
1

Evolving Near Optimal Kiting Behavior with an
Anchor Point Parameterization

Pavlos Androulakakis and Zachariah E. Fuchs

Abstract—In this paper, an evolutionary algorithm (EA) is used
in conjunction with an Anchor Point parameterization to obtain
near optimal kiting behavior for an Attacker in a 1v1 real-time
combat scenario. In this scenario, an Attacker attempts to use its
limited weapon energy to inflict as much damage as possible onto
a fortified Defender while incurring as little damage as possible
in return. An Anchor Point feedback controller parameteriza-
tion allows the EA to represent the control boundaries more
accurately and efficiently than our previously used grid based
method. The evolved solution is compared with the analytically
optimal solution to verify the EA’s effectiveness and accuracy.
The framework presented in this paper can be used to evolve
a feedback controller for any unit in the 1v1 real-time combat
scenario if its damage profile can be modeled as a function of
distance.

I. INTRODUCTION

There have been many significant contributions in the devel-
opment of AI strategies for turn-based games such as chess [1]
and go [2]. More recently, attention has shifted to games that
can be played in real time. For this reason, real-time strategy
(RTS) games have become a popular testing environment for
modern game AI algorithms. The research in this area spans
from academic test environments such as microRTS [3] and
DeepRTS [4], to commercial games such as StarCraft [5].

In an RTS game, the player must use imperfect information
to make a variety of decisions ranging from high-level tasks,
such as base planning and army management, to low-level
tasks, such as reconnaissance or combat between individual
units. One popular method for handling such a large problem
space is to decompose the tasks into separate individually
solvable subproblems. For example, effective game playing
agents have been developed for specific things such as build
order [6], wall placement [7], army positioning [8], and even
enemy resource prediction [9].

In this research, we closely examine one such subproblem:
the micro-level 1v1 combat scenario. In this scope, the chal-
lenge for players and game developers alike becomes how
to properly take advantage of the strengths and weaknesses
of an individual unit in order for it to successfully defeat its
opponent. The solution to this problem can vary widely based
on the types and characteristics of the agents involved. For ex-
ample, ranged units are typically weak in short-range combat
but stronger at long distances. Alternatively, an assassin type
unit may have a very strong short-range attack, but has low
armor and is unable to survive extended 1v1 combat.

Pavlos Androulakakis is with the Department of Electrical Engineering,
University of Cincinnati, Cincinnati, OH.

Zachariah E. Fuchs is with the Department of Electrical Engineering,
University of Cincinnati, Cincinnati, OH.

The problem of individual unit micro-management has been
examined and many novel solutions have been found. In [10],
they use a hybrid approach in which an augmented Monte
Carlo Tree Search (MCTS) algorithm is used to micro-manage
units. In [8], they use a potential field method to direct each
of the units in an army. In [11], the authors use a genetic
algorithm to select the best actions for a combat unit from a
library of preprogrammed actions.

In this work, we break from the traditional game AI methods
and instead examine the problem from an optimal control
perspective. Optimal control techniques are commonly used
to develop optimal feedback control strategies for a wide
range of complex control problems. Some examples include
intercepting missiles [12], pursuit evasion problems [13], and
defending high value targets [14], [15]. By examining the
problem in this context, we can mathematically define the
scenario and analytically compute the truly optimal control.
This optimal solution can then be used as a benchmark with
which to compare the performance of our proposed numerical
solution.

In this paper, we present a controller representation and evo-
lutionary framework that can be used to optimize a feedback
control strategy for a unit of any given type in an 1v1 real-
time combat scenario. For the purposes of demonstration, we
specifically examine the case in which an Attacker with limited
resources attempts to engage a stationary fortified Defender.
The Attacker in this case is a melee unit that deals a high
amount of damage at short range, but only has limited energy
with which to execute its attack. Once the Attacker runs out of
weapon energy, it is no longer able to inflict damage onto the
Defender. The Defender is a melee unit that has fortified its
position and is unable to move. It deals less overall damage,
but has an infinite amount of energy with which to execute its
attack. The goal of the Attacker is to inflict as much damage
as possible onto the Defender while incurring as little damage
as possible in return.

