
Recognizing Multiplayer Behaviors Using
Synthetic Training Data

Andrew Feng
Institute for Creative Technologies
University of Southern California

Los Angeles, CA USA
feng@ict.usc.edu

Andrew S. Gordon
Institute for Creative Technologies
University of Southern California

Los Angeles, CA USA
gordon@ict.usc.edu

Abstract—Accurate recognition of group behaviors is essential
to the design of engaging networked multiplayer games. However,
contemporary data-driven machine learning solutions are diffi-
cult to apply during the game development process, given that
no authentic gameplay data is yet available for use as training
data. In this paper, we investigate the use of synthetic training
data, i.e., gameplay data that is generated by AI-controlled
agent teams programmed to perform each of the behaviors
to be recognized in groups of human players. The particular
task we focus on is to recognize group movement formations
in player-controlled avatars in a realistic virtual world. We
choose five typical military team movement patterns for the
formation recognition task and train machine learning models
using procedurally generated unit trajectories as training data.
The experiments were conducted using ResNet and EfficientNet,
which are two popular convolutional neural network architec-
tures for image classifications. The synthetic data is augmented
by creating variations in image rotation, unit spacing, team size,
and positional perturbations to bridge the gap between synthetic
and human gameplay data. We demonstrate that high-accuracy
behavior recognition can be achieved using deep neural networks
by applying the aforementioned data augmentation methods to
simulated gameplay data.

Index Terms—multiplayer games, behavior recognition, syn-
thetic training data

I. INTRODUCTION

A central aim of interactive computer games, across various
gameplay styles, is to create experiences that are reactive to
player actions. In well-crafted games, appropriate reactions
demonstrate to players that their actions have consequences in
the game world, and help to instill a sense of agency that is
essential to the notion of play. Networked multiplayer games,
however, can pose difficult challenges to the engineering of
appropriate reactions, particularly in games where groups of
players operate as a team in open worlds. In such games, the
actions of the team are implicit and often contain higher level
semantic meaning, arising from the explicit collective actions
of individual players. Thus while a game engine can hold
game state such as positions, speed, and current action of each

The projects or efforts depicted were or are sponsored by the U. S. Army.
The content or information presented does not necessarily reflect the position
or the policy of the Government, and no official endorsement should be
inferred.

individual unit, the semantic meaning from a team’s collective
action is not directly represented in any game state that is
readily accessible to the underlying game engine. For example,
a multiplayer game can clearly observe (and react) when
individuals are running, shooting, and manipulating objects
in the environment, but be oblivious to the a team’s efforts to
fortify a position, lure enemies into an ambush, or coordinate
a siege of an opponent’s stronghold.

Explicitly representing group actions in multiplayer com-
puter games can be viewed as a type of time-series clas-
sification problem, where sequences of observable actions
of individuals serve as input, and the output are segments
labeled with descriptors that best describe the group behavior.
Machine learning is the dominant approach to solving time-
series classification problems, particularly the use of deep
neural networks. Recent advances in time-series analysis have
seen the application of recurrent neural networks, encoder-
decoder networks, and transformer networks to diverse ap-
plications such as speech recognition and event detection in
video streams. While these contemporary machine learning
methods have greatly reduced the need for feature engineering
and the pre-processing of raw input data streams, they demand
enormous amounts of training data – labeled and unlabelled –
before they exhibit usable levels of classification accuracy.

For developers of multiplayer games, this requirement for
enormous amounts of training data creates an untenable
dilemma: the game has to ship in order to collect the necessary
multiplayer data at scale, but cannot ship before the data
has been collected and incorporated. Needed are methods
for bootstrapping the data collection cycle, giving developers
sufficient classification accuracy when no data is available
so that they can craft playable games, which can then be
used to collect multiplayer behavior data to further improve
classification accuracy.

