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Abstract—Heuristic functions guide search algorithms and
have a profound impact on their performance. In the context
of agent-centered real-time heuristic search (RTHS), a heuristic
represents the agent’s initial domain knowledge which the agent
then updates as it explores the search graph. An ideal initial
heuristic should capture some specific domain knowledge to guide
the agent effectively yet be general enough for a broad class of
problems. It should also be computationally efficient, compact
in its representation and human-interpretable. Traditionally ini-
tial heuristics in RTHS have been designed by humans (e.g.,
Manhattan distance). In this paper we explore the alternative of
building initial heuristics by machines. To keep them portable and
human-interpretable we represent each heuristic as a closed-form
algebraic formula. Yet to make the heuristics capture problem
specifics and thus be more effective in guiding the search, we
automatically build a heuristic tailored to a class of problems.
To achieve both objectives, we propose and evaluate automatically
searching the space of heuristic functions. As a preliminary
demonstration, we find closed-form heuristics that outperform
Manhattan distance in grid-based pathfinding. We then develop
an insight on how such formula-based heuristics are able to
exploit characteristics of certain pathfinding maps.

Index Terms—heuristic search, real-time heuristic search, evo-
lution, heuristic function

I. INTRODUCTION

Heuristic search is a classic and fundamental part of Ar-
tificial Intelligence. In finding a shortest path from a start
vertex to a goal vertex in a search graph, heuristic search uses
a heuristic (function), an estimate of distance remaining to
goal, for guidance in exploring the graph. A good heuristic
substantially reduces the amount of search needed while
providing guarantees on the resulting path cost. Real-time
heuristic search (RTHS) makes the search agent-centered [1]
which is useful when the agent needs to traverse a search
graph on-line, using information local to it and facing time
pressure. The classical application is pathfinding in video
games. Numerous RTHS algorithms have been proposed and
studied since the seminal LRTA* [2]. Most of them use a
graph-independent human-designed heuristic (e.g., Manhattan
distance in grid-based pathfinding). However, such generic
human-designed heuristics often ignore specifics of a search
graph (e.g., Manhattan distance ignores map structure in
pathfinding which misleads the agent). Thus RTHS algorithms
commonly update the initial inaccurate heuristic on-line using
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a variation of the Bellman optimality equation (also known
as the mini-min rule). The updates can be slow and cause
behaviour that appears irrational to a user [3]. Thus, most
of RTHS research in the past thirty years has focused on
developing better RTHS algorithms which more effectively
operate with a standard initial heuristic. In this paper we
take the complementary angle of keeping the RTHS algorithm
fixed but building a better initial heuristicc. We do so by
automatically searching through a space of initial heuristics.

There are three ways to frame our approach. First, from an
application perspective, one can imagine automatically fitting
a heuristic to a class of problems. For instance, a video game
may use maps that share some characteristics (e.g., narrow
hallways). Thus, a video-game developer may opt to find a
heuristic that captures such map characteristics and thus allows
for a better pathfinding with an off-the-shelf algorithm. As
long as the heuristic is portable it can be also effective on
maps that change during the gameplay as well as maps built
by players after the game is released.

Second, from a machine-learning perspective, an RTHS
agent performs on-line learning. A heuristic-learning RTHS
algorithm such as the classical LRTA* is similar to temporal-
difference algorithms in reinforcement learning (RL). Indeed,
it updates its estimate of the remaining distance (the heuristic)
using its experience (the cost of the edges around it) and
its other estimates (heuristic values of neighbouring states).
The question is when/where the learning happens. In RL it is
common to start with a random value function which means
that all learning is done by the agent on-line. In RTHS it is
common to start with a human-designed, reasonable heuristic
and then let the agent update it on-line to fit the search problem
at hand. Our approach provides the third option: spread the
learning over generations of agents so that later agents start
with a more effective initial (i.e., “innate”) heuristic. A related
idea — generational learning of effective reward functions and
initial policies — has been successfully implemented in RL [4].
The important issue is the balance of heuristic’s effectiveness
and portability. Manhattan distance is very portable (i.e.,
applies to any four-connected grid-based pathfinding map) but
not very effective as it ignores all map structure. A perfect
heuristic completely captures such a structure but only for a
single map which makes it misleading on other maps. Our
approach automatically learns heuristics that are between the



two extremes.