Our previous research [16] showed that an evolutionary
algorithm can be used in conjunction with a grid parameter-
ization to evolve an effective solution to this problem that
exhibits what is commonly referred to as kiting behavior.
While these results were successful, they were limited in
that the resulting evolved feedback controllers were restricted
to a grid. In order to more accurately represent the control
boundaries, a high resolution grid needed to be used. As the
grid resolution increased, the convergence time of the EA
exponentially increased with it.

In this research, we expand upon our previous work and
introduce an Anchor Point parameterization that will allow us
to more accurately and efficiently represent the true underlying

978-1-7281-4533-4/20/$31.00 c©2020 IEEE

2

optimal solution. The anchor point method parameterizes a
feedback controller by breaking the state space up into regions
of discrete control. This idea was introduced in our previous
paper [17] and is expanded upon here for use in evolving
feedback controllers for the 1v1 combat problem.

Section II introduces the 1v1 real-time combat problem and
defines the necessary state and utility equations. In Section
III, we introduce the anchor point controller representation. In
Section IV, we outline the evolutionary algorithm. The results
of the EA are presented and compared with the true optimal
solution in Section V. We conclude the paper with a summary
of the results and discussion of future work in Section VI.

II. PROBLEM DESCRIPTION

This problem consists of two agents; an Attacker and a
Defender. The Attacker represents a mobile unit that can only
carry a limited amount of weapon energy. The Attacker can
choose which direction to move in as well as when to fire its
weapon. The Defender represents a fortified unit that is able
to constantly fire onto the Attacker with unlimited weapon
energy. There are no control variables associated with the
Defender as it is stationary and will implement the fixed
strategy of constantly firing onto the Attacker. The goal of
the Attacker is to use its limited weapon energy to inflict as
much damage as possible onto the Defender while incurring
as little damage as possible in return.

A. System Model

The state of the system is represented by a two dimensional
state vector:

x =

[
d
ω

]
,

where d represents the distance between the two agents and
ω represents the Attacker’s remaining weapon energy. The
dynamics of the system are

ẋ =

[
ḋ
ω̇

]
=

[
vAud
−ruω

]
, (1)

where vA is the speed of the Attacker and r is the weapon
energy depletion rate. The Attacker controls its motion with
the control variable ud ∈ [−1, 1] and chooses whether or not
to fire with the fire control variable, uω ∈ [0, 1].

Analysis of this problem using optimal control techniques
has shown that the true optimal control has bang-bang behav-
ior. This means that the control variables will only take on
their min and max values unless constrained. In the case of
motion control this means that ud ∈ {−1, 1} and in the case
of fire control this means that uω ∈ {0, 1}. The proof is not
included in this paper due to space constraints.

B. Termination Conditions and State Boundaries

The skirmish ends when the Attacker retreats to a predefined
retreat distance dr. The terminal surface can be represented by
all states that satisfy the equation Γ(x) = d− dr = 0.

Since the states d and ω represent physical aspects of our
system, their values will be bounded by their corresponding

physical limitations. In the case of distance, d, the state is
lower bounded by 0 (collision) and upper bounded by dr
(retreat): d ∈ [0, dr]. Similarly, in the case of weapon energy,
ω, the state is lower bounded by 0 (empty) and upper bounded
by its weapon energy capacity ωc: ω ∈ [0, ωc].

C. Utility

The Attacker strives to inflict as much damage as possible
onto the Defender while receiving as little damage as possible
in return. Given an initial condition of x0 := [d0, ω0], the
utility of an Attacker control strategy is defined as:

U(u(x);x0) =

∫ tf

t0

CA(x(t),u(x(t)))− CD(x(t))dt, (2)

where u(x) = [ud(x), uω(x)] is a vector containing the At-
tacker’s feedback control variables, t0 and tf are the initial and
final times, x(t) is the trajectory of the state computed with
the dynamics shown in (1), and CA(x,u(x)) and CD(x) are
the respective damage profiles of the Attacker and Defender.
These damage profiles define the amount of instantaneous
damage each player inflicts onto the other as a function of
distance. In the general case, the damage profiles can be used
to model any type of agent. For the purposes of this research,
we model the scenario in which the Attacker and Defender
deal high damage at short range with an exponential damage
drop off as distance increases (melee units). Specifically, the
Attacker is a specialized unit that deals extremely high damage
at short range, but has a steep damage drop off with increasing
distance. These damage profiles can be modeled with the
equations shown below.

