
Automatic Generation of Super Mario Levels via
Graph Grammars

Eduardo Hauck
Department of Computer Science

University of Tsukuba
Tsukuba, Japan

eduardohauck@gmail.com

Claus Aranha
Department of Computer Science

University of Tsukuba
Tsukuba, Japan

caranha@cs.tsukuba.ac.jp

Abstract—Automatically generating game levels using Pro-
cedural Content Generation (PCG) is a challenging problem
because of the necessity of attending both functional and nonfunc-
tional requirements. In the particular example of level generation
for Super Mario, Machine Learning approaches, such as GANs
and Reinforcement Learning, have shown promise. However,
these black-box approaches usually are not explainable, and
thus difficult to integrate with human designers. We propose
a different level-generation system that uses a reachable graph
structure, automatic detection of level structures, and formal
graph grammars. A human designer can also easily add or
remove structures to use the system as a level co-creation tool.
An experimental analysis shows that the proposed system can
generate playable and visually pleasing levels, while revealing
some limitations of current approaches on platformer level
generation, such as the generation of backtracking segments.

Index Terms—Procedural Content Generation, Graph Gram-
mar

I. INTRODUCTION

Procedural Content Generation (PCG) has been used by the
video game industry to overcome technical limitations, create
new ways of playing games and accelerate development. How-
ever, automatically generating levels with similar quality as to
human-authored levels is still a challenge. Level generation
is a complex task because levels have both functional and
nonfunctional requirements that have to be met [1]. Creating
high-quality levels is a creatively demanding task that can be
difficult even for humans. Creating tools that can support or
accelerate the work of designers can be the key to develop
better games.

The application of Machine Learning to PCG (PCGML)
[2] has shown promising results for level generation. For
example, Generative Adversarial Networks (GANs) have been
applied to generate certain types of levels [3] or to leverage
the limited dataset usually available for games [1]. While these
approaches are successful in generating levels automatically,
the complexity of interpreting the results of a neural network
makes it difficult to develop co-creation tools that can be used
intuitively by players or designers.

When creating new levels, humans often play with the
recombination of patterns seen or used previously. In this way,
level design is done at a higher level, where the focus is

Fig. 1: Section of a generated level that offers multiple paths,
where at least one of them is traversable. If the player decides
to go through the bottom path, it will be forced to backtrack.

on the role of each pattern, and how their interaction affects
gameplay. We believe that a generation system working at this
higher recombination level will be easier and more intuitive
to collaborate with for a human designer, and this idea is the
main motivation of our work.

Londono and Missura proposed a system following the same
idea of high level composition of a level from set patterns [4].
They sought to identify frequent patterns in a level, and to use
these patterns to generate new levels. They propose a graph
grammar learning system based on the minimum description
length (MDL) principle. The system induces a graph grammar
that can reproduce an input level and also generate new levels
based on the patterns identified. However, although it was an
interesting idea, only a superficial description of this system
was provided, with no results or analysis.

Inspired by their work, we propose a new level generation
system based on graphs. The system is capable of extracting,
processing, and recombining patterns based on the data of
one or more input maps. These patterns are stored as simple
files that can be edited or even manually created by a human
developer, and then used in the generation of new levels. By
extracting patterns from user designed levels and recombining
these patterns in different ways, we expect that the levels
produced by the system will exhibit some of the features
present in the original levels, while at the same time exhibit
new features emerging from the automated recombination.

We implement and evaluate this system using the Mario
978-1-7281-4533-4/20/$31.00 ©2020 IEEE



AI Framework 1 to generate levels for the Super Mario Bros.
game. Experiments show that the system is capable not only
of generating playable and often visually appealing levels, but
also levels that present one or more paths leading to a dead-
end that require the player to backtrack. Figure 1 presents an
example of a generated level with this property. In the future,
we plan to evaluate more generation methods using the same
system as a basis, and then use the system to develop human-
friendly design assistant tools that can be used by designers
and players alike.

II. RELATED WORK

A. Mario AI Framework

The Mario AI competition [5] was introduced in 2009,
tasking participants to create AI agents and level generators for
the Super Mario Bros videogame. It was built on top of Infinite
Mario Bros (IMB), an open-source clone of Super Mario Bros.
However, unlike the original game, the levels are procedurally
generated using a handcrafted method developed by the creator
of IMB, Markus Perrson.