Third, there has recently been a resurgence of interest
in Artificial General Intelligence. Within the larger field of
heuristic search, RTHS is agent-centered [1] and bounded
in its rationality [5] due to the real-time constraint. Thus,
RTHS is arguably more closely related to human-decision
making than general heuristic search. Indeed, recent RTHS
work made connections to human decision-making traits such
as self-reflection [6] and anxiety [7]. Continuing with such
connections one can argue that the two cognitive systems that
humans appear to use for decision-making [8] have natural
counterparts in RTHS. Specifically, human cognitive System
1 is fast and intuitive but often makes mistakes. System
2 is slow and analytical and overrides System 1 when the
person makes a decision to do so. In RTHS agents, System
1 corresponds to acting greedily with respect to the current
heuristic function. It is fast as only immediate neighbours of
the agent’s current state need to be considered but often makes
mistakes since the heuristic is often inaccurate [3]. System 2
is the lookahead which is computationally more expensive but
generally makes better decisions [2], [9]. An agent can opt
to increase its lookahead — engage System 2 — in certain
contexts such as a heuristic depression [10]. The work in this
paper furthers the parallel between human Systems 1 and 2 and
RTHS by considering how the heuristic function can emerge
over generations of RTHS agents.

The paper makes the following contributions: it formulates a
novel problem in the field of RTHS, it proposes an application
of progressive evolution to automatically fit a heuristic func-
tion to a class of problems, it presents a preliminary empirical
evaluation on grid-based pathfinding and a preliminary insight
into evolved heuristics.

II. PROBLEM FORMULATION
A. Real-time Heuristic Search

In this paper we adapt the standard definition of RTHS [7].
The agent is traversing an undirected search graph G = (S, E)
comprised of a finite set of vertices/states S connected by a
finite set of edges £ c S x S. Each edge is weighted by a
cost function c: E — R. All costs are positive. There are no
self-loops in the graph. Time proceeds in discrete steps. At
time t the agent occupies a single state s; which it changes
to a neighbouring state s;y; € N(s;) by traversing the edge
(st,5t41) € E. Neighbours of state s are denoted by N (s). The
agent starts in a start state sg and eventually arrives in the goal
state sq. The agent’s solution is the path (so,S1,...,54). The
cumulative cost of all edges in that path is the solution cost.
The solution suboptimality is then the ratio of the solution cost
to the lowest possible solution cost. Solution suboptimality of
1 indicates an optimal solution while solution suboptimality
of 2 indicates a path twice as costly as optimal.

While traversing G, the agent is guided by a heuristic
function h: S — R which estimates the remaining cumulative
travel cost between a state and the goal. The search is,
however, real-time and the agent is allowed to consider only
up to k states in the graph before it is required to traverse an

edge and k is independent of the graph size |S|. Additionally,
in agent-centered search the states considered by the agent in
deciding on the edge to traverse are required to be around the
agent’s current state. Since the agent is required to act before
it can compute a complete solution, state revisits are likely.
To avoid looping forever, the agent updates its heuristic. The
initial heuristic hg is an input to the agent.

B. Search for Initial Heuristics

The initial heuristic hy has a fundamental effect on subop-
timality of the solution produced by the agent. For instance,
the perfect heuristic h* that gives the cost of the optimal path
between each state and a goal is guaranteed to produce an
optimal solution with many RTHS algorithms while the zero
initial heuristic Vs € S [ho(s) = 0] provides no guidance at all,
likely leading to highly suboptimal solutions. Given a problem
instance p = (G,c) we denote the solution cost found by the
agent a starting with the initial heuristic hy by C(p, a, hy). Its
solution suboptimality is then a(p, a, hg) = C(p, a, ho)/C*(p)
where C*(p) is the lowest solution cost possible for p.

The problem addressed in this paper is thus to find an
initial heuristic h§"™ that minimizes the solution suboptimality
of the algorithm a averaged over a set of problems P:

R = argmin mean a(p, a, ho) where H is a space of initial
. . hOEH . peP . . .
heuristic functions. Note that with poor heuristics an agent

may travel a long time before arriving at the goal state which
makes computing C(p,a, hy) expensive. Thus, in line with
related prior work in the field [11], [12] we stop the agent as
soon as its travel cost exceeds auaxC™ (p) where qunax > 1 is
a parameter (suboptimality cap). The resulting truncated travel
cost is used in computing «(p,a, hg). Naturally this is only
possible when C*(p) is known for a problem p.