In this paper, we investigate the use of synthetic training
data to bootstrap the recognition of multiplayer behaviors
when no real data is yet available. The particular behaviors
we are aiming to recognize in this work are group movement
formations. Such behavior has well-defined movement patterns
and its unit positions and velocity can be represented as
rasterization images. Therefore the recognition task can be
reduced into an image classification problem and its training

978-1-7281-4533-4/20/$31.00 ©2020 IEEE

data can be generated automatically as procedural unit trajec-
tories. In this approach for generating synthetic training data,
human players are replaced by teams of computer-controlled
agents programmed to execute group movement formations
in the game world. Designed to resemble the behavior of
human players, these agent teams simulate each formation in
varied locations and situations, providing unlimited amounts
of labeled gameplay data for use in training machine learn-
ing algorithms. We investigate this approach for the task of
recognizing movement formations in small teams of players,
as would be observed in small-unit tactical military games.
For five movement formations, we simulate varied-sized teams
executing the movement formation on varied terrain, pro-
ducing labeled training data. We evaluate the accuracy of
learned models on human gameplay data collected using a
networked multiplayer testbed, where player-controlled avatars
execute each movement formation as a team. To better adapt
from synthetic data to human gameplay data, we explore the
use of a variety of data augmentation methods and model
ensembling of different neural network architectures. Our
findings show that applying data augmentation methods and
model ensembling are effective at bridging the gap between
synthetic training data and human gameplay data. The result
demonstrates that high-accuracy multiplayer behavior recog-
nition is possible even in zero-data development contexts.

II. RELATED WORK

A. Behavior Recognition in Videogames

Recognizing multiplayer behaviors in video games has been
pursued using a variety of approaches in previous work.
Our approach contrasts most directly with that of Ahmad
et al. [1], who address the problem of labeling the group
behaviors in large amounts to multiplayer gameplay data.
Their approach, Interactive Behavior Analysis, involves the
iterative visualization, labeling, and clustering of gameplay
data, with the aim of providing a tool for researchers and game
developers for better interpreting and analyzing multiplayer
strategies and tactics. Our current effort focuses on solving a
different problem, aiming to provide a means of recognizing
multiplayer behaviors earlier in the game development process,
before large amounts of data can be collected from players.

Other work has investigated supervised approaches to mul-
tiplayer behavior recognition. Sukthankar and Sycara [15]
investigate multiplayer behavior recognition in a task that
is most similar to our own, recognizing team formations
and tactical behaviors in a multiplayer military-oriented game
environment. Their approach involves the specification of team
behavior templates, which are matched to player positions
and classified using Hidden Markov Models, trained using
annotated gameplay data from two-person teams.

Several previous research efforts have focused on the clas-
sification of the behavior of single players in videogames,
often applying methods for plan and intention recognition to
gameplay contexts. For example, recent work by Min et al. [9]
achieves state of the art performance on goal recognition from
mulitmodal data (gameplay and eye tracking) using supervised

machine learning with LSTM neural networks, with gains over
previous research using Markov Logic Networks [3]. In our
current research, we capitalize as well on continuing advances
in neural networks as a technology for classification, but focus
instead on the problem of training such models when no data
is available.

B. Synthetic Training Data

Learning from simulated data has been a promising direc-
tion, with progress in fields such as reinforcement learning and
robotic vision. Despite the potential of generating unlimited
labelled data directly from simulation, it remains a challenge
to bridge the ‘reality gap’, which is caused by the discrepancy
between simulated data and the data collected from the real-
world. In the field of computer vision, several directions have
been explored to improve the model trained on simulated data.

The most straightforward idea is to improve the quality of
photo-realistic rendering such that the simulated images are
close enough to the real-world. This strategy has been shown
with reasonable success for certain vision tasks such as depth
estimation [10] and image segmentation [12, 14]. However,
authoring scenes to generate highly realistic imagery can be
both compute and labor intensive, especially for complicated
and animated environments.

Another direction is to randomize the source domain data
generated via simulation so that the synthetic training data
consist of enough variations. The key idea is to use domain
randomization as a means to encourage neural networks to
learn a more generalized feature representation from simulated
data. Therefore when applying such a model in the real data,
the domain gap will not be huge.