The Mario AI framework stores and render levels from text
files, where each symbol represents a tile to be rendered on the
screen. Table I shows the symbols used for each sprite present
in the first level of the original game, commonly referred to
as World 1-1. In this work, we read and generate levels using
this same format.

B. Level Generation in Super Mario Bros

The framework for the Mario AI competition became a
particularly useful tool in the PCG field, as it proposes a
difficult challenge in a videogame environment that is simple
enough to manipulate and test. For example, Shaker et al.
proposed a grammatical evolution approach. They employ
the combination of a grammatical representation of the level
with an evolutionary algorithm to evolve the grammar. The
grammar rules contain elements of the game and a position in
which they should spawn. Candidates are then generated with
a certain number of these string components, and an evolution
is performed to obtain a certain type of level [6]. Another
approach, by Khalifa et al., combines evolutionary algorithms
with quality-diversity (QD) algorithms that maintains the
diversity of the population and generate levels with varying
characteristics [7].

The methods mentioned are categorized within the Search-
based PCG [8] category. They employ a heuristic function that
approximates the quality of a candidate solution to guide the
generation. Although these methods have shown to be able to
generate levels, they often require handcrafted functions that
use domain knowledge on the subject. This can be challenging,
as it is not clear how the overall quality of a level could
be expressed by a single formula, and this value could even
change between different games.

1http://marioai.org/

TABLE I: Symbols used for each sprite in the Mario AI
framework. This table shows all the elements used in the first
level of Super Mario Bros, World 1-1.

Sprite Symbol Type

M Spawn location for the character

- Air (empty tile)

X Ground

# Platform

S or C Platform (C symbol contain a coin)

g Goomba (enemy character)

k Koopa (enemy character)

t Pipe (formed by 2 tiles side by side)

! or @ Question Block (contains coin or mushroom)

F Finish line (1 symbol covers the whole column)

C. PCGML

Procedural Content Generation via Machine Learning
(PCGML) [2] is an emerging field that aims to leverage all the
recent development achieved in the ML field to improve con-
tent generation through the use of existing data. Unlike pure
Search-based methods, which require some domain knowledge
of the problem, PCGML methods extract and model the data
as a basis for the generation.

One of the challenges in machine learning is that of the
development of explainable methods. That is, given a certain
method and a certain output, an explainable method allows
for a human user to understand why or how the method came
to produce that output. The effort towards ”Explainable AI”
can lead to systems that are more human-friendly and allow
more creative use of its functionalities. Recent works in PCG
are starting to address this issue, such as the design pattern
classification system proposed by Guzdial et al. [9].

D. Graph Grammar learning for Super Mario Bros

London and Missura [4] proposed a graph grammar learning
system to generate Super Mario levels. This can be a better
approach in terms of explainability, as graphs are visual
structures and grammar rules based on them would allow for
an intuitive understanding of the generation.

They follow the assumption that human-designed levels
contain high-quality patterns that can be extracted and used



Fig. 2: The three main stages of the proposed system.

to generate new levels. To achieve this, they implement the
SubdueGL algorithm [10], an algorithm that can obtain a
context-free graph grammar based on the discovery of frequent
structures in a graph.

They propose to model the elements of a level as nodes of
two types:

• Platform nodes: represent solid tiles on which the charac-
ter can stand on. A contiguous sequence of platform tiles
on the horizontal axis can be represented by two nodes
connected by an edge.

• Cluster nodes: represents non-solid tiles such as coins or
enemies that the character can interact with. Clusters are
formed from these elements by employing a simplified
version of the clustering algorithm GDBSCAN [11].
All the nodes of a cluster form a connected component.

A third type of edge is also employed based on the concept
of reachability. If a character can navigate from a platform
node to a cluster node (e.g. through a jump), then a reachability
edge is added between these two nodes. The reachability
concept is used to connect platform and cluster nodes together
and ensure that the whole graph representing the level is a
connected component. As our system use this same concept,
a more detailed explanation of how reachability between two
nodes is computed is given on section III, B.

After converting the level to its graph representation, the
SubdueGL algorithm is applied and frequent structures are
identified. The most frequent structures are abstracted from the
graph and used as rules for a graph grammar. This process is
repeated until a grammar capable of reproducing the original
level is obtained.

Although an overview of the system was provided, no im-
plementation or analysis have ever been published. Moreover,
the system is based on the assumption that high-quality design
patterns would frequently appear in human-designed levels.
While this may be true, video game levels datasets are known
for being often scarce, when available at all.

