
Mastering Fighting Game Using Deep
Reinforcement Learning With Self-play

Dae-Wook Kim
Electronics and Telecommunications

Research Institute
Daejeon, South Korea
dooroomie@etri.re.kr

Sungyun Park
Electronics and Telecommunications

Research Institute
Daejeon, South Korea
tjddbs5671@etri.re.kr

Seong-il Yang
Electronics and Telecommunications

Research Institute
Daejeon, South Korea

siyang@etri.re.kr

Abstract—One-on-one fighting game has played a role as a
bridge between board game and real-time simulation game in
terms of research on game AI because it needs middle-level
computation power with medium-size complexity. In this paper,
we propose a method to create fighting game AI agent using
deep reinforcement learning with self-play and Monte Carlo Tree
Search (MCTS). We also analyze various reinforcement learning
configuration such as changes on state vector, reward shaping,
and opponent compositions with novel performance metric. Agent
trained by the proposed method was evaluated against other AIs.
The evaluation result shows that mixing MCTS and self-play in
a 1:3 ratio makes it possible to overwhelm other AIs in the game
with 94.4% win rate. The fully-trained agent understands the
game mechanism so that it waits until being close to enemy and
performs actions at the optimal timing.

Index Terms—reinforcement learning, self-play, Monte Carlo
Tree Search, fighting game AI, FightingICE

I. INTRODUCTION

FightingICE is a 1v1 fighting game environment, whose
name is derived from the fighting game platform organized
by Intelligent Computer Entertainment lab in Ritsumeikan
university. One-on-one fighting game has distinct character-
istics for studying diverse AI algorithms. First of all, it is an
intermediate step between the genre of board games and real-
time strategy simulation games. Board game AIs such as Deep
Blue [1] or AlphaGo [2] are given enough time to consider
future actions of players while playing the game. One-on-one
fighting game AI, however, has little time so that it has to
react in real-time. This makes fighting game more difficult than
board game. Meanwhile, fighting game has shorter playtime
with less action complexity than real-time simulation game
such as Starcraft or DOTA2. It has an advantage of designing
and evaluating AI algorithms with less computation power.

The FightingICE environment offers unique traits that allow
researchers to study general fighting game AI. First, it provides
delayed game information in order to reflect human’s physical
limitation. The information occurred in real-time is delivered
through simulator with a delay of approximately 0.2 seconds.
For this reason, AI agent should act based on this inaccurate
information. Second, it has two modes, a standard and a speed
run. In the standard mode, players start with a certain amount
of hit points (HP) and fight until one of them would knocked

down or the playtime runs out. The speed run mode is to
beat a competitor as quickly as possible. Finally, it provides
a special character without revealing its specification of skills
and actions. Many studies have been conducted upon these
characteristics.

Competition on FightingICE [3] has held every year from
2013. It consists of 6 rounds, the composition of 2 leagues and
3 characters including the undefined character named LUD.
The ranking of competitors will be determined by the total
result of 6 rounds. From 2013 to 2015, rule-based bots were
the mainstream. Some participant applied k-nearest neighbor
or forward model to rule-based bots. Since Monte Carlo Tree
Search (MCTS) emerged as a trend in 2016, a number of
AIs that combines MCTS and handmade rules were submitted.
Other submitted bots [4] treated opponent modeling, reinforce-
ment learning, genetic algorithm, dynamic scripting, finite
state machine, heuristic approach based on human experience,
and rolling horizon evolutionary algorithm. MCTS and rule-
based agent have dominated the competition until recently. On
the contrary, AI agent generated by reinforcement learning has
no outstanding results yet.

Although reinforcement learning is known as one of meth-
ods to create game AI, it has not been widely used because
of its difficulty of applying on massive and complicate game
environment. Deep neural network, however, has proven that it
is able to handle the high complexity with approximation. As
a result, the AI agent obtained high score than human in Atari
games [5]. Moreover, it also won against pro-players in Go
[2], [6] and Starcraft II [7] using deep reinforcement learning
and self-play.

In this paper, we verify whether the reinforcement learning
with self-play is also able to reach the high-level performance
on a specific one-on-one battle game such as FightingICE. The
contributions of this paper are as follows. We evaluate agents
with a novel performance measure as well as ordinary win rate.
In addition, we demonstrate that the proposed method makes
it possible to overwhelm other entries of the past competitions.
As far as we know, it is the first time parametric components
are analyzed through various experiments related to self-play
learning. This paper serves as a baseline for making general
fighting game AI with even higher performance.