C. Desired Properties of a Solution

The heuristic h§"™ can capture some properties of search
problems in the set P and guide an RTHS algorithm better.
Below we list several beneficial properties of AT'" as well as
of the process of computing it.

Automatic Derivation. We would like h§"™ to be found
automatically for a given class P of search problems and a
given RTHS algorithm. One way to do so is to search for AZ™
to fit a random subset P’ of the target problem set P. A good
approach will then avoid overfitting to P’ and generalize onto
the larger set P.

Explainability. Towards explainable Al we would like A3""
to be human-interpretable, similarly to Manhattan distance and
in contrast to larger deep neural networks. The benefits of
human interpretability include an insight into design of better
heuristics and explainable Al

Compact Representation. We would like h"™ to have
a compact representation. This may help make it compu-
tationally inexpensive and human-interpretable. This is also
important in an A-life setting where the initial heuristic would
be encoded genetically and passed on from an agent to its
offspring [4]. Larger representations would then require larger
genomes and may be more vulnerable to random mutations.



Low Computational Cost. We would like A" to be
easily computable by the agent. Doing so allows the agent
to increase the amount of its local planning before it is forced
to make a move. Previous work in real-time heuristic search
has shown less accurate but faster to compute/learn heuristics
to be advantageous [13].

Portability. An initial heuristic function can apply to one or
more search problems. For instance, in grid-based pathfinding
the commonly used Manhattan and Euclidean heuristics are
represented by map-independent formulae and thus can be
applied to any grid map. On the other hand, the perfect
heuristic h* is a table of values thus specific not only to a map
but also to the goal state. We would like to strike a balance
between the extremes and have a single initial heuristic h that
gives a search agent useful guidance on many search problems.

III. RELATED WORK

LRTA* guided by an inaccurate heuristic is prone to state
re-visitation known as scrubbing [14] which happens when the
agent gets temporarily stuck in a heuristic depression. While
various extensions to LRTA* can sometimes allow the agent
to escape a heuristic depression faster [3], a better heuristic
does not create heuristic depressions in the first place. Past
work built better heuristics in the following ways.

First, an RTHS agent can improve the initial heuristic
faster by replacing the basic mini-min learning rule [2] with
more aggressive learning mechanisms [15], [16]. It is possible
that such mechanisms help because they implicitly capture
properties specific to a given class of search problems [11]. If
so this is a dual and complementary approach to ours.

Second, common human-designed heuristics tend to ignore
some properties of a search problem (e.g., Manhattan distance
ignores any obstacles on a pathfinding map or interactions
between tiles in Puzzle 15). Thus, heuristic values of states
closer to the goal tend to be more accurate as there is less to
ignore. Consequently, one can improve heuristic quality by
replacing the original distant goal with a near-by subgoal.
Such approaches commonly pre-compute a problem-specific
and thus not portable set of subgoals [17]-[22].

Third, instead of routing the agent to near-by subgoal,
one can use subgoals for estimating remaining distance with
respect to the original goal [23], [24]. These approaches
pre-compute information (e.g., distances between gateways)
specific to a search graph, forgoing portability. Also heuristics
for non-real-time search algorithms such as A* are typically
designed to be admissible in order to preserve solution op-
timality. This is not a consideration in RTHS and, in fact,
inadmissible heuristics can be desirable there [25], [26].

Fourth, one can use abstractions of the original search
problem to build a better heuristic represented as a pattern
database [27], [28]. It can deliver a great improvement in
search efficiency but the resulting database is usually specific
to a search graph and a particular goal in it. Furthermore,
effective pattern databases can be large, contrary to our desire
for compactness and human readability.

Finally, capturing properties of a class of search problems
can be viewed as a compression of full descriptions of the
problems into something more compact and useful to the agent
in its search. Prior work [20], [21] compressed a series of
pre-computed paths by keeping only the states on the path
that can be easily reached from each other. Others [29], [30]
compressed all-pairs shortest paths data. These compressions
were, however, specific to given search problems (e.g., to a
given map) and not portable.

Previous work [31], [32] captured the structure of a search
graph by embedding it in a Euclidean space so that Euclidean
distance between embedded vertices serves as the heuristic for
A*. While Euclidean distance itself is a graph-independent
formula, the Euclidean embedding is not and has to be
computed on a per-graph basis. In this paper we attempt
to automatically extract knowledge of search problems in a
problem-independent format which can then be applied to
other, similar problems without additional pre-processing.