Nevertheless, we believe that the expression power of graphs
can be used to learn patterns and generate high-quality levels
from them. We draw inspiration from their work by adopting
a similar graph representation. However, we use a different
approach for learning the patterns to ensure that a desired
number of patterns can be extracted from a map regardless of
their frequency.

III. PROPOSED SYSTEM

We propose a system for the automatic generation of plat-
former levels that extract structures from existing levels and
identifies how they can be recombined with each other. This
information is then used to create a graph grammar that can
output levels using different recombinations of these structures
while ensuring that the level can be traversed by the player.
Source code is available online 2.

A level or a pattern in a level is represented as a graph,
where each tile is associated with a node. A node will contain
information such as the (x, y) coordinates of the tile and its tile
ID. Air tiles (tiles where the player can move through freely)
are also represented as nodes since they can be an important
part of a structure. Edges of a node represent tiles that are
adjacent to it.

The proposed framework is divided in three stages, illus-
trated in Figure 2:

• Structure Identification: structures are identified and
extracted from the set of input maps;

• Structure Matching: different ways of recombining
these structures are identified;

• Level Generation: structures are connected to each other
until reaching certain criteria.

Note that a human designer could be added to any of
the three stages to help achieving a certain kind of result.
Particularly, on the first stage, a user could input their own

2https://github.com/ehauckdo/mario



(a) selected points on a level

(b) expansion of a graph from the initial points

Fig. 3: Identification of a structure from two initial points (a). (b) shows the order of expansion (left, down, right, up). A
connector node is added in step 3 to both structures due to an overlap. They no longer expand towards the overlapping direction.

structures to be mixed with the identified ones. Also, on
the last stage, a user could try different combinations of
structures and experiment with the level. Nevertheless, to get
a baseline for the potential of the method, in this work we
only investigate computational methods for each of the three
stages.

A. Structure Identification

A structure is defined as a subsection of a level (a window
of d × d size). This stage receives 3 parameters as input, as
follows:

• L: a set of levels l;
• n: the minimum number of structures to be identified in

each level l ∈ L;
• d: the base size (width of each side) of the structures;
For each level l in the set L, a minimum number n of

structures are identified. In the current implementation, a
simple strategy is employed to extract random chunks from the
level and identify how they connect to each other is adopted,
as described below.

The Structure identification stage starts by selecting n non-
air tiles in the level. These non-air tiles are selected such as
they are as equally spaced as possible from each other by
using the Suppression via Disc Covering algorithm proposed
by Gauglitz et al. [12]. The implementation of the algorithm
was provided by Georgy Skorobogatov and is available online
3.

After n non-air tiles are selected in the level, a node is
created for each one of them to represent the tile at that (x, y)

3https://gist.github.com/LostFan123/63c7a1a26945ffaf115dc6886b69e862

coordinates. The next step is expanding, one direction at a time
(left, down, right and up), each of these nodes until reaching
a width and height of d. The expansion to each side is done
simultaneously for every structure. Figure 3 illustrates how the
expansion occurs.

Because the structures are expanded simultaneously, an
overlap between two growing structures may happen during
expansion. When this happens, the expansion to the corre-
sponding directions on both structures is halted (i.e. the actual
overlapping is not allowed). A connector node is created for
each structure, and placed in the (x, y) position of the node
of the opposite colliding structure. These connector nodes do
not contain any tile information. They are temporary nodes
used in the next steps of the system to connect two structures
together. Their function is analogue to that of a non-terminal
node of a graph grammar.

After all structures have reached the base d size for their
width and height or had they growth halted due to an overlap,
the selection of structures from the input levels is complete.
The next step is deciding how structures can be joined to one
another.

B. Structure Matching

Once a list of structures is obtained, it is interesting to
evaluate which pairs of structures can be connected and from
which nodes this connection can happen. This step is per-
formed for two important, inter-connected reasons: to decide
which connections are good and which should be avoided;
and to speed up generation by disregarding connections that
are known beforehand to violate a set of desired constraints.



Fig. 4: Illustration of the reachable area given a platform.
Nodes with label P represent a platform, while nodes with
label C represent a non-solid tile (such as a coin). The area
given by the trapezium and the two triangles represents the
reachable area of the player when at any point in the bottom
platform.

In the current work, when verifying whether two structures a
and b are joinable, two constraints are evaluated:

• Structural consistency: the connector nodes of a and b
must have been created due to an overlapping in the
same axis (i.e. either horizontal or vertical) and opposing
directions;

• Playability ensurance: the player character should be able
to move from a to b.

