform
quite poorly compared to the other four genome transfor-
mation functions, which perform roughly similarly. Table I
shows the mean survival times under each of the genome
transformation functions. Here there is a significant differ-
ence between the average survival time of each of absolute
difference, other genome, and squared difference and each of
Euclidean distance and random (p < 0.01 using two-tailed t-
test with Bonferroni corrections). One reason for why using
the Euclidean distance as a genome transformation functions
performs so poorly is that the preference network under this
genome transformation function is restricted to learning a
single weight, the preference of an agent for another agent
is likely to be dominated by irrelevant features of that agent’s
genome. The reason that irrelevant features will dominate the
distance is that only the relevant features are likely to be
selected for and so irrelevant features are likely to have much
more variation.

2000 4000 6000
Population Age (ticks)

Absolute Difference

Euclidean Distance

Other Genome

Random

Squared Difference

Fig. 4. Distribution of population survival times. Triangles denote mean
values. Diamonds denote potential outliers.

D. Results: Preference Weights Analysis

For further analysis we inspected the weights ρ of the
preference network Prefρ as it evolves. In particular, we looked
at the longest run of one of the preferential mating variants
that did the best across runs — the other-genome variant where
agents only make use of a candidate’s genome in calculating
preference. A primary reason for this choice is that analysis
becomes easier as compared to the other variants because we
do not need to consider how a selecting agent’s genome affects
the preference value.

To see which genome features agents become interested
in, we first calculate the unnormalized importance of features
by multiplying an agent’s preference network weights ρ by
the weight from preference P to the Action Mate in the
action network Qµ and take the absolute values. Doing this,
we get a vector u whose values are unbounded but whose
sign is meaningful. In particular, the multiplication by the
weight from the preference P to action mate in the preference
network accounts for the fact that certain agents might weigh
the preference in a negative manner, giving a high probability
of mating when the preference is a large negative number.

We then normalize the positive and negative elements of
the vector u separately by dividing the negative elements by
the negative element with the largest magnitude and similarly
for the positive elements. Thus, we get a normalized vector
whose elements are between −1 and 1. By averaging such
vectors over all agents in a generation, we get a vector of the
average normalized weights for all the features of agents in a
given generation. Here, the generation number of an individual
is defined to be the maximum of the generation numbers of
its parents plus one. This choice is motivated by noting that
we can expect that agents with a higher ancestral order (i.e.,
sheep who have more ancestors), will survive better. The use
of such discrete generations is also useful when comparing
or consolidating agents across multiple runs as we do later.
Taking the per-feature incremental average of the normalized u
vectors across the generations and selecting the top-5 features
at the last generation in the positive and negative weighting
case separately then results in Figures 5 and 6 respectively.

As can be seen in Figure 5, there appear to be certain
features that become positively correlated or, in other words,

0 20 40 60 80 100 120
Generation Number

0.2

0.0

0.2

0.4

0.6

0.8

In
cr

em
en

ta
l N

or
m

al
iz

ed
 W

ei
gh

t

Wolf Value
Preference Action Mate

Grass Action Left
Sheep Action Move
Grass Action Eat

Fig. 5. Average normalized weight for the eventual top five most positively
weighted genome features. Here the generation number of an individual is
defined to be the maximum of the generation numbers of its parents plus one.

0 20 40 60 80 100 120
Generation Number

0.8

0.6

0.4

0.2

0.0

In
cr

em
en

ta
l N

or
m

al
iz

ed
 W

ei
gh

t

Sheep Action Move
Wolf Action Left
Grass Action Right
Wolf Action Mate
Grass Action Mate

Fig. 6. Average normalized weight for the eventual top five most negatively
weighted genome features.

preferred for among agents. For example, sheep learn, on
average, to prefer other sheep who prefer being far from the
closest wolf. This is because ∆Wolf refers to the distance to
the closest wolf and ∆Wolf→ action mate then refers to the
weight a sheep gives to how far the closest wolf is.

Given that survival correlates to understanding that being
near wolves is dangerous, it is interesting that indeed sheep
have understood that in developing future populations, it is
important that offspring prefer sheep who give a high value
to wolves being far off. In other words, sheep learn to prefer
sheep who have a high weight for ∆Wolf→ Value.

In a similar vein, sheep also learned to prefer mating with
sheep who assign a high value to mating when they have a
high preference for a candidate agent in their state. This is
useful in ensuring that offspring make use of preference in
selecting whether to mate and prefer other sheep who have a

0 10 20 30 40 50 60 70 80 90 100 110

Generation

Grass Action Mate

Energy Action Eat

Preference Action Mate

Wolf Value

Preference Value

Child Age Action Mate

Energy Action Mate

Energy Value

Fe
at

ur
e

Fig. 7. Average normalized feature weight for meaningful features over the
top 30 longest other-genome experiment runs.

high weight for Preference→ Action Mate.
Finally, sheep also learned to dislike other sheep who

assign a high value to mating when grass is far off. In other
words, sheep learn to dislike other sheep who assign a high
preference to mate with sheep who have a high weight for
∆Grass → Action Mate. This makes intuitive sense in that
mating consumes energy and, moreover, if a wolf were to
appear and the closest food source is far off, the sheep could
be in danger.

On the other hand, we are unable to explain why some
weights being high or low were preferred such as the pref-
erence for sheep having a high weight for ∆Grass →
Action Left. We note that, indeed, some of the features that
become prominent seem to not have simple interpretations.
This problem reduces when averaging over multiple runs
as different features might end up being weighted more in
different runs but any common genome features (i.e., different
weights of the parametric function approximators), that sheep
learn to prefer will remain prominent.