CA(x,u(x)) = uω(x)
(

2e(−2d/5)
)

(3)

CD(x) = e(−d/5) (4)

Note that the Attacker’s damage profile is multiplied by its fire
control variable uω . When the Attacker is firing its weapon,
uω = 1, the damage profile follows the exponential curve.
When the Attacker holds it fire, uω = 0, the Attacker’s damage
profile will become 0. Figure 1 shows these two damage
profiles for a range of distance values. The Attacker deals
more instantaneous damage for all distances less than d = 3.46
and the the Defender deals more instantaneous damage for all
distances greater than d = 3.46.

D. Optimization Problem Definition

The goal of this optimization problem is to find the Attacker
control that will maximize the utility from all the initial
conditions in the admissible state space. The overall utility
of the Attacker UA can be written as

UA(u(x)) =
1

drwc

∫ dr

0

∫ wc

0

U(u(x);x0)dw0 dd0, (5)

where dr and ωc are the upper bounds of the distance and
weapon energy state respectively. This utility is an average
of the Attacker’s single point utility from all the admissible

3

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

Distance (d)

In
st

an
ta

n
eo

u
s

D
am

ag
e

 In
fli

ct
ed

Attacker
Defender

Fig. 1: Attacker and Defender Damage Profiles

initial conditions in the state space. With this overall utility
equation, we define our optimization problem as

max
u(x)

UA(u(x)). (6)

The optimal Attacker control u∗(x) is the feedback controller
that maximizes the overall Attacker utility function.

u∗(x) := arg max
u(x)

UA(u(x)). (7)

III. CONTROLLER REPRESENTATION

The goal of this research is to use an evolutionary algorithm
to find the feedback controller, u∗(x;x0), that allows the
Attacker to achieve maximum net damage in the 1v1 real-time
combat problem. In order to evolve a feedback controller, we
must first parameterize it so that we can apply the evolutionary
operations of crossing and mutation to it.

Neural networks are a popular choice for parameterizing
feedback controllers and there are many examples of research
in which they are successfully integrated with an evolutionary
algorithm [18] [19] [20] [21]. While these methods are quite
successful, there is a high level of abstraction between the
genotype (neural network) and the phenotype (resulting con-
trol output). For small neural networks, one can usually map
a change in a particular gene to a corresponding change in the
control output. However, as the neural networks increase in
complexity (as is usually the case), it is not immediately clear
how a change in a given gene will effect the output of the
network. In the general case of developing effective feedback
controllers, this is not a problem. However, a method with a
more direct mapping between genotype and phenotype could
assist researchers and AI developers to better understand their
evolved solutions as well as allow them to develop custom
crossing and mutation methods that are more useful for their
particular problems.

For this reason, our past research has focused on introducing
different types of controller representations that have a very
clear mapping between genotype and phenotype. For example,
in [16], we used a straight forward grid parameterization to
evolve a feedback controller for this 1v1 real-time combat
problem. The results of that research showed that our grid

= Anchor Point = Current State

= = = =

Fig. 2: Example of a 2D Anchor Point Parameterization

parameterization was effective in generating a usable feedback
controller, but was not able to scale efficiently enough to
represent complex control boundaries. In this research, we
aim to improve upon those results by implementing an Anchor
Point feedback controller parameterization.

A. Anchor Point Parameterization

Anchor points were introduced in [17] as a method of
partitioning the state space into regions of discrete control
that can be utilized by a nearest neighbor switching controller
(NNSC) in order to obtain a control output. In general, an
anchor point a := [x,u] is defined as having a location in
n dimensional space x = [x1, x2, . . . xn] and an associated
control with m control variables u = [u1, u2, . . . um]. An
anchor controller is then defined as the set of P anchor points
C := {a1,a2, . . . ,aP } used to partition the state space.