The rest of this paper is organized in the following order.
978-1-7281-4533-4/20/$31.00 ©2020 IEEE

Chapter 2 provides related works for applying deep learning to
the FightingICE environment. In chapter 3, we detail our pro-
posed method with respect to reinforcement learning and self-
play. Subsequently, chapter 4 explains the evaluation methods
and experiments. Experimental results and discussions are
presented in chapter 5. We remark the conclusion in chapter 6.

II. RELATED WORK

Many researchers have studied reinforcement learning to
apply it to the FightingICE environment. In [8], [9], they
collected gameplay data through simulation from the past bots.
Convolutional neural network (CNN) model was trained to
predict actions for given input state. The optimized state shape
was obtained from prediction accuracy of models and also
utilized to reinforcement learning. The agent was evaluated
against Machete which is the winner bot of 2015 competition.
It was unsuccessful to show significant achievements. Q-
learning [10] and SARSA [11], one of well-known rein-
forcement learning algorithms, were applied in [12]. Its state
included relevant game information such as HP, position and
energy. Its reward was designed with numeric terms based
on HP. These agents were evaluated by random action agent.
SARSA agent did not exceed 50% win rate, and Q-learning
agent showed a win rate of 50% or more depending on the
hyper-parameter setting. Yoon and Kim [13] used visual data
represented by 96×64 pixels image. The number of actions
was simplified to 11, and the agent was implemented with
DQN [5]. Even if it scored higher as the learning progressed,
there is a clear limitation that it was tested against sandbag
bot alone. Takano et al. [14] showed remarkable result among
reinforcement learning approaches. They combined offensive
reward and defensive reward. Those rewards are given when
the opponent’s HP or my HP is reduced. The agent, also
implemented with DQN, ranked 4th in the standard league of
2017 competition. It beat MCTS agent for the first time using
deep reinforcement learning. Meanwhile, there is another kind
of study that mixes reinforcement learning and MCTS [15].
This method proposed selecting the optimal action by MCTS
in search space partially reduced by reinforcement learning.
The agent was trained by playing against GigaThunder and
tested onto several other bots. Its average win rate indicated
slightly higher than 50%.

In one-on-one games, self-play is used as a major method to
improve performance through the fights against its own copy.
This has an advantage of training even in situations where
play data is not enough; however, there is a risk that the agent
converges to specific strategy, and it does not always guarantee
that it will work well. Hence, in recent studies [2], [7], [16],
it is more preferred that self-play learning starts from certain
baselines rather than scratch. All of them initially perform
supervised learning through human’s play data. After that,
self-play boosts skill level of the agent. For the first work
[2], the data obtained from self-play enhances value network
accuracy as well as prevents it from over-fitting. Likewise, in
the second work [7], supervised learning was conducted using
approximately 970,000 human battle replays before self-play

reinforcement learning. Due to the circular structure of strategy
like a rock-paper-scissors, They divided training agents into
three categories: main agents, main exploiters, and league
exploiters. This composition avoids converging to the local
optimum. It is notable that a mechanism called prioritized
fictitious self-play (PFSP) is applied, which determines the
matching opponents based on the win rates. Oh et al. [16]
created three types of agent groups: aggressive, balanced, and
defensive by reward shaping. Each version of agent was reg-
ularly stored in a shared pool and used for self-play learning.
Agents from the shared pool was extracted by probabilities.
The more latest the model is, the higher the probability gets.
In [6], they used MCTS instead of human’s play data. The
role of MCTS is to search wide state space. Neural network
narrows down the state space effectively and is trained from
MCTS. By complementing each other’s deficiencies, self-play
reinforcement learning with MCTS enabled to obtain better
performance without supervised learning.

III. METHOD

A. State and Action

A state s obtained from the game environment becomes
an input of neural network. The input features of the state
are based on [14] and we added additional features such as
threshold and relative distance. Those details are described in
Table I.

The character attributes are composed of HP, energy, po-
sition, speed, action, character state, and remaining action
frame. Skills require different energy consumption depending
on the skill type so that it is necessary to divide into several
sections. We introduce energyT features. EnergyT5 represents
normalized energy from 0 to 1 when energy is between 0
and 5. If the energy is 5 or higher, EnergyT5 clips it to 1.
EnergyT30, EnergyT50, and EnergyT150 are applied in the
same way. By making multiple features for the energy, agent
can recognize states more clearly to select the skills. We set
intervals of energy with reference to the skill table. Movement
feature represents the direction. X movement gets 0 when
agent is moving to the left and 1 to the right. The action
and the character state are encoded as one hot vector. The
character state has one of four types: ground, crouch, on air,
and recovery. The size of the character attribute becomes 74,
and the entire size doubled to 148 for two players.