IV. OUR APPROACH

We first present the base algorithm a which we seek a good
initial heuristic for. We then describe our heuristic space H
and how we search for the initial heuristic A3 in it.

Henceforth we will use the following notation: = ~ U(X)
means that the variable z is uniformly randomly sampled from
the set X. Similarly, X’ ~ U® (X,n) denotes an n-element
subset X’ ¢ X, n < |X| where each element of X’ is uniformly
randomly drawn from X without replacement.

A. The Base Algorithm

In this paper we search for initial heuristics to be used
with the seminal LRTA* algorithm [2]. Since its introduction
around thirty years ago LRTA* has been the basis for most
of the newer and more powerful RTHS algorithms. Thus we
hope that the approach we present here will generalize onto
contemporary algorithms.

LRTA* with the lookahead of 1 is shown as Algorithm 1.
As long as the goal state s, is not reached it interleaves
three steps: (i) generating the local search space N(s;),
(i1) updating the heuristic (line 3) and (iii) moving to the
most promising state in the local search space (line 4) with
ties broken randomly per move. The mini-min rule used
for learning heuristic is a deterministic version of the Bell-
man optimality equation turned into an assignment operator.
Indeed the unique solution to the system of |S| equations
{h(s) = /HJI\}I(l : (c(s,8") +h(s"))
function 2*. Or put another way, thbeef)erfect heuristic h* is the
unique fixed point for the heuristic learning/update rule used
in line 3.

is the perfect heuristic

B. The Space of Initial Heuristics

Given the desiderata of Section II-C we represent heuristics
as algebraic expressions. For clarity, simplicity and without
loss of generality, we assume that graph vertices are described
by pairs of coordinates. Thus the heuristic h(x1,y1,z2,y2)



Algorithm 1: LRTA* with lookahead of 1

input : search problem (S, F, c, s, s4), initial heuristic ho

output: solution (so, s1,...,Sg)
1t+0
2 while s; # s, do
3 hivi(se) < rﬁ}n ) (c(st,8) + hi(s))

seN (s¢
4 se+1 < argmin (c(s¢, 8) + he(s))
seN(st)

5 t—t+1

abg

®x7 ®x2 ®y1 )

Fig. 1. Manhattan distance as a syntax tree.

estimates path cost between states (z1,y;) and (x2,y2). Then
formulae representing heuristics are defined over variables
1,91, T3, Y2, NUmMeric constants and various operators. While
one could evolve formulae as text strings, most random
mutations would lead to syntactically invalid expressions.
Thus we represented formulae as syntax trees. Tree leaves
are terminal nodes (numeric constants in {1,2,...,6} and
variables x1,¥y1,Z2,%y2) while tree internal nodes are unary
operators (—, principal square root, square and absolute value)
and binary operators (max,min, +,—, %, /). Figure 1 shows a
syntax tree for Manhattan distance.

In choosing the set of possible syntax-tree nodes we
attempted to balance formula expressiveness and heuristic
space size. For instance, preliminary experiments showed that
including logarithm does not reliably yield better heuristics.

C. Searching the Space

Since we do not know the specific heuristic function we
are searching for we do not have a goal-state test for the
space. That excludes standard search methods which require
such a goal-state test. Furthermore, the space of heuristics,
even if we realistically cap the size of syntax trees, is too
large to attempt an exhaustive search. Previous work [11]
systematically sampled a space of RTHS algorithms by tabu-
lating ranges of the control parameters defining the algorithms.
However, it is not clear how to use their approach here since
each heuristic is not naturally represented as a vector of fixed
dimension. Additionally, random sampling of the heuristic
space reveals that even the baseline human-designed heuristic,
Manhattan distance, outperforms virtually all heuristics formed
by starting with a random single-node syntax tree and then
mutating it U({1,...,100}) times as detailed below. This is in
contrast to the previously explored space of RTHS algorithms

explored [12] where most randomly sampled algorithms out-
performed the baseline (RTA*).