Finally, we averaged over the top 30 longest runs in the
other-genome condition and looked for a set of meaningful
features which we could interpret. The results of this investiga-
tion are shown in Figure 7. Many preference weights become
as we would expect them to be. For example, considering the
two ends of feature weight preference, on one end sheep learn
to strongly prefer those who have a high value assigned to
having a high energy (i.e., sheep who have a high weight for
Energy → Value), and, on the other end, strongly disfavor
those that more likely take the mate action when the closest
grass is far off (i.e., sheep who have a high weight for
∆Grass→ Action Mate).

VI. CURRENT SHORTCOMINGS & FUTURE WORK

In this work, we allowed our agents to examine the genomes
of potential mates to create a mating preference. Future work
will give agents an ability to present themselves to others

(e.g., via a bird song or an online dating profile). Such profile
formation ability can be genetic, co-evolving with their ability
to read other profiles.

We prevented our agents from examining each other’s pref-
erence functions to select a mate. Future work will investigate
how including such information affects mate selection.

All our experiments were conducted in an autonomous A-
life environment. Future work will implement these techniques
in a video game with the player’s actions informing the
evolution.

VII. CONCLUSIONS

Evolutionary search has the potential to procedurally gen-
erate interesting non-playable characters in a video game. The
A-life setting is particularly applicable to procedural content
generation in a video game. We show that the way NPCs in an
A-life environment select their mates to form offsprings has
an effect on the population survival. In the spirit of PCG, we
let evolution develop mate-selection strategies. The resulting
evolved strategies increase the population survival time and
have elements that make sense from the survival perspective.

ACKNOWLEDGMENT

We appreciate resources provided by Calcul Québec and
Compute Canada.

REFERENCES

[1] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[2] J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva,
M. Preuss, and K. O. Stanley, “Procedural content generation: Goals,
challenges and actionable steps,” in Dagstuhl Follow-Ups, vol. 6, 2013.

[3] P. D. Sørensen, J. M. Olsen, and S. Risi, “Breeding a diversity of super
mario behaviors through interactive evolution,” in Procceedings of the
2016 IEEE Conference on Computational Intelligence and Games, 2016,
pp. 1–7.

[4] S. Risi and J. Togelius, “Neuroevolution in games: State of the art and
open challenges,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 9, no. 1, pp. 25–41, 2017.

[5] A. S. Ruela and F. G. Guimarães, “Procedural generation of non-
player characters in massively multiplayer online strategy games,” Soft
Computing, vol. 21, no. 23, pp. 7005–7020, 2017.

[6] G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games.
Springer, 2018.

[7] S. Risi, J. Lehman, D. B. D’Ambrosio, R. Hall, and K. O. Stanley,
“Petalz: Search-based procedural content generation for the casual
gamer,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 8, no. 3, pp. 244–255, 2016.

[8] V. Bulitko, S. Carleton, D. Cormier, D. Sigurdson, and J. Simpson,
“Towards positively surprising non-player characters in video games,”
in Proceedings of the Experimental AI in Games Workshop at the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, 2017, pp. 34–40.

[9] V. Bulitko, M. Walters, M. Cselinacz, and M. R. Brown, “Evolving NPC
behaviours in A-life with player proxies,” in Joint Proceedings of the
AIIDE 2018 Workshops, 2018.

[10] D. Ackley and M. Littman, “Interactions between learning and evolu-
tion,” Artificial life II, vol. 10, pp. 487–509, 1991.

[11] T. Soule, S. Heck, T. E. Haynes, N. Wood, and B. D. Robison, “Darwin’s
demons: Does evolution improve the game?” in Proceedings of the
European Conference on the Applications of Evolutionary Computation,
2017, pp. 435–451.

[12] Polymorphic Games, “Project Hastur,” 2018.
[13] M. Buro, “Real-time strategy games: A new AI research challenge,”

in Proceedings of the International Joint Conferences on Artificial
Intelligence, 2003, pp. 1534–1535.

[14] M. Gardner, “Mathematical games: The fantastic combinations of John
Conway’s new solitaire game “life”,” Scientific American, vol. 223,
no. 4, pp. 120–123, 1970.

[15] S. Wolfram, A new kind of science. Wolfram Media, 2002.
[16] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through

augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[17] D. Ashley, V. Chockalingam, B. Kuzma, and V. Bulitko, “Learning
to select mates in artificial life,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2019.

[18] C.-F. Huang, “A study of mate selection in genetic algorithms,” Ph.D.
dissertation, University of Michigan, 2002.

[19] L. M. Guntly and D. R. Tauritz, “Learning individual mating prefer-
ences,” in Proceedings of the Genetic and Evolutionary Computation
Conference, 2011, pp. 1069–1076.

[20] G. M. Werner and P. M. Todd, “Too many love songs: Sexual selection
and the evolution of communication,” in Proceedings of the European
Conference on Artificial Life, 1997, pp. 434–443.

[21] C. A. Aktipis, “Know when to walk away: contingent movement and
the evolution of cooperation,” Journal of Theoretical Biology, vol. 231,
no. 2, pp. 249–260, 2004.

[22] G. Coricelli, D. Fehr, and G. Fellner, “Partner selection in public goods
experiments,” Journal of Conflict Resolution, vol. 48, no. 3, pp. 356–378,
2004.

[23] D. Charles, “On the origin of species by means of natural selection,”
Murray, London, 1859.

[24] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, 1992.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[26] U. Wilensky, “NetLogo,” Northwestern University, Evanston, IL, 1999.
[27] T. Nakagawa and S. Osaki, “The discrete Weibull distribution,” IEEE

Transactions on Reliability, vol. 24, no. 5, pp. 300–301, 1975.