Figure 2 shows an example of a bounded 2D state space
partitioned by four anchor points. The position of the anchor
points in the state space is represented by the orange circles.
The control output associated with each anchor point is
represented by the surrounding color.

In the example shown, the control output at the current state
(represented by the green ×) will be the control associated
with the nearest anchor point (the purple control u2). In the
most basic case, this nearest neighbor search can be done by
finding the euclidean distance from the state to every anchor
point in the controller and selecting the closest anchor point.
This, however, is computationally inefficient and does not
scale well as the number of anchor points increases. For this
reason, we use a k-nearest neighbor (KNN) search algorithm
to search a KD-Tree [22] constructed from the anchor points of
the anchor controller. This is a relatively common practice for
computationally efficient nearest neighbor searches and thus
the details are not included in this paper.

4

B. Parameterizing the Attacker

In our problem, the state of the system is two-dimensional,
x = [d, ω]T . Therefore, each anchor point will also exist in
the 2D state space. Additionally, since the Attacker has two
control variables, ud and uω , each anchor point will also have
two control variables. Using this information, we define the
anchor points in our 1v1 combat problem as a = [d, ω, ud, uω].
A candidate anchor controller is then defined as a set of P
anchor points C = {a1,a2, . . . ,aP }.

Given a candidate anchor controller C, the control output
u(x;C) at state x = [d, ω]T can by obtained by finding the
nearest anchor point using the KNN search algorithm.

IV. EVOLUTIONARY ALGORITHM

The evolutionary algorithm presented in this section follows
a canonical EA structure. By using a standard EA, we can fo-
cus our attention on the results of the controller representation.
Once we are able to demonstrate our controller representation
works with this standard EA, future work will aim to integrate
our controller representation with state-of-the-art EA methods.

A. Overview

The EA begins by generating a population of N candidate
controllers to serve as generation G0 := {C1,C2, . . . ,CN}.
Each candidate controller is initialized with P anchor points
that are randomly placed in the 2D bounded state space with
random control outputs. This initial generation is pre-evaluated
and then passed in as the first generation of the EA. Inside
the EA, each generation is crossed, mutated, and evaluated
using the methods described in the following subsections. The
EA will continue to progress through the generations until a
predefined number of generations M is reached. The agent
with the highest fitness in the final generation is referred to as
the best evolved controller.

B. Fitness Evaluation

The goal of this evolutionary algorithm is to evolve an
Attacker that is able to inflict as much net damage as possible
for any given initial condition within the admissible state
space. In order to truly evaluate an agent’s effectiveness at
this task, we would have to test it from the entire continuum
of states in the admissible state space as shown in equation (5).
This is not computationally feasible. Instead, we approximate
the true utility by sampling the state space at a γ1 × γ2 grid
of different initial conditions. We define this set of n = γ1γ2
initial conditions as X0 = {x0,1 x0,2 . . . x0,n}. These initial
conditions can be represented as the set

X0 = {(w, d)|∀w ∈ w̄, d ∈ d̄},

for

w̄ =

{
j

wc
γ1 − 1

| j ∈ Z : 0 ≤ j ≤ γ1 − 1

}
d̄ =

{
j

dr
γ2 − 1

| j ∈ Z : 0 ≤ j ≤ γ2 − 1

}
.

Using these sample initial conditions, we generate an estimated
utility function Ue as

Ue(u(x;C);X0) :=
1

n

n∑
k=1

U(u(x;C);x0,k). (8)

The goal of the evolutionary algorithm then becomes to
maximize this estimated utility. The higher the resolution of
the γ1 × γ2 initial condition grid, the closer we will be to
approximating the true utility function UA.

C. Crossing

In our anchor point representation, the order of the anchor
points in the genome has no meaning. An anchor controller
with anchor points C = {a1,a2} will have output identical to
a controller C = {a2,a1} (same anchor points in a different
order). For this reason, we decided to avoid traditional single
or multi-point crossover in favor of a custom crossing tech-
nique that allows us to cross the agents in a more meaningful
way.

The crossing process begins by randomly selecting two
unique parents, C1 and C2, from the previous generation.
Each agent has an equal chance of being selected as a parent.
The child, Cc, is then created using the following method.