The playability ensurance constraint is verified by employ-
ing the reachability concept initially proposed by Londono and
Missura [4]. It models the reach of the player character given
its mechanics (in the case of Super Mario Bros., walking and
jumping) and use this information to create edges between
non-adjacent nodes in the graph. Figure 4 illustrates how the
reachability is computed, given a certain platform.

The reachability concept is used to ensure that for some
platform node of a structure a, the player can reach at least
another node of structure b. This approach helps to alleviate
with some of the limitations of the standard approach in
the literature regarding employing an A* agent to verify the
playability of a level, as it will be seen later in the experiments
section.

However, since it is a simple model of the mechanics of the
character, it has limitations. For example, it does not consider
that the character is able to get a power-up item and destroy a
block that is obstructing the path. Nevertheless, if reachability
is used to assert that all nodes from a certain platform are
reachable, then the player should be able to traverse the whole
level.

If these two constraints are satisfied for a pair of connector
nodes, then the two structures are deemed joinable through
these pair of nodes. This evaluation is done for every pair
of connector nodes. Note that, consequently, structures with
more than one connector node can be joined with one another
in different ways, as long as they do not violate the desired
constraints.

After this step is complete, every structure will have a list
of other structures it can be connected to, and from which
connector nodes these connections can be made. A weighted
distribution can be added to bias the likelihood of a certain

connection being made.

C. Level Generation

In the level generation stage, a grammar is built from the
information obtained in the previous two stages. This grammar
is then used to generate new levels. The generation can be
executed freely by applying the substitutions obtained from the
grammar rules, or following some constraint. These generation
constraints are complimentary to the constraints evaluated in
the structure matching stage. They are concerned with the
properties of the whole generating map as opposed to the
properties of two connected structures.

A simple hand-coded starting structure is used as a start for
the generation, to ensure the player always spawns at a safe
location. It will contain only the ground blocks for the first
three columns of the game, the symbol for the spawn position
of the character, and a connector node.

The generation is performed by iterating over a structure
joining process, given by:

• Obtain all possible substitutions for the currently avail-
able connector nodes;

• Scale the probabilities of each connector nodes;
• Draw structure given the probability distribution and add

it to the graph;
• Flag the connector nodes used as connected.
• If any constraint is violated, backtrack to previous state
Two constraints are considered for the generation process.

First, is the availability of connector nodes (ensure at least
one entry point for substitution at every step of the generation).
Second, preventing the overlap of a new joining structure with
a structure joined at a previous step of the generation.

Regarding the second constraint, the option of allowing
overlap of nodes during generation to support the emergence
of new and unexpected patterns was considered. However,
early experiments showed that the generated levels were too
structurally inconsistent, such as growing outside of the screen
boundaries.

An additional matter to be considered is whether or not the
overlapping of air tiles is considered a constraint violation. Air
tiles can be seen as ”empty” tiles, thus their overlapping could
be disregarded so novel patterns could be discovered during
generation. However, it is known that negative space, i.e. the
empty spaces between material objects in a space, plays an
important role in game design. Therefore, choosing to disre-
gard the overlapping of air nodes should be done with care.
To ensure higher structural consistency of the level, the base
system prevents any overlaps to happen during generation, but
experiments with the relaxation of this constraint were also
performed, as shown in the next section.

The iteration described for the generation process is re-
peated until reaching a stopping criteria. Since every pair of
structures used during the generation are reachable from one
another, the resulting graph is guaranteed to be a connected
component. Finally, the output graph is converted back into
text format and is ready to be played using the MarioAI
framework.



(a) World 1-1, level used as input

(b) Output levels

Fig. 5: A sample of the generated levels. The two top levels on (b) were generated by avoiding overlap of air tiles, resulting
in more organized levels, while the two bottom levels were generated allowing for the overlap of air tiles, and present less
linearity.

IV. EXPERIMENTS

In this section, we evaluate the generation results of the
proposed system. For that, we assessed whether our system
is capable of generating levels, whether the generated levels
are playable, and how did they fare visually in comparison to
the input level. After this baseline evaluation, we assess how
the constraint on preventing the overlap of structures during
generation affects the generated levels. We use the first level
of the Super Mario Bros game (World 1-1) as the input for
the system in both experiments. This level is shown in Figure
5a, and is available for as part of the Mario AI framework.