The projectile attribute contains information on long-range
attacks. For data efficiency, projectile features with maximum
two for each player were allocated to the state vector. Hence,
if three or more projectiles are created by one player, feature
vector describes only for the first two. If there is no projectile
on the screen, their values become all zero. Similar to character
attribute, the size of the projectile attribute is 12 in total.

The distance attribute represents the relative distance be-
tween two players. To act basic attacks such as punch or kick,
the character needs to be located closer than a certain distance.
Therefore, one hot encoding was added to distinguish distance
more clearly. DistanceT is encoded by three sections, less than

TABLE I
FEATURES FOR STATE

Feature Name Value Size Feature Name Value Size Feature Name Value Size

Character
Attribute

(for each player)

HP 0∼1 1 Energy 0∼1 1 EnergyT5 0∼1 1
EnergyT30 0∼1 1 EnergyT50 0∼1 1 EnergyT150 0∼1 1
X position 0∼1 1 Y position 0∼1 1 X movement 0 or 1 1

Y movement 0 or 1 1 X velocity 0∼1 1 Y velocity 0∼1 1
Action 0 or 1 56 Character state 0 or 1 4 Remaining frame 0∼1 1

Controllable 0 or 1 1
Projectile Attribute
(for each player)

X position 0∼1 2 Y position 0∼1 2 Damage 0∼1 2

Distance Attribute Distance 0∼1 1 DistanceT 0 or 1 3
Time Attribute Remaining time 0∼1 1

0.15, 0.15∼0.3, and more than 0.3. The time attribute for the
current round was added to the last input feature.

165 features are extracted for one frame by aforementioned
way. We designed our state vector using two frames, delayed
frame and simulated frame. The delayed frame is basically
provided by the game simulator. Taking this frame alone
hinders estimation on the value function of reinforcement
learning. On the other hand, the simulated frame contains
the estimated real-time information elapsed 0.2 seconds from
the delayed frame. It takes an effect of prediction. Even if it
may not match the actual observation, it is helpful in certain
situation such as when player is moving along a specific
trajectory in the air. This is similar to human inferring the
actions of the opponent.

The number of output is set to 56. This is same as the
number of actions provided by the game. Instead, we adopted
action masking mechanism which filters the actions that are
not possible in the current state. For example, air projectile
attack action is only valid when the player is in the air.
When this action occurs from the output of network, it is
transferred to the game simulator as a no-op action. Through
the action masking, the agent randomly selects 56 actions at
the beginning of learning. It is induced to reduce the frequency
of invalid actions itself at the end.

B. Reward

Similar to the previous studies [14], [16], reward is com-
posed of three components. The first one is for differences
in HP. When the agent reduces opponent’s HP, it gets a
positive reward. On the contrary, if the agent is damaged
by the opponent, it gets a negative reward. This HP reward
is normalized between −10 and 10 for entire HP 400. The
second one is obtained at the end of the round depending on
the result of win or lose. It gives 10 for win, 0 for draw and
−10 for lose. The last one gives constant negative values to the
agent until the round ends. If the time is over, the agent obtain
−10 reward for a round. This makes it possible to defeat the
opponent quickly as well as to win the game. Ideally, it can get
a reward up to 20 if it completely knock down the opponent
as soon as game starts. For the reward scale, we had trial and
error with values of 1, 10, and 100. The value of 10 showed
the best stability on training. To reflect true goal of winning
games, the discounting factor γ is set to 1.

C. Reinforcement Learning Algorithm

Proximal policy optimization (PPO) algorithms [17], one
of policy gradient methods, is applied for the proposed deep
reinforcement learning. PPO has an advantage for efficient
learning by inferring the value for each state and relative action
value. Policy clipping also helps to adjust the policy stably
without sudden shift. Besides, since the state s described above
contains continuous values such as the character’s position or
energy, PPO is regarded to be more suitable than Q-learning
based algorithms.