First, two points (referred to as split points) are randomly
placed somewhere in the 2D bounded state space; s1 =
[d1, ω1] and s2 = [d2, ω2]. Then, the parent’s anchor points
are assigned to the child based on their distance to the split
points. Anchor points in parent C1 that are closer to split point
s1 than s2 will be passed on to the child. Similarly, anchor
points in parent C2 that are closer to split point s2 than s1
will be passed on to the child. Figure 3 shows an example of
this crossing method.

By crossing the parents in this way, we are able to transfer
anchor points in groups that influence entire regions of the
state space. Since we are using two split points, this breaks
the state space into two regions and is analogous to single-
point crossover, but in the state space domain. If desired, the
number of split points can be increased to achieve an effect
similar to multi-point crossover. Note that this custom crossing
technique is possible because our controller representation has
a straightforward mapping between genotype and phenotype.

D. Mutation

Once crossing is complete, mutations are randomly applied
to help explore the solution space and maintain diversity in the
gene pool. In order to ensure that mutations do not degrade our
best available solutions, the candidate controllers with fitness
in the top 1% of the population (rounded up) are excluded from
the mutation process. This practice is commonly referred to as
elitism. Once the elite agents are removed from consideration,
the remaining agents undergo the following two stages of
mutation.

5

Split Point 1
Split Point 2

Parent 1 Parent 2

Split Point 2
Split Point 1

Child

Fig. 3: Example of Crossing Two Parents Using Split Points

1) Minor Mutation: The first stage of mutation is referred
to as Minor mutation. Minor mutations are designed to make
small changes and occur at the individual anchor point level.
First, each anchor point in each candidate controller has a µ1%
chance of having its location mutated. For an anchor point at
location (d, ω), the mutated anchor position (dµ, ωµ) can be
computed as

dµ = d+ rand(−1, 1)

ωµ = ω + rand(−1, 1)

where rand(−1, 1) is a uniform random number in the range
−1 to 1.

Next, each anchor point has a µ2% chance of having its
control value mutated. Since our control variables can only
take on two discrete values, this mutation simply toggles the
control value. In the case of the motion control, this will switch
the control between -1 and 1. For the fire control, it will switch
the value between 0 and 1.

2) Major Mutation: The second stage of mutation is re-
ferred to as Major mutation. Major mutations are designed to
make significant genome alterations by changing the number
of anchor points. These mutations happen on the controller
level. Each candidate controller has a µ3% chance of having a
new anchor point added to its controller. This new anchor point
is randomly placed somewhere in the admissible state space
with an appropriately selected random set of control values.
Next, each candidate controller has a µ4% chance to have one
of its anchor points randomly removed from its controller. This
mutation is limited and cannot reduce the number of anchor
points in a controller to less than 1.

Fig. 4: Statistical Fitness Summary of the 100 EA Runs

V. RESULTS AND ANALYSIS

The results presented in this section were generated using
the following scenario and evolutionary parameters.

Number of Generations : M = 100

Population Size : N = 36

Number of Initial Anchor Points : P = 10

Anchor Position Mutation Chance : µ1 = 5%

Anchor Control Mutation Chance : µ2 = 5%

Add Anchor Mutation Chance : µ3 = 5%

Remove Anchor Mutation Chance : µ4 = 5%

Utility Estimate IC Reolution : γ1 = γ2 = 21

Retreat Distance : dr = 10

Weapon Energy Capacity : wc = 10

These values were obtained through testing and are designed to
best take advantage of the abilities of our computing resources.
They represent one of many possible sets of evolutionary
parameters that will yield successful results.

A. EA Statistical Results

Since evolutionary algorithms are stochastic, we must per-
form some form of statistical analysis in order to truly evaluate
their performance. A single run of the evolutionary algorithm
does not accurately represent the ability of the EA to find a
solution. Therefore, we ran the evolutionary algorithm 100
times and recorded the fitness results over the course of
each of the evolutions. Figure 4 shows the maximum (blue),
average (red), and median (green) value of the best fitness
in each generation over the course of the evolution for all
100 runs of the EA. This figure shows that in all 100 runs,
the EA converges within 100 generations onto a solution with
estimated utility Ue of approximately 2.42.