A. Experiment Setup

We set the parameter n of structures to be selected as 35, and
the minimum size d of each structure as 4. In the generation
process, we adopted a uniform probability distribution for the
selection of new structures. That is, given all possible con-
nections from a connector node, the structure to be connected
to it is drawn randomly from the list of possibilities. We set
the stopping condition for the generation process as when
30 structures have been added to a level under generation.
We generate 100 levels under two configurations: one using
the baseline system, and another relaxing the constraint on
overlapping of air nodes. We evaluated the expressivity range
of the generator for the two configurations by employing
the leniency and linearity metrics proposed previously in the
literature [6]. We also evaluated whether levels are playable
or not. We define a level as playable if it is possible for the
player to get to the end of the level. To that end, we employed
the Robin Baumgarten A* agent that was shown to perform
at a super-human level in previous MarioAI competitions [5].

The agent was executed 5 times for each map over the period
of 90 seconds, and if at least one execution results in a win
we deem the level as playable.

B. Results

The proposed system created a very small number of
unplayable levels. When overlap of air tiles is not allowed,
only 3% of the levels generated were unplayable, while only
10% of the generated levels were unplayable when overlap of
air tiles were allowed.

Some examples of the levels generated are on Figure 5b.
The reader can observe that the levels generated without
allowing the overlap of air tiles (top two levels of figure 5b) are
much more similar to the input level than the levels generated
while allowing the overlap of air tiles (bottom two levels
of figure 5b). Allowing the overlap of air nodes in different
patterns tends to generate less linear, more chaotic levels.

We can see the same trend by observing the distribution
of leniency and linearity of the levels generated in both
configurations (Figure 6). In the first configuration, all levels
had high linearity (≥ 0.6), often as high or higher than the
original level, while the levels in the second configuration had
more varied linearity scores. All the levels generated in this
experiment are available in our repository.

We also investigated what kind of levels generated by our
system were being labelled as unplayable. We identified two
situations in which a level was deemed unplayable.

The first situation is the generation of sections that are
untraversable. Figure 7 shows a level generated with this
problem. In this case, the level is impossible to complete.
This kind of level is generated due to a limitation on our



Fig. 6: Expresivity of the generator

design of reachability between two structures. Although we
are modeling the reach of the character’s jump, we are not
taking into account the possibility of obstacles that prevent the
jump from being successfully executed. That is, solid blocks
are considered traversable and do not change the shape of the
reachability area, resulting in levels such as the one shown in
the figure.

The second situation is the generation of levels that required
some sort of backtracking. Figure 1 shows the example of a
level that presents the player with two paths that, if taken,
would require the player to backtrack. In this case, the level is
playable but it is incorrectly labelled due to the agent failing
to backtrack once it reached a dead end.

C. Discussion

The expressivity analysis in Figure 6 and the qualitative
assessment of the levels (such as the ones shown in Figure 5b)
show that the system is capable of generating levels and that
they are playable in general. The results of the first experiment
show that the levels generated are visually similar to the
original input level. The parameters and constraints selected
for the experiment were able to properly capture structures
from the input level and then recombine then in an orderly
manner, resulting in Mario-like levels.

In the second experiment, we tried relaxing some of the con-
straints of the generation. This change resulted in less linear
and more diverse levels, at the cost of structural consistency.
Ignoring the empty space around the structures allowed the
generation of interesting, unexpected or just faulty levels. This
shows a trade-off on the level of tolerance in which we enforce
this constraint.

Fig. 7: Screenshot taken from an unplayable generated level.
The reachability fails to identify that jumping on top of the
pipe is impossible due to the obstacle on top of it.

An interesting outcome of the experiment were the genera-
tion of levels deemed unplayable in the second configuration.
Our method found levels with paths that lead to a dead-end,
or paths that lead into a gap, requiring the player to backtrack.
The generation of these kind of levels are only possible due to
the reachability concept, as it ensures that there will be some
path to the end of the level, even if one or more paths lead
to dead-ends. For these levels, the agent always fails to finish
the level, and therefore the levels are labeled as unplayable.
This highlights a limitation in the current methodology for
platformer level generation, as a considerable number of works
published in the literature use this same A* agent as a tester
to decide whether a level is playable or not. Consequently, we
believe that levels with any sort of backtracking were probably
deemed unplayable and discarded by other level generation
methods so far.