Tobin et al [17] introduced a domain randomization tech-
nique to adapt synthetic training data for object detection. The
key idea is to intentionally avoid photo-realistic rendering and
randomly generate image variations with different lighting,
textures, and camera poses. This approach encourages the
network to learn enough domain variations so that it can
treat real-world data as simply another variation. Dundar et al
[2] proposed to apply image stylization for generating image
variations that cover different domains. Instead of varying
every parameter randomly, Prakash et al. [11] proposed to
add the scene context into consideration by randomly adjusting
objects based on a pre-defined scenario structure. This ensures
that the synthetic data are realistic while producing enough
variety. Meta-sim [7] extends this idea further by optimizing
probabilistic scene grammars to produce scenes that better
match the real-world scene distributions. It is therefore able to
adapt the simulator and generate synthetic data that improves
the real-world performance.

One other effective strategy is to leverage semi-supervised
learning techniques to enforce consistency and smoothness
when predicting unlabeled data collected from the real-world.
The main idea is to introduce a consistency loss in the
learning process with unlabelled data to make the resulting
model invariant to data perturbations and style variations. The
typical methods include a model ensemble approach [13, 8],

which produces variations in network structures to enforce
the consistency loss, or adversarial approach, which seeks to
minimize an adversarial loss to obtain style-invariant feature
representations [5, 6].

In this paper, we utilize aspects of each of these previous
approaches. Analogous to previous work using photo-realistic
imagery, we attempt to generate synthetic behaviors that
closely resemble those that would be executed by players.
However, since both the synthetic data and multiplayer behav-
iors are executed in the same visual game environment, our
focus is on behavioral realism, rather than visual realism. We
utilize several domain augmentation methods to create enough
variations in the synthetic data to ensure the learned model
can generalize well to data collected from players. Finally, we
use a model ensemble approach to improve the robustness of
learned classifiers.

III. OVERVIEW

Our approach to multiplayer behavior recognition in
videogames follows a traditional machine learning approach,
but where the training data is procedurally generated by teams
of AI-controlled agents rather than collected from human
players. Figure 1 shows the overall stages of our workflow.
Large amounts of synthetic training data are first generated
in a target gaming environment by teams of AI-controlled
agents, programmed to execute each of the behaviors that are
to be recognized in the behavior of human players. In this
research, the target behaviors consist of movement formations
performed by small teams, and are described in the next
section. For the purpose of evaluating the accuracy of our
approach, real multiplayer data is similarly collected in the
gaming environment. These datasets, consisting of trajectory
information for avatars in the game, are then rasterized into
individual images at each timestep to reduce the recognition
problem into an image classification task. To improve accuracy
of the resulting model in recognizing player behavior, various
data augmentations are applied to enhance the synthetic data.
Finally, an ensemble of multiple image classifiers is trained
using the augmented synthetic data, and used to predict the
behavior labels for the multiplayer data. Each of these steps
is further described in the following sections.

IV. MULTIPLAYER TEST DATA

The central aim of our approach to behavior recognition is
to reduce or eliminate the need to collect and annotate copious
amounts of multiplayer gameplay data. In order to fully
evaluate our approach, however, it was necessary to collect
some amount of gold-standard test data from multiplayer
gameplay sessions, annotated using a set of labels for the target
behaviors. To collect this testing data for our experiments, we
developed a basic online multiplayer 3D game environment,
and enlisted players (from our research lab) to jointly execute
the target behaviors within this environment.

Our testbed game environment, depicted in Figure 2, was
modeled after contemporary tactical military games such as
Activision’s Call of Duty 4: Modern Warfare and Bohemia

Interactive’s Arma 3, where players control lifelike avatars
organized into small teams of warfighters engaged in combat
on realistic terrain. Built using the Unity game engine, our
testbed enables each player to control the movement of an
animated virtual soldier in a realistic 3D environment modelled
after a notional Middle-eastern desert city. Using the analog
thumbstick on an Xbox gamepad controller, players control the
direction and speed of their soldier as they navigate through
outdoor regions of a city, and coordinate their movements
with avatars controlled by other networked players. During
the collection of test data, all participants communicated via
an audio teleconference to facilitate coordinated action among
players.