The approach we implement in this work adds guidance to
random sampling of the search space, directing it towards more
promising heuristics. Specifically, we run a series of simulated
evolutions of heuristic functions each with a progressively
larger population, more generations and a more accurate
but more computationally expensive fitness function. Each
evolution is partly seeded with the best heuristic found so far.
Our hope is that early evolution runs will quickly bring the
population to a more promising area of the heuristic space.
Later evolution runs then refine the solution. Additionally,
restarting evolution on a regular basis helps escape local
minima and plateau that an evolving population can reach.
While these ideas are well known in the field of evolutionary
computation, their application to finding an initial heuristic
function for RTHS is novel, to the best of our knowledge.

A single evolution run is presented as Algorithm 2. The
evolution starts with a random population (one of its members
set to a seed heuristic hg, if given) and continues for G
generations (unless the quota () on the number of heuristics
evaluated is reached first). A random heuristic is generated by
creating a syntax tree of a single random terminal node and
then mutating it U({1,...,u}) times. On each generation ¢
we select a subset P’ of M problems by randomly drawing
from the training set P without replacement in line 7. Fitness
of each heuristic h is computed in line 9 as reciprocal of 1
plus the natural logarithm of h’s suboptimality with the RTHS
algorithm a on the problem set P’ capped by au,... We then
subtract the regularization term A|h| where |h| is the number
of nodes in the syntax tree for h. Any heuristic that gives
a constant value for all problems in P’ gets the fitness of
—oo. Note that computing each h’s fitness on a random subset
P’ c P greatly accelerates evolution since M = |P'| « |P|.
We form P’ randomly on each generation to avoid overfitting
h to a specific (small) subset of the training set. The best
heuristic found so far is updated in line 12, ties in fitness
broken randomly.

The next generation is formed in line 13 by keeping | 3|H||
top-fitness heuristics out of H and replacing the rest with their
offspring. Each of the |H| — |B8|H|| offspring is formed by
picking a random parent from the | 3|H|| top-fitness heuristics
and cloning its syntax tree into the offspring. We then mutate
the syntax tree [0.1 + |e|] times where e is drawn from an
exponential distribution with the mean parameter u. Each mu-
tation selects a random node in the syntax tree and randomly
modifies it. A binary operator can be changed to another binary
operator or a unary operator with one of the arguments (i.e., a
subtree) discarded. A binary node can also be replaced with a
terminal node, losing both of its subtrees. An unary operator
can also be inserted between a binary operator and one of its
arguments. Finally, one of the binary operator’s arguments can
be dropped and the other can be attached directly to the binary
operator’s parent in the syntax tree. Similar modifications are
applied to unary operators and leaf nodes (omitted for brevity).

Progressive evolution is presented as Algorithm 3. As long



Algorithm 2: Single evolution run evolve

Algorithm 3: Progressive evolution

input : training problem set P, sample size M, seed heuristic
hs, population size N, number of generations G,
suboptimality cap amax, regularizer A, quota @,
parenting proportion S, RTHS algorithm a, parameter

output: best found heuristic hyest, heuristics evaluated gspent

1 g<0

2 g<0

3 hpest < @

4 randomly create heuristic population H of size N
5 set one of H to the seed heuristic hs

6 while ¢ <Q & g <G do

7 select subset of problems P’ ~ U ® (P, M)

8 for he H do

9 L o(h) < m - Al

10 q<q+N
1 if max d(h) > ¢(hvest) then
12 L Rbest < arg I]_TLIGBI?( (Z)(h)

13 H « BH v offspring(SH)
14 g<g+1

-
wm

Qspent <~ 4

as the quota @ of heuristics is not exhausted progressive
evolution repeatedly executes single evolutions runs in line 5.
The evolved heuristic hevoveq 1S then evaluated on the full
training set P (using a fixed suboptimality cap o/ ). If it
is better than Apjsioric best DY at least w (line 7) then the latter is
updated in line 8. Otherwise we consider the evolution to stall
and increase the stall duration s. If the stall has been going
on for long enough (s > s« in line 12) then we scale up
the parameters defining a single evolution run by the factor
n > 1 each in lines 13-17. The next evolution run has one
of its population members set to Apjsioric best With the others
formed randomly.

V. EMPIRICAL EVALUATION

In this section we set up our problem domain, describe
the heuristic-evolution experiments, analyze how each evolved
heuristic appears to compress characteristics of a grid map and
analyze portability of the evolved heuristics.