Figure 5 shows a composite image in which the best evolved
solutions for each of the 100 EA runs are overlaid on top of
each other. This image is a 2D representation of our state space
(similar to the example in Figure 2) with distance on the x-axis
and weapon energy on the y-axis. Black indicates a control

6

Fig. 5: Composite Image of Best Evolved Solutions

of u = [−1, 0] (approach and hold fire), purple represents
a control of u = [−1, 1] (approach and fire), and yellow
represents a control of u = [1, 1] (fire and retreat). The anchor
points that generated these state boundaries are not shown in
the image for clarity, however they will be included in later
individual analysis. This image shows that all 100 runs of the
EA resulted in feedback controllers with state boundaries in
approximately the same locations.

B. Best Evolved Controller

In this section, we examine the performance of the best
evolved controller. For this analysis we used the EA run that
resulted in the maximum fitness of all 100 runs in the previous
statistical analysis. The anchor points of the best evolved
controller are shown below.

C =

a1 = [0.72 6.56 −1 1]
a2 = [2.78 6.67 −1 0]
a3 = [3.80 6.21 −1 0]
a4 = [8.17 9.01 −1 0]
a5 = [4.12 −1.65 1 1]

Figure 6 shows the resulting state boundaries. The location of
the anchor points is shown with the small orange dots. Note
that while all anchor points were initialized in the bounded
state space, they are not restricted to stay within those bounds.
The minor mutations are able to gradually move the anchor
points around. In this example, the EA found it beneficial to
shift one of the anchor points, a5, to a position that is outside
the range of this plot.

The blue line shows the path of an example scenario though
the state space. In this example, the Attacker finds itself at
an initial condition directly in the middle of the bounded
state space (the green outlined circle at x = [5, 5]). It begins
by approaching the Defender while holding its fire. During
this time, the Defender is constantly firing on the Attacker,
causing the utility to decrease as is shown in Figure 7. Once
the Attacker reaches a close enough distance (d ≈ 1.7), it
begins to fire its weapon while closing the remaining distance.
This causes the utility to sharply increase as the Attacker is

Fig. 6: Best Evolved Controller with an Example Kiting
Trajectory (blue)

Fig. 7: Integral Utility Over the Course of the Trajectory
Shown in Figure 5

now dealing more damage than it is receiving. The Attacker
then reaches the Defender and continues to use its weapon
energy to inflict maximal damage onto the Defender. Once
the Attacker’s weapon energy begins to run low, it starts to
retreat while expending whatever weapon energy it has left.
The Attacker then runs out of weapon energy and continues
to run away until it reaches the retreat distance (terminating
at the red outlined circle at d = 10).

This example scenario shows what is commonly referred
to as a kiting strategy. The Attacker held its limited weapon
energy until it was able to reach a position in which it had
a significant damage advantage, fired its weapon, and then
retreated to safe distance once its weapon energy started to
run out. This behavior was not presupposed onto the Attacker
and is purely a result of the evolutionary algorithm.

If the solution to a problem with different types of agents
is desired, all one would have to do is change the damage
profiles CA and CD to model the new agents. Otherwise, the
rest of the algorithm will remain unchanged. For this reason,
we present this framework as a generalized method of finding
a feedback controller for RTS units of any given type in a 1v1

7

combat scenario.
One clear limitation with this method is that it only consid-

ers the 1v1 combat scenario. Although combat in RTS games
can frequently be broken down into a 1v1 scenario, many
units are designed to work in small groups that perform better
by compensating for each other’s weaknesses. For example, a
high damage unit supported by a healer, or a swarm of small
weak units. Future work will aim to modify the framework
presented in this paper to handle multi-agent scenarios.

C. Comparison to Analytically Optimal Solution

The analysis up to this point has qualitatively analyzed
the solution and matches our intuition on what an optimal
behavior may look like. However, without knowing the truly
optimal solution, we cannot make any claims of optimality. In
order to quantitatively evaluate the best evolved controller’s
performance, we must compare it to the true optimal solution.
Since we framed the 1v1 real-time combat scenario in the
context of an optimal control problem, we can analytically
solve for the optimal solution using optimal control methods.
However, it is important to note that calculating a closed-form
analytic optimal solution is not practical or even feasible for
every version of this problem. While this specific scenario
can be analytically solved, other instances of this problem
with different damage profiles may not. By validating our EA
against the optimal solution, we increase our confidence in
the optimality of the evolved solutions in situations where the
optimal solution cannot be computed.