The group behaviors executed and recognized in this re-
search consisted of movement formations, analogous to the
various types of squad-level tactical movements performed
by military ground forces, e.g., squad column and squad
wedge [18]. To simplify the execution of different movement
formations by our (civilian) participants, we opted to use five
notional movement formations in lieu of authentic military
formations. The five formations executed and recognized in
this research were labelled wedge, line, column, arrow, and
cluster, and are depicted in Figure 3.

The test data for movement formations was collected from
seven participants in a single 30-minute session, consisting
of a 15-minute practice phase and a 15-minute collection
phase. A single participant was selected as the “leader,” while
others assumed the role of a “follower.” During the practice
phase, the leader announced a desired movement formation
to be followed as they navigated the environment, adjusting
the position of followers via verbal commands until the
formations closely matched those depicted in Figure 3. During
the subsequent collection phase, the facilitator of the session
(also on the teleconference call) prompted the participants to
execute the movement formation types, in random order, at
intervals of approximately 60 seconds.

During the collection phase, the coordinate positions of each
participant’s avatar on the virtual terrain were sampled each
100 milliseconds. Intervals in this time-series dataset were
subsequently labeled with an intended movement formation
class by aligning it with an audio recording of the session’s
teleconference. The resulting test data set was recorded by
7 players and consisted of 4221 labeled samples from 9
executions of different movement formations.

V. GENERATION OF SYNTHETIC TRAINING DATA

In this research, synthetic training data is used to enable
multiplayer behavior recognition, allowing game developers
to build games based on these behaviors before traditional
supervised training data can be collected and annotated. To
generate synthetic training data for the recognition of move-
ment formations, we utilize the same game environment de-
scribed in Section IV, developed using the Unity game engine.
The main difference is how the movements of soldiers in this
environment are controlled. Instead of using Xbox gamepads
to manually control the direction and speed of soldiers, the

Fig. 1. Overview of the behavior recognition process using synthetic training data.

Fig. 2. Screenshot of testbed game environment.

movement trajectory for a given unit is procedurally generated
using simple AI scripts, using parameters that specify the
formation type, number of units, and spacing between units.

A. Procedural Unit Trajectory Generation

Given the formation parameters and a goal location for the
leader unit, the movement formation trajectories are created
by the following steps. 1) The initial unit location offset from
the nearby units is calculated based on the formation type and
unit spacing. With the leader designated as unit 0, Figure 4
illustrates the ordering of follower units and the corresponding
offsets, where the number within each circle indicates the unit
index and the red arrows indicate offsets to the adjacent units.
Since these offsets can be calculated using only the unit index
and spacing, it is straightforward to extend the calculation to

groups of any number of units. 2) given the initial unit offsets
and goal location, the target location for each unit is calculated
by adding the rotated offset to goal location. The rotation
angle is based on the current direction the unit is facing and
direction toward the target location. 3) Once the target location
is known, the trajectory for each unit is computed using a
navigation mesh for the environment terrain. This allows each
unit to move individually and avoid obstacles as needed while
maintaining the overall formation throughout the movements.

For the purpose of evaluating our approach, we generated
about 130 seconds of synthetic training data for each of the five
movement formation classes, where each movement formation
was led by a selected leader unit, who was directed to move
to a random location in the virtual terrain.

Similar to multiplayer sessions, simulated positional infor-
mation for each unit in the group was also sampled at a rate
of 0.1 Hz, and recorded along with the movement formation
class that was being executed at the time. This resulted in a
total of 6500 labelled samples from a simulation session.

B. Rasterization of Trajectories as Images

In its raw form, the aforementioned movement formation
trajectories and labels are represented as a multi-variate time
series sampled at a rate of 0.1 Hz. Accordingly, a classifier
could be trained using a vector of unit positions at each times-
tamp as input to predict the corresponding label. However,
while it is straightforward to use a positional vector as input,
the resulting classifier would need to be retrained for groups
of every size, as the size of the input vector would vary. We
solve this problem by representing the trajectories of the units
in the whole group as a fixed-sized image. That is, instead of
working with vector data directly, we rasterized unit positions
at each timestamp into a 2D image, and used that as the data
representation for training the classifier. This approach allows
for a unified representation to train a single classifier that
can handle different number of units. Moreover, this reduces

Fig. 3. Movement formations used as target group behaviors.