A. Grid-based Pathfinding

In the long-running tradition of RTHS field we evaluate
our approach on grid-based pathfinding. To explore whether
our evolved heuristics can capture specific characteristics of a
map such as presence of heuristic depressions we need maps
that clearly display such characteristics. The typically used
video-game maps [33] often combine diverse characteristics
in a single map (e.g., one can often find open areas and small
rooms in the same map). Furthermore, we wanted the maps to
be small enough so that the knowledge a heuristic is capturing
can be easily displayed and analyzed in the paper. Thus we
built our own three maps (Figure 2), 20 x 20 grid cells each.
Pure white cells represent obstacles, green cells are open.

To avoid evolving heuristics that exploit low-level errors of
floating-point arithmetics in a numeric library, we considered

input : training problem set P, sample size M, population size
N, number of generations GG, suboptimality cap @max,
regularizer A\, quota (), parenting proportion 3, RTHS
algorithm a, mean parameter p, scale factor 7, scale
factor w, maximum stall smax, parameter u

output: heuristic Anistoric best

1 g« 0

2 5+ 0

3 hhistoric best < &

4 while ¢ < Q do

5 hevn]ved, Qspent <

eVOlve(hhistoric best P; M7 N7 G7 Qmax, )‘7 Q —-q, ﬂ7 a, M)

6 q < q + Gspent

7 if a(a, hzevolveth P) < wa(a, Rhistoric best s P) then
8 Pnistoric best <= Pevolved

9 s+ 0
10 else
11 s<s+1
12 if s> smax then
13 N «<nN
14 G < nG
15 M < min{nM,|P|}
16 A <A
17 Omax < 1Omax
18 s<0

Fig. 2. Our grid-based pathfinding maps.

the maps to be 4-connected with each cell having up to four
neighbours in the cardinal directions. Each move costs 1. This
allowed us to switch from floating-point arithmetic and its
approximation to the irrational cost of the diagonal moves to
exact integer-valued arithmetic. The baseline heuristic between
states (x1,%1) and (2, y2) is thus Manhattan distance (MD)
h(x1,y1,%2,y2) = |21 — x2| +|y1 — y2|. The three maps vary in
their difficulty for LRTA* with MD as we will see below.

To compute the initial heuristic for a state (z1,y;), the
heuristic formula is evaluated on the state coordinates (1, y1)
and the goal coordinates (2, y2) and calculated as a floating-
point number, possibly complex. Any imaginary parts are then
dropped and the rest is rounded to an integer. If the result
is infinity then it is replaced by the largest signed integer
representable in 64 bits (i.e., 202 ~ 9.2x10'®). If the formula’s
expression is undefined for given inputs (e.g., the principal
square root of —1) then it is replaced by 0. Note that the
initial heuristic formula is used only to fill in a heuristic table
which is then passed to the RTHS agent. Any updates to the
heuristic the agent performs while traversing the search graph
are done with the table.



We formed three sets of random problems. The set P
had 10 thousand pathfinding problems on the map C. To form
the set we generated 100 unique random goals and for each
goal selected 100 random start states, making sure the start and
goal states of any problem are distinct and the goal is indeed
reachable from the start. Similarly, we formed the problem sets
PXOK . POK for the other two maps. In Figure 2 each cell’s
shade of green indicates the number of start states falling on
that cell.

B. Evolving Heuristics

To evaluate our method of evolving heuristics we ran four
folds for each of the three problems sets PLO%, pLOK plOK,
For each fold we selected 75 of the problem set’s 100 goals
for training and the remaining 25 goals for testing. Thus the
training partition of the problem set contained 75 x 100 = 7500
problems while the test partition contained the other 25x100 =
2500 problems. Since all 100 goals were unique for each
map, the partitioning of each P into training and testing
problem sets was disjoint with no shared problems. The first
fold used the first 25 goals (and the associated 2500 problems)
for testing, the second fold used the next 25 goals and so on.

On each fold we ran progressive evolution (Algorithm 3)
on the fold’s 7500 training problems. We used LRTA* with
the lookahead of 1 (Algorithm 1) as the algorithm a. Other
hyperparameters are listed in Table II. The resulting, evolved
heuristic Apistoric best» Was then evaluated on the fold’s 2500 test
problems. As there were four folds, progressive evolution was
run four times. The four evolved heuristics for map C' are
shown in Table I, algebraically simplified for the presentation.
For each fold the table also lists the test suboptimality of the
evolved heuristic as well as the baseline heuristic (Manhattan
distance). For all test sets the suboptimality cap was set to
oo so the test suboptimality is the mean of uncapped solution
suboptimality over the 2500 test problems for that fold.