Despite the mislabeling of these levels during the experi-
ments, they validate our initial expectations that new patterns
would be discovered from the input data by using the proposed
method. The AI agent can play the original level flawlessly,
yet from this original level, we were able to generate new
patterns that revealed some of the problems with this agent.

V. CONCLUSION & FUTURE WORK

We proposed a level generation system based on the ex-
traction and recombination of patterns from human-designed
levels. In this paper, we generated a large number of levels
by extracting and recombining patterns from the firs level in
Super Mario Bros. A majority of these levels were playable,
and some presented a natural-looking placement of elements
throughout the level, reflecting the patterns obtained from the
human example.

Our system can be easily extended to become a useful tool
for level design, as it allows new patterns to be manually



entered or edited by a user or designer who wish to interact
directly with the system. Another benefit of the proposed
system is the capability of generating levels with that contain
paths leading to dead-ends, requiring the player to backtrack.

The system, however, does show a few limitations. Our
reachability design was not capable of modeling all possible
scenarios where the player would be unable to access a certain
area, leading to some of the unplayable levels that were
generated. We also did not perform a complete analysis of the
system parameters to understand how different combinations
of number of structures and base size affect the generated
levels. Additionally, despite using a graph representation for
the levels, we are make little use of graph concepts to support
the generation. However, we believe that future iterations of
the system could make use of such concepts to improve the
generation.

Future directions of this work include both improvements
to the system as well as an expansion of it. The reachability
design should be changed to take into account obstacles that
prevent the player from passing. Other methods for generating
both levels and patterns can be explored. For instance, we
randomly extract chunks from the input levels, but some
patterns in the levels have semantic purposes to the game, such
as serving as introduction to a new mechanic. These patterns
could be taken into account when extracting the chunks.
Additionally, we evaluated a stochastic generation of levels,
but more directed approaches can be employed to generate
levels targeting certain features or mechanics.

Another direction of research would be developing an
interface tool that allows the user to select patterns and create
levels with them. Such a tool would make use of one of the
main advantages of the system, namely its ease to interface
with humans. This tool could also present co-creation features,
where parts of the level are created by the player, and parts are
created by the system, such the co-creation system proposed
by Guzdial et al. [13].

REFERENCES

[1] R. R. Torrado, A. Khalifa, M. C. Green, N. Justesen, S. Risi, and
J. Togelius, “Bootstrapping conditional gans for video game level
generation,” arXiv preprint arXiv:1910.01603, 2019.

[2] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation
via machine learning (pcgml),” IEEE Transactions on Games, vol. 10,
no. 3, pp. 257–270, 2018.

[3] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, “Evolving
mario levels in the latent space of a deep convolutional generative
adversarial network,” in Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2018, pp. 221–228.

[4] S. Londoño and O. Missura, “Graph grammars for super mario bros
levels.” in FDG, 2015.

[5] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 mario ai
competition,” in IEEE Congress on Evolutionary Computation. IEEE,
2010, pp. 1–8.

[6] N. Shaker, M. Nicolau, G. N. Yannakakis, J. Togelius, and M. O’neill,
“Evolving levels for super mario bros using grammatical evolution,”
in 2012 IEEE Conference on Computational Intelligence and Games
(CIG). IEEE, 2012, pp. 304–311.

[7] A. Khalifa, M. C. Green, G. Barros, and J. Togelius, “Intentional
computational level design,” arXiv preprint arXiv:1904.08972, 2019.

[8] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[9] M. Guzdial, J. Reno, J. Chen, G. Smith, and M. Riedl, “Explainable
pcgml via game design patterns,” arXiv preprint arXiv:1809.09419,
2018.

[10] I. Jonyer, L. B. Holder, and D. J. Cook, “Mdl-based context-free graph
grammar induction and applications,” International Journal on Artificial
Intelligence Tools, vol. 13, no. 01, pp. 65–79, 2004.

[11] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-based clustering
in spatial databases: The algorithm gdbscan and its applications,” Data
mining and knowledge discovery, vol. 2, no. 2, pp. 169–194, 1998.

[12] S. Gauglitz, C. Lee, M. Turk, and T. Höllerer, “Integrating the physical
environment into mobile remote collaboration,” in Proceedings of the
14th international conference on Human-computer interaction with
mobile devices and services, 2012, pp. 241–250.

[13] M. Guzdial, N. Liao, and M. Riedl, “Co-creative level design via
machine learning,” arXiv preprint arXiv:1809.09420, 2018.