Fig. 4. Examples of movement formations offsets based on the formation
type and the number of units. Here the number within each circle indicates
the unit index, with unit zero serving as the team leader. Each red arrow
indicates the offset to an adjacent unit.

the problem into an image classification task, and allows
us to utilize existing convolutional neural network (CNN)
architectures that perform well in other visual recognition
tasks.

Fig. 5. Examples of unit movement formations as rasterization representation.
Different formation types result in different image features that are suitable
for an image classifier.

The rasterization representation is generated as follows.
Given positions p1

t, p2
t, . . . pn

t at time step t, we first com-
pute the X-Z local coordinates with origin centered at pavgt =
1
n

∑n
i=1 pk

t, which is the average position between all units
at time t. A 2D grid center at pavgt is then used to rasterize
all unit movements at t. However, simply plotting positions
as dots does not provide kinetics information for the units.
Therefore we plot the offset oit = pi

t − pi
t−1 between t and

the previous time step t − 1 as an arrow originated at pit to
better encode the unit movement velocity in a single image.
Figure 5 shows some examples of rasterization representation
for different movement formations.

This rasterization method was applied to each of the samples
in the synthetic training data, yielding a dataset of 6500
annotated images. Likewise, we applied the same rasterization
method to the unit trajectories in our multiplayer test dataset,
representing the position of human-controlled units in our
testbed environment, yielding a test set of 4221 annotated

images. Since the movements at each time step are represented
as images, high-performance CNN architectures for image
classification can be applied to predict the correct movement
formation label using images of synthetic movement forma-
tions as training data. While this is a relatively straightforward
task given the mature technologies of image classification
research, the utilization of this synthetic training data requires
that we first overcome the domain gap between our synthetic
data and the trajectories produced by human-controlled avatars
in a multiplayer environment.

VI. DOMAIN ADAPTATION

The main challenge of using a model trained with synthetic
data is to overcome the domain gap when the testing data
is collected from the multiplayer world. Naively training a
classifier with synthetic data without any augmentation or
adjustments tends to result in a model that is over-fitted to the
statistics of the synthetic data. Therefore the accuracy will be
poor when applied to a multiplayer world use case. The main
purpose of domain adaptation is to ensure that the model can
generalize well to the multiplayer world context using various
learning and augmentation techniques.

A. Data Augmentation Approach

One popular way of improving robustness of a model is to
augment the training data with various transformations and
perturbations. The technique virtually expands the size of
training data by creating many variations of the same data.
It prevents over-fitting by forcing the model to learn a more
general pattern from the data. Since both synthetic and multi-
player data are rasterized in the same manner using the same
colors, we choose to only apply geometric transformations and
skip any color transformations in the augmentation process.
The types of augmentations used in this work include rotation
variations, unit spacing variations, team size variations, and
positional perturbation.

a) Rotation Variations: Since the formation type remains
the same for any rotations along Y-axis, we rotate each image
with a random angle at each epoch before feeding it into the
training batch. This ensures that the CNN learns a rotational
invariant representation for predicting formations.

(A) Original (B) Angle (C) Size (D) Space (E) Noise

Fig. 6. Examples of data augmentations for formation images. (From left to right) : original image, rotation variations, team size variations, unit spacing
variations, and position perturbations

b) Unit Spacing Variations: The space between adjacent
units may vary in the multiplayer world as each player may
space their avatar differently in a formation. Generating syn-
thetic formations with varying unit spacing helps the resulting
model to generalize better to such a discrepancy in the real
data.

c) Team Size Variations: In the synthetic training data
generation, the number of units can be specified before pro-
cedurally simulating the formation trajectories. By varying
the team size in each image, the learning process will not
be restricted to recognize the formation pattern with a fixed
number of units. Thus a single classifier can be generalized to
classify formations with different team sizes.

d) Positional Perturbation: Since each user will control
a single unit, a group of units tends to not move in perfect
harmony and may be adjusting their positions from time to
time. It makes the data collected in the multiplayer world
more noisy than simulated data, where all units are coordinated
programatically when moving in formations. To alleviate this
domain gap, a Gaussian noise is added to units’ positions
to perturb the resulting trajectories. Note that this noise is
random and the goal is not to really re-create the styles of
human player trajectories. Instead, having these perturbations
improves robustness in the learning process, and the resulting
model will generalize better toward multiplayer data.