For network parameters θ, state s, action a, reward r, and
actual reward Gt from time step t to T acquired by the current
policy, training process is to find optimal policy πθ(a|s). Loss
LPG of policy gradient method at time t is

LPG = Ê[log πθ(at|st)Gt] whereGt =

T∑
k=t+1

γk−t−1rk

(1)
Estimated advantage function Âθ is expressed as (2) with

the value function Vθ, reward rt, and discount factor γ. Actor-
critic loss LPG−A is

Âθ = rt + · · ·+ γT−1rt+T−1 + γTV (st+T)− V (st) (2)

LPG−A = Ê[log πθ(at|st)Ât] (3)

The final loss LCLIP with clipping range ε becomes

LCLIP = Ê

[
πθ(at|st)
πθ−(at|st)

Ât

]
= Ê[rθÂt]

subject to 1− ε < rθ < 1 + ε

(4)

The agent was trained on 2-stage learning schedule, as
shown in Fig. 1. In the first stage, the agent plays against
SampleMctsAi (also called MCTS AI) provided by Fight-
ingICE. When we adopt a simple random action agent, it
happens to generate a biased experience because it is not
able to intentionally approach to the player. On the other
hand, MCTS searches wide breadth through simulations to
find which action is advantageous in a particular situation in
real time. It provides more general experience. Through this
stage, the agent learns how to react to the most situations, how
to filter specific actions caused by action masking, and how to
acquire precise value function. In the second stage, self-play

Fig. 1. An overview of proposed two stage reinforcement learning. In the first stage, agent is trained against MCTS AI alone. After performance saturation
in the first stage, agent is trained against itself as well as MCTS AI. During training in second stage, agent is duplicated into agent pool to find its weakness.

TABLE II
HYPER-PARAMETERS FOR REINFORCEMENT LEARNING

name value
step size 4

environment size 16
batch size

(step size × environment size) 64

learning rate 1e-4
value function coefficient 0.25

entropy coefficient 1e-3
clipping range for policy 0.02

clipping for value function none
clipping for gradient norm 0.5

trade-off factor
for generalized advantage estimator 0.95

minibatch size 4
number of epoch

for optimizing surrogate 4

learning is added. While it helps to find the current agent’s
weakness and remove vulnerability, MCTS keeps generality
and prevents sticking to a specific strategy. Other hyper-
parameters for reinforcement learning is described in Table II.

D. Self-play Learning

To match a desired opponent, prioritized self-play algorithm
is applied on the agent pool. After competing against all rivals
in the agent pool, the average win rates of the last 30 games
for each rival are calculated. We designed matching probability
Pmatch as Equation (5) where WB is the win rate against rival
B. Based on Equation (5), the opponents difficult to win are
matched more frequently.

Pmatch(B) =
1−WB∑

C∈Pool (1−WC)
(5)

Training agent is copied to the agent pool every 500,000
time steps. In addition, it is also duplicated whenever it wins
all the other agents more than 80%. In an initial agent pool,
there exists only one agent trained on stage 1. However, the

number of agents in the pool increases through duplication
process.

E. Network Architecture

The neural network of agent is composed of multi-layer
perceptron (MLP). All layers are fully connected layers, and
rectified linear unit (ReLU) is used for activation function.
The numbers of nodes from the first hidden layer to the third
hidden layer are 330, 330, and 165 each. At the end, This
network is divided into two branches with 165 and 80 hidden
units, respectively for policy and value estimation. The final
output size for policy network equals 56 and value network
equals 1.

IV. EXPERIMENT

The agent is trained with 32 Core CPU, 64 GB RAM, and
RTX 2080 GPU. The hardware specification is enough to train
simultaneously with the separated 16 multiple environments.
Proposed algorithm was implemented in Python with Tensor-
Flow, and PPO was provided from stable-baselines library. The
version of FightingICE we used is FTG 4.40.

A. Evaluation

We evaluated our agent by playing against other AIs. The
average win rate as well as the average HP difference and
elapsed time were carefully selected for measurement. The
opponent bots for evaluation were chosen from top rankers
submitted in the 2017 and 2019 competitions. We ignored
2018 competition bots because the unique combo system was
applied in 2018 competition alone. The names of 10 evalu-
ation bots are FooAI, GigaThunder, JayBot 2017, Mutagen,
LGIST Bot, HaibuAI, DiceAI, Toothless, FalzAI, and Sam-
pleMctsAi. Several other bots including ReiwaThunder which
won in 2019 were excluded due to its version compatibility.
We played 9 games for each AI and changed the side to play
another 9 games. All evaluations were performed only with
ZEN character, expecting the results would not be affected by
characters if specifications are provided.