Due to space limitations, we do not show the other two
tables for maps O and G. Instead, Table III shows test
suboptimality of evolved heuristics averaged over the four
folds for all three maps. Evolved heuristics had better test
suboptimality averaged over the four folds than Manhattan
distance. The sole exception was map O which is simple
enough that Manhattan distance does very well: 1.44 +0.088.

C. An Insight Into Evolved Heuristics

Unlike deep neural networks or large pattern databases,
heuristics represented as short algebraic expressions have
a potential to be more human-interpretable. Consider, for

\ /max{2,(§—f)w} bl - el +

min{\/x1 - 1,6} evolved in fold 3 on map C (Table I). The
heuristic outperforms Manhattan distance on average over test
problems of that fold: 2.22 versus 5.22. Why?

The answer lies with the fact that the evolved heuristic
prioritizes the difference in the y coordinates of the agent and
the goal over the difference in the x coordinates. Consequently,
the agent is less likely to be lured into a heuristic depression by

instance, heuristic hg =

Manhattan Evolved x10*
! 20 5
] 115 15
] 10 1
& 1
T ] 5 05
SEEEEEE
[T 0

Fig. 3. A problem on map C. The colors show initial heuristic values.
The goal is a white dot. The start is a white circle.

moving horizontally towards the goal. To illustrate, consider
the specific problem in Figure 3. With Manhattan distance the
agent can step to the left (the gray dot in the figure), led by the
decrease in |z1 — x2|. Doing so puts a wall between it and the
goal and causes it to wander around until it gets back inside
the letter C.

With the evolved heuristic the difference in x coordinates
is less important than the difference in the y coordinates and
the agent heads up, minimizing the |y; — y2| term. In this
particular problem, doing so guides it up towards the goal.
Once it matches the goal’s y coordinate it will step left towards
the goal, guided by minimizing \/z; — 1. The important point
is that focusing on equalizing the y coordinate and effectively
ignoring the = coordinates in the start state does not put a wall
between the agent and its goal.

Naturally for some other problems prioritizing y coordinates
over z coordinates can be misguiding. Evolution simply picks
up on what is more beneficial on average for a given map. Map
C has its largest heuristic depression oriented horizontally
which means that downplaying the difference in 2 coordinates
can likely be of benefit more often than not.

D. Portability of Evolved Heuristics

The evolved heuristics captured knowledge of training prob-
lems and generalized it onto test problems unseen during
training. In this section we look at how general the evolved
heuristics are. To do so we generated an additional set of 100
thousand problems (100 goals, 1000 starts/goal) for each of
the three maps: PL2OK, PLOOK pLO9K We then ran LRTA*
with the best-of-the-folds evolved heuristic on the problem
sets. The resulting suboptimality (mean =+ standard error of the
mean; the suboptimality cap was set to 10%) is in Table IV,
best suboptimality per problem set is in bold.

The evolved heuristics work best on the maps they were
trained for. They are too map-specific to outperform Manhattan
distance on other maps. We believe this is due to the fact that
evolved heuristics exploit peculiarities of their training maps
whereas the Manhattan distance does not and thus ends up
being a jack of all trades, master of none, so to speak.

VI. CURRENT SHORTCOMINGS & OPEN QUESTIONS

The heuristics we evolved in this paper provide a better
guidance than Manhattan distance because they appear to fit to
some characteristics shared by a class of pathfinding problems.



TABLE I
EVOLVED HEURISTICS FOR MAP C' AND THEIR TEST SUBOPTIMALITY COMPARED TO MANHATTAN DISTANCE.

Fold | Evolved heuristic

| Test suboptimality | MD test suboptimality

1| |y1 - yo| - min{z;,zs}? 4.89 8.88
2 | \/5lxa — 21|+ 6 —min {1, 20}° 6.73 7.05
16
3 ,/maX{Q,(i—j) }+|y1 — 2| + min {V/z1 1,6} 2.22 5.22
4 | [y -y 3.81 3.92
TABLE 11

HYPERPARAMETERS USED.