Figure 6 shows examples of aforementioned data augmen-
tations applied on the formation images. Note that while data
augmentation techniques tend to be applied for supervised
learning in general, here they are applied in the context
of domain adaptations to help adapt the model trained on
synthetic data to data collected from multiplayer sessions.

B. Model Ensemble Approach

Creating ensembles of models is a well-known technique
in machine learning to boost generalization capability for the
trained models. It works by independently training multiple
models and then combining them into an ensemble. The final
predictions are obtained by averaging the results from each
model to improve test accuracy.

Two model architectures, ResNet [4] and EfficientNet [16],
are used to form the model ensembling. ResNet is a popular
architecture that has been utilized as the feature extraction
backbone in many computer vision tasks such as object
detection and instance segmentation. EfficientNet is currently

state of the art architecture for image classification. It is
created via neural architecture search (NAS) to maximize
the performance while using less parameters than previous
models. Another advantage of these two models is that they
both include multiple variations of network depths to handle
tasks of different complexity and there exist pre-trained models
ready for transfer learning.

In this work, we first train the aforementioned models
with different depths on the same training data and select
the top two model architectures with the highest individual
testing accuracy to form the ensembles. We fuse the results by
averaging the vector output from the last linear layer of each
model and feed the averaged vector into the logistic softmax
function to obtain the final prediction of class label.

VII. EXPERIMENTS

We conducted two sets of experiments to evaluate our
approach to domain adaptation, separately investigating the
contribution of various data augmentation techniques and the
ensemble model approach. In each of these experiments,
behavior recognition models were trained on the labeled
rasterized images of the synthetically-generated movement
formations, and tested on rasterized images obtained from our
multiplayer data collection exercise. All neural network mod-
els were trained within the PyTorch neural network framework
for 50 epochs with batch size of 16 per GPU. Adam optimizer
is used for training with learning rate of 0.0001 and cosine
annealing schedule for weight decay. Accuracy scores were
computed as the percentage of correct behavior labels assigned
to samples in the multiplayer test set.

In our first set of experiments, we assessed the contribution
of each of our data augmentation methods to improvements
in classification accuracy. For this, we performed an ablation
study by incrementally adding individual data augmentations
and using different network architectures.

Table I shows the resulting classification accuracy on the
test dataset with different augmentation methods. The model
naively trained with synthetic data, without any augmenta-
tion, produced poor results with only about 31% accuracy.
By adding more augmentations incrementally, the resulting
accuracy improves as the model starts to learn more general
formation patterns from the expanded data, and the resulting
accuracy is able to reach about 80% accuracy. Note that
augmentations with varying team sizes and unit spaces expand

the number of training samples due to additional simulation
sessions with different size and space parameters. Since the
positional augmentation creates a perturbed version of the
original data and the rotation augmentation is applied during
the training on-the-fly for each image at each epoch, they do
not increase the total training data size. As in previous research
on the use of synthetic training data, our results demonstrate
that data augmentations is a good practice to help bridge the
domain gap between synthetic behavior data and multiplayer
behavior data.

TABLE I
EVALUATION OF DIFFERENT DATA AUGMENTATIONS. ALL EXPERIMENTS

ARE DONE USING EFFICIENTNET-B5.