B. Experiment Details

First, we compared agents in terms of the state vector
configuration on whether delayed frame or simulated frame
is used. If the state vector is composed of either delayed
or simulated, the number of network input requires half of
the original. This causes modification of network structure.
Therefore, the numbers of units of the first two layers were
adjusted to 165 each and the rest of the network remained as
same as the original. All experiments were evaluated under
playing against MCTS AI.

In the second experiment, we tested reward shaping. For
the three types of aforementioned reward, agent is trained
separately with all the types, two of three types, or one
type alone. Training with time penalty reward alone had
been excluded from the experiment in advance because we
expected that it would not be trained well. For comprehensive
assessment, we defined additional measurement called SDR
score, a stable damage rate. It is calculated with the win rate,
HP difference, and elapsed time. Equation (6) represents the
SDR score.

SDR Score =
(Win Rate)× (HP Difference)

(Elapsed Time)
(6)

For example, assuming same win rate, the agent who makes
a lot of HP difference against opponent gets higher SDR score.
Even if some agents are able to make the same HP difference,
the agent who knocks down the opponent in a shorter time
receives more SDR score. Similar to the first experiment,
MCTS AI was matched for evaluation.

The third is an experiment on self-play composition for
each learning stage. MCTS AI was selected for the opponent
of training in the first stage, then we mixed MCTS AI and
self-play in the second stage. The purpose of this experiment
is to analyze how the performance changes for each stage
when tuning the mixing ratio of MCTS AI and self-play. On
the self-play learning, agent starts training against its own
copy. Therefore, at the beginning of the self-play learning,
the opponent of the first stage becomes random action agent
while that of the second stage corresponds to the agent trained
by MCTS AI.

Finally, the cases of other opponent combination were
investigated. Agents were trained by random agents only, or
by the combination of competitors in 2016 and 2017. The
competitors used here are Machete, Ranezi, Thunder01, Jay-
Bot2016, Triump, Ichibanchan, and paranahueBot. We strictly
chose them not to overlap the evaluation bots except MCTS
AI.

V. RESULT AND DISCUSSION

Fig. 2 shows the training result of state configuration and
reward shaping. When we adopt both simulated and delayed
frame, the win rate reaches almost 1.0 at 2M steps. However, if
the agents are trained with single frame, It goes less than 0.5,
indicating poor learning capability. It means that use of both
frames is crucial factor in aspect of working complementary
to each other.

In the reward shaping, win rate converges to 0.9 at the
early stage of learning when taking either HP reward or round
reward. On the other hand, in the both cases of applying all
reward and all but time reward, those graphs show convergence
after 0.4M steps. It is remarkable that they takes time a little
bit more than the prior two cases. The reason is that both HP
and round rewards are deeply related to winning the game.
Therefore, they affect the direction of gradient pointing to the
optimal. If the rewards are not blended together, the gradient
clearly points out the optimal so that the agent is able to be
trained quickly. However, if rewards are mixed, the direction
of the gradient is slightly twisted sideways. To test variations
in network structure, etc., it is suitable to give the agent either
HP or round reward, which is straightforward to implement
and costs relatively shorter training time.

Even though taking single reward among HP and round
looks better than using all reward, it changes by adding time
reward. Excluding round reward indicated by the green line
presents unstable performance. Besides, the agent did not be
trained at all in the case of removing HP reward represented as
the blue line. The agent with all rewards shows slower learning
than the agent without time reward. This significantly means
that time reward hinders the agent learning unlike HP and
round rewards. The importance of reward would be aligned in
order of HP, round, and time.

The middle bottom of Fig. 2 shows the average HP differ-
ence with the opponent as the training progresses. The curves
depict the tendency similar to the win rate graph. The agent
with either HP or round reward was trained rapidly, making a
difference of more than 150 HPs in 0.2M steps. It converges
to 250 after a sudden leap in score around 1.1M steps. After
1.5M steps, except ignoring either round or HP reward, all of
them reached close to 250.

The significant role of time reward is proved on the top right
graph in Fig. 2. The game duration of the ‘All’ and ‘except
Round’ cases are approximately 7 seconds shorter than the
other cases with exception of the blue line which is not able
to win the game at all. According to the aforementioned result
of win rate, we proved that the time reward slows the agent’s
training. However the time reward leads the agent to defeat the
opponent quickly under a sufficient training time. For the SDR
score, the case of using all rewards demonstrates the best. As
a result, the best performance needs to take all rewards.