Parameter | Value

initial sample size M 100

initial population size N 40

initial number of generations G 10

initial regularizer A | 0.0001

initial suboptimality cap amax 10

number of heuristics evaluated Q | 5 x 10*
parenting proportion (3 0.1

RTHS algorithm @ | LRTA*

scale factor n 1.5

scale factor w 0.95

maximum stall Smax 1

training set cap .y (line 7) 100
exponential distribution mean parameter 5
maximum number of initial mutations u 100

TABLE III
TEST SUBOPTIMALITY OF EVOLVED HEURISTICS AVERAGED OVER
THE FOUR FOLDS. STANDARD DEVIATIONS ARE ALSO LISTED.

Map | Test suboptimality (evolved) | Test suboptimality (MD)

C 4.41 +1.893 6.27 + 2.165
(0] 1.60 = 0.338 1.44 + 0.088
G 3.01+0.339 4.68 +0.997

Thus a natural open question is how diverse such a class
can be while remaining amenable to our approach. Can it be
that once a class of search problems is sufficiently diverse
its characteristics can no longer be captured by an algebraic
formula and thus a default heuristic such as MD can no longer
be beaten? An investigation into this can yield a theoretical
result similar to A*’s search cost being unbeatable unless
problem-specific information is taken advantage of. Perhaps

TABLE IV
PORTABILITY OF EVOLVED HEURISTICS.

‘ PéOOK ‘ PLOOK ‘ Pcl;OOK
MD | 6.14:0.033 | 14510004 | 4.60+0.024
he 2.96 +0.019 1.69+0.007 | 224.93 +1.280
ho 19.44+0.113 | 1.17 +0.002 11.05+0.068
he | 359.58 +1.514 1.41 +0.005 2.18:0.013

linking properties of search problems [34] and properties of
heuristics can be helpful here.

Evolving heuristics can be expensive since each candidate
has to be evaluated by running it with an RTHS algorithm.
We addressed this problem by estimating the actual fitness via
fitness on a smaller subset. The size of the subset was then
incrementally increased in the progressive evolution, making
the fitness function estimate progressively more accurately.
Still, we have not been able to reliably outperform MD on
actual video-game maps. The challenge is that video-game
maps are too difficult for the basic LRTA* making computing
heuristic fitness too expensive to allow for a sufficiently large
evolution. Future work will investigate replacing our sample
fitness with even a faster-to-compute estimate such as a neural
net or the k nearest neighbours.

Evolving a heuristic takes time while MD is available at the
outset. On the other hand using an evolved heuristic instead
of MD reduces search time on many problems. Thus, future
work will consider amortizing heuristic evolution cost over a
stream of problems. It will also be of interest to automatically
select a heuristic on a per-problem [35] or even per-step basis.
The latter can be viewed as global learning wherein, instead of
updating the heuristic locally via mini-min, the agent globally
changes all heuristic values by loading a new initial heuristic
when it realizes that it is not making sufficient progress with
the current heuristic. A special case of this is using a generic
heuristic such as MD as a fall back (a la [36]).

We used a basic RTHS algorithm, LRTA*, throughout the
paper. Future work will apply our approach to contemporary
real-time and non-real-time search algorithms. This should
help scaling our approach to actual video games which are
too difficult for the basic LRTA*. One can also co-search an
algorithm space [11] and a heuristic space simultaneously.

Future work will also consider maps that can change dy-
namically [37]. This is common in video games either due to
multi-agent pathfinding or to terrain changes (e.g., the player
builds a bunker to block an entrance to their base). Recently
RTHS algorithms have been used in multi-agent pathfinding
albeit with a standard heuristic [38]. To what extent can
our approach of evolving heuristics specifically to a map be
used on dynamic maps and multi-agent pathfinding? Another
challenging extension to the pathfinding model is terrain with
different traversal costs [22].



VII. CONCLUSIONS

This paper presents the first attempt to automatically build
compact, human-readable initial heuristics for real-time heuris-
tic search. We represented each heuristic as an algebraic
expression and demonstrated that progressive evolution can
find heuristics with better LRTA* performance than the stan-
dard Manhattan distance on toy-sized grid maps. The evolved
heuristics are human-readable and portable to problems not
seen during evolution (although only on the same map).

The approach promises a way to automatically take advan-
tage of properties shared by a class of heuristic problems.
From a machine-learning perspective, our work splits heuristic
learning between off-line learning over multiple generations
and on-line learning during the agent’s lifetime. In A-life terms
this gives an agent innate knowledge to survive after birth yet
allows it to improve the knowledge via life experience making
the agent more adaptable to novel/changing environments.
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