Augmentation Data Size Accuracy
None 6500 31.61 %
Rotate 6500 52.10 %

Rotate + Space 19500 67.34 %
Rotate + Space + Size 39000 71.13 %

Rotate + Space + Size + Noise 39000 80.11 %

In our second set of experiments, we investigated the effect
of training with different network architectures, depths, and
ensembles. The resulting accuracy is summarized in Table
II. Overall, the EfficientNet tends to achieve higher accuracy
than ResNet with similar number of parameters, which demon-
strates its superior model architecture via NAS. The ensemble
models also show accuracy improvements over any single
networks except when combining two EfficientNet-b5 and
b6 together. Empirically, this shows that combining different
model architectures into an ensemble is more effective than
the same architecture with varying depths. Since different
architectures are likely to learn and extract different types of
features, the combination of them can complement each other
to produce better results. As a result, our best ensemble model
is able to provide additional boost and achieve 85% accuracy
on the multiplayer dataset.

TABLE II
EVALUATION OF DIFFERENT MODEL ARCHITECTURES. ALL EXPERIMENTS

ARE DONE USING ALL DATA AUGMENTATIONS.

Architecture Params Accuracy
EfficientNet-b5 30M 80.11 %
EfficientNet-b6 43M 81.89 %

ResNet-50 25.6M 73.81 %
ResNet-101 44.5M 79.45 %

Ensemble (b5+b6) 81.87 %
Ensemble (b5+ResNet-101) 83.41 %
Ensemble (b6+ResNet-101) 85.07 %

VIII. DISCUSSION AND FUTURE WORK

While contemporary machine learning methods have
great potential for creating new gameplay experiences in
videogames, their need for large amounts of data pose signifi-
cant challenges for developers. Specifically, if the correct clas-
sification of player behavior is instrumental to the gameplay

mechanics, then developers are faced with a difficult problem:
How can a high-performance behavior recognizer be trained
from authentic gameplay data, if collecting the data requires
that the recognizer already exists?

The solution that we investigate in this paper is to train
the recognition algorithms using synthetic training data, as a
substitute for real annotated data that can be collected after
the game is shipped. Given sufficient accuracy, recognition
based on synthetic training data allows game designers to build
appropriate game-world reactions for players, before the first
player is immersed in the game.

The approach that we pursue in this paper is to use AI-
controlled agents to simulate the behaviors that are to be rec-
ognized in multiplayer gameplay data. This synthetic behavior
data is rasterized as images to make it possible to generalize
over groups of different sizes, and to utilize contemporary
CNN architectures for image classification. To further aid in
accurate classification, we utilize a model ensemble approach,
combining image classification networks with varying topol-
ogy. On the task of movement formation classification, our
approach achieves strong results, with 85% accuracy on a five-
class classification problem with no authentic training data.

There are other possible approaches to behavior classi-
fication without data, such as template matching and rule-
based heuristic methods. However, the main advantage of our
approach is that it seamlessly improves with the addition of
actual annotated data that can be collected after the game
ships. In this development model, beta testers and early
adopters would play versions of the game built largely from
synthetic training data. Their gameplay data would be col-
lected, analyzed, and annotated, and used to retrain the neural
networks used for behavior recognition. Subsequent builds and
updates to the game would change only the learned parameters
of neural network models, a relatively low-risk modification
compared to architectural changes in game mechanics.

This development model points to a number of important av-
enues of future work. Along with the exploration of continuing
advances in neural network architectures for classification, it
will be important to investigate how synthetic training data and
authentic gameplay data can best be combined to maximize
accuracy. As well, we see opportunities for the use of synthetic
training data in the analysis of behaviors in large-scale game-
play datasets, with possibilities for incorporating synthetic
data in existing systems for visualization and clustering of
multiplayer behaviors [1].

Within the context of our existing approach, a central focus
of future work will be on the collection of large amounts of
authentic multiplayer gameplay data and on the recognition of
a broader set of multiplayer behaviors. Of particular interest
is the applicability of our approach to complex, multi-step
behaviors that involve interactions among and between groups,
e.g., the tactical inter-group behaviors of ambushes. This
will likely require training a classifier for videos instead of
images to incorporate data across multiple time steps for better
prediction of complex behaviors. With more data collected
through gameplay sessions in the future, we also expect to

further improve the classifier for multiplayer data using semi-
supervised learning techniques. This can be done by utilizing
unlabelled multiplayer data and a consistency loss function in
the training process to allow the classifier to better learn the
data statistics in the target domain of multiplayer gameplay.
We anticipate that different neural network architectures may
be better suited to these sorts of tasks, as seen in other complex
time-series classification tasks. Accurate recognition of com-
plex multiplayer behaviors, in the absence of training data,
would offer new opportunities for the design of multiplayer
games where the collective behavior of a group of players is
an integral part of the mechanics of the experience.