A comparison of the best evolved control boundaries to the
truly optimal control boundaries is shown in Figure 8. The
optimal control boundaries are shown as the overlaid bright
green lines. This figure shows that the evolved boundaries
closely match the general shape of optimal ones. For reference,
the results of our previous research [16] are shown in Figure 9.
These figures show that the anchor point method was able to
represent the optimal control boundaries much more accurately
than our previous grid method. Additionally, the anchor point
method was able to approximate the optimal state boundaries
with a 5 × 4 matrix (20 variables) whereas the grid method
used a 15 × 15 matrix (225 variables). So not only was the
anchor point method more accurate, but it was able to solve
the problem with a representation that was 92% smaller.

Looking closely at Figure 8, one can see that there are still
some noticeable imperfections in the boundaries produced by
the anchor point representation. As stated in Section IV-B, the
EA is optimizing an estimated utility function (8) instead of
the true utility (5). If we plot the γ1×γ2 initial condition grid in
the sate space (Figure 10), we can see that the overwhelming
majority of the initial conditions are in regions of the state
space that actually match the optimal solution. The ones that
do not are circled in red. Overall, 98.41% (434 of 441) of
our tested initial conditions result in solutions that match the
optimal solution. If we compare the area in which the evolved
solution matches the optimal solution (the entire continuum
of untrained initial conditions) we find a similar success
rate of 98.56%. This is an encouraging result as it shows
the ability of the EA to produce a feedback controller that

Fig. 8: Optimal State Boundaries (green) overlaid on Best
Evolved Anchor Controller

Fig. 9: Optimal State Boundaries (green) overlaid on Best
Evolved Grid Controller

provides optimal results from nearly all initial conditions in the
admissible state space. While this analysis doesn’t guarantee
the same performance for other unit types, it does increase our
confidence in the optimality of other controllers evolved using
this method.

As close as the evolved solution is to the true optimal, we
believe that it can be further improved. One method that is
commonly used to improve the results of EAs is to follow
the EA with a local search algorithm. Since EAs are global
search algorithms, they are not very efficient at fine tuning
their solutions. Instead, they are effective at searching the
large solution space and converging on what is hopefully a
peak containing the globally optimal solution. Future work
can augment our method by applying a local search algorithm
(such as gradient decent) to the best evolved solution to further
fine tune the position of the anchor points.

8

Fig. 10: Overlaid Tested Initial Conditions

VI. CONCLUSION

In conclusion, this research has demonstrated the effective-
ness of an evolutionary anchor point method in obtaining a
near optimal feedback controller for the 1v1 combat problem.
By breaking down an RTS game into this basic 1v1 scenario,
we were able to mathematically define the problem in an
optimal control setting and compare the evolved results to the
analytically optimal solution. The framework presented can be
used to evolve a feedback controller for any given type of RTS
unit in a 1v1 combat setting so long as its damage profile can
be defined as a function of distance.

The anchor point parameterization method allowed us to
encode a feedback controller in a much more accurate, com-
pact, and scalable way than our previous grid representation.
Comparing the numerical results to the analytically optimal
solution showed that the EA was able to evolve an anchor
point controller that matched the optimal solution 98.56% of
the time.

Future work will aim to modify the presented evolutionary
framework so that it can accommodate multi-agent scenarios.
Additionally, we will attempt to integrate this anchor point
method with state-of-the-art EA techniques and compare its
performance to other popular feedback controller parameteri-
zations such as neural networks.

REFERENCES

[1] M. Campbell, A. Hoane Jr., and F. Hsu, “Deep blue,” Artificial Intelli-
gence, pp. 57–83, 2002.

[2] D. Silver, J. Schrittwieser et al., “Mastering the game of go without
human knowledge,” Nature, pp. 354–359, 2017.

[3] S. Ontañón, “Informed monte carlo tree search for real-time strategy
games,” in 2016 IEEE Conference on Computational Intelligence and
Games (CIG), 2016.

[4] P. Andersen, M. Goodwin, and O. Granmo, “Deep rts: A game envi-
ronment for deep reinforcement learning in real-time strategy games,”
in 2018 IEEE Conference on Computational Intelligence and Games
(CIG), 2018.

[5] S. Ontañón, G. Synnaeve et al., “A survey of real-time strategy game
ai research and competition in starcraft,” IEEE Transactions on Com-
putational Intelligence and AI in Games, vol. 5, no. 4, pp. 293–311,
2013.

[6] D. Churchill, M. Buro, and R. Kelly, “Robust continuous build-order
optimization in starcraft,” in 2019 IEEE Conference on Games (CoG),
2019.

[7] M. L. M. Rooijackers and M. H. M. Winands, “Wall building in the
game of starcraft with terrain considerations,” in 2018 IEEE Conference
on Computational Intelligence and Games (CIG), 2018.

[8] T. Nguyen, K. Nguyen, and R. Thawonmas, “Potential flow for unit
positioning during combat in starcraft,” in 2013 IEEE 2nd Global
Conference on Consumer Electronics (GCCE), 2013.

[9] W. Hamilton and M. O. Shafiq, “Opponent resource prediction in
starcraft using imperfect information,” in 2018 IEEE International
Conference on Big Knowledge (ICBK), 2018, pp. 368–375.

[10] X. Neufeld, S. Mostaghim, and D. Perez-Liebana, “Evolving game state
evaluation functions for a hybrid planning approach,” in 2019 IEEE
Conference on Games (CoG), 2019.

[11] W. Hsu and Y. Chen, “Learning to select actions in starcraft with genetic
algorithms,” in 2016 Conference on Technologies and Applications of
Artificial Intelligence (TAAI), 2016, pp. 270–277.

[12] M. Pontani and B. A. Conway, “Optimal interception of evasive missile
warheads: numerical solution of the differential game,” Journal of
Guidance, Control, and Dynamics, vol. 31, no. 4, pp. 1111–1122, 2008.

[13] Z. E. Fuchs, P. P. Khargonekar, and J. Evers, “Cooperative defense within
a single-pursuer, two-evader pursuit evasion differential game,” in 49th
Conference on Decision and Control, Dec. 2010, pp. 3091–3097.

[14] Z. E. Fuchs and P. P. Khargonekar, “An engage or retreat differential
game with an escort region,” in 53rd Conference on Decision and
Control, 2014, pp. 4290–4297.

[15] ——, “Encouraging attacker retreat through defender cooperation,”
in 50th Conference on Decision and Control and European Control
Conference (CDC-ECC), Dec 2011, pp. 235–242.

[16] P. Androulakakis and Z. E. Fuchs, “Evolution of kiting behavior in a two
player combat problem,” in 2019 IEEE Conference on Games (CoG),
Aug 2019, pp. 1–8.

[17] P. Androulakakis and Z. E. Fuchs, “Evolutionary design of engagement
strategies for turn-constrained agents,” in IEEE Congress on Evolution-
ary Computation, May 2017, pp. 2354–2363.

[18] K. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionnary Computation, vol. 10, no. 2, pp.
99–172, 2002.

[19] S.-J. Han and S.-Y. Oh, “Evolutionary algorithm based neural network
controller optimization for autonomous mobile robot navigation,” in
IEEE Congress on Evolutionary Computation, vol. 1, May 2001, pp.
121–127.

[20] D. A. Miller, R. Arguello, and G. W. Greenwood, “Evolving artificial
neural network structures: experimental results for biologically-inspired
adaptive mutations,” in IEEE Congress on Evolutionary Computation,
vol. 2, June 2004, pp. 2114–2119.

[21] N. Kohl and R. Miikkulainen, “Evolving neural networks for strategic
decision-making problems,” in Neural Networks, Special issue on Goal-
Directed Neural Systems, 2009.

[22] J. Bentley, “Multidimensional binary search trees used for associative
searching,” in Communications of the ACM, September 1975.