ACKNOWLEDGMENT

We thank Adam Reilly and Ed Fast for their contribution
to the development of the networked multiplayer testbed
described in this paper.

REFERENCES

[1] Sabbir Ahmad et al. “Modeling Individual and Team
Behavior through Spatio-temporal Analysis”. In: Oct.
2019, pp. 601–612. ISBN: 978-1-4503-6688-5. DOI: 10
.1145/3311350.3347188.

[2] Aysegul Dundar et al. “Domain stylization: A strong,
simple baseline for synthetic to real image domain adap-
tation”. In: arXiv preprint arXiv:1807.09384 (2018).

[3] Eun Ha et al. “Recognizing Player Goals in Open-Ended
Digital Games with Markov Logic Networks”. In: Plan,
Activity, and Intent Recognition: Theory and Practice
(Mar. 2014), pp. 289–311. DOI: 10.1016/B978-0
-12-398532-3.00012-9.

[4] Kaiming He et al. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–
778.

[5] Judy Hoffman et al. “CyCADA: Cycle-Consistent Ad-
versarial Domain Adaptation”. In: International Confer-
ence on Machine Learning. 2018, pp. 1989–1998.

[6] Weixiang Hong et al. “Conditional generative adver-
sarial network for structured domain adaptation”. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018, pp. 1335–1344.

[7] Amlan Kar et al. “Meta-sim: Learning to generate syn-
thetic datasets”. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. 2019, pp. 4551–
4560.

[8] Samuli Laine and Timo Aila. “Temporal Ensembling for
Semi-Supervised Learning.” In: ICLR (Poster). Open-
Review.net, 2017.

[9] Wookhee Min et al. “Multimodal Goal Recognition in
Open-World Digital Games”. In: Proceedings of the
Thirteenth Annual AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment. 2017.

[10] Benjamin Planche et al. “Depthsynth: Real-time realis-
tic synthetic data generation from cad models for 2.5 d
recognition”. In: 2017 International Conference on 3D
Vision (3DV). IEEE. 2017, pp. 1–10.

[11] Aayush Prakash et al. “Structured domain randomiza-
tion: Bridging the reality gap by context-aware synthetic
data”. In: 2019 International Conference on Robotics
and Automation (ICRA). IEEE. 2019, pp. 7249–7255.

[12] Stephan R Richter et al. “Playing for data: Ground truth
from computer games”. In: European conference on
computer vision. Springer. 2016, pp. 102–118.

[13] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tas-
dizen. “Regularization with stochastic transformations
and perturbations for deep semi-supervised learning”.
In: Advances in neural information processing systems.
2016, pp. 1163–1171.

[14] Fatemeh Sadat Saleh et al. “Effective use of synthetic
data for urban scene semantic segmentation”. In: Euro-
pean Conference on Computer Vision. Springer. 2018,
pp. 86–103.

[15] Gita Sukthankar and Katia Sycara. “Robust Recognition
of Physical Team Behaviors Using Spatio-Temporal
Models”. In: Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multiagent
Systems. AAMAS ’06. Hakodate, Japan: Association
for Computing Machinery, 2006, pp. 638–645. ISBN:
1595933034. DOI: 10.1145/1160633.1160746.
URL: https://doi .org/10 .1145/1160633
.1160746.

[16] Mingxing Tan and Quoc Le. “EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks”. In:
International Conference on Machine Learning. 2019,
pp. 6105–6114.

[17] Josh Tobin et al. “Domain randomization for transfer-
ring deep neural networks from simulation to the real
world”. In: 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS). IEEE. 2017,
pp. 23–30.

[18] U.S. Army. Foundations of Leadership: MSL II. New
York, NY: Pearson Custom Printing, 2008.