The evaluation results with respect to self-play configuration
are illustrated in Fig. 3. All the graphs were depicted under the
assumption of that agents reach the maximum performance in
3 million training step. In the first stage as shown in the left
graph, the case of mixing MCTS and self-play in a 1:3 ratio
was the best even if we had proposed playing only against
MCTS. It recorded 0.939 of win rate which was close to
0.944 of the proposed method. For the second stage in the
middle graph, combining MCTS and self-play in 1:3 ratio also
achieved the first place while the win rate tends to decrease as
the ratio of MCTS increases. It means that self-play learning
is dominant factor to get high-skilled agent.

With self-play learning only, the training result did not get

Fig. 2. Performance for state configuration and reward shaping. Performance was evaluated through win rate, HP difference, elapsed time and SDR score.
Left two graphs shows performance with respect to state composition. Middle and right graphs represent performance by reward shaping.

to win much against evaluation bots in both stage 1 and stage
2. Especially in stage 2, the performance of agent declined
despite of the warm start on the first stage with the win rate
of 0.786. As expected in the chapter 3, it reflects the main role
of MCTS that provides broad and essential experience to the
agent. Note that self-play learning can makes the agent biased
into a local optimum.

For the 3:1 ratio, it is unusual that the win rate in stage 2
was increased than stage 1 (MCTS only) while the win rate
in stage 1 was decreased. It is caused by the opponent of
self-play learning for each stage. The opponent on stage 1
was just random action agent. Since the training agent was
barely taken helpful information from the self-play, it relied
on MCTS more. On the other hand, the opponent on stage
2 was strong enough to defeat MCTS perfectly. Therefore,
the training agent can be improved by overcoming its own
weaknesses.

The right chart of Fig. 3 represents the performance ac-
cording to the opponent group. The agent trained by MCTS is
stronger than any others. It is interesting to note that the agent
trained by mixed group of MCTS and past entries of 2016
and 2017 competition shows the weakest skill. This means
that when playing against either random agent or enemies
made up of past competition bots, the agent quickly learn a
specific tactic to win them. Conversely, since MCTS provides

the most demanding attacks in the various situations through
simulation, the agent learns a universal tactic. If these two
different styles are combined into one, the agent runs about in
confusion. It occurs learning delay despite of sufficient time
steps. Consequently, taking 1:3 ratio helps creating powerful
agent. Using MCTS alone is also not a bad option when
lacking self-play implementation.

At the early timestep of learning, actions of the agent
should have uniform distribution. Indeed, NEUTRAL and
AIR are operated more frequently in actual play thanks to
the action masking, as shown in Fig. 4. After 0.3M steps,
action distribution is narrowed down to around 3 actions of
tackle attack STAND D DB BB, middle kick STAND B,
and kick on lower posture CROUCH FB. The model finally
identified effective attacks in the first stage such as STAND B,
NEUTRAL, CROUCH FB, and CROUCH GUARD. At the
beginning of the second stage, the model performs diverse
actions again in order to overcome its weakness. Actions
like STAND D DF FC are tend to be presented more fre-
quently. This tendency is changed along training. NEUTRAL
is operated more than STAND B at the end of the second
stage. It is remarkable result that the fully-trained agent waited
for the enemy’s action by doing NEUTRAL and performed
attacks at the optimal timing. On the other hand, the first stage
agent depended on accidental attacks by doing STAND B and

Fig. 3. Evaluation result by mixing ratio of MCTS and self-play, and opponent composition. SP means self-play. ’16’17 Bot Pool is composed of competitors
in 2016 and 2017.

Fig. 4. Action distribution with respect to timesteps. The first stage learning is from 0 steps to 1.5 million steps. The second stage learning is from 1.5
million steps to 3.6 million steps.

TABLE III
EVALUATION RESULT OF THE BEST AGENT TRAINED BY PROPOSED METHOD

Submitted
Year Rank AI Name Remaining HP

(Proposed Agent)
Remaining HP
(Competitor)

Elapsed Time
(sec) Win Rate

2017

1 GigaThunder 395.56 0.0 19.96 1.0
2 FooAI 350.56 0.0 21.12 1.0
3 JayBot 2017 239.22 0.0 28.99 1.0
4 Mutagen 60.28 53.44 45.77 0.556

2019

3 Toothless 337.44 25.67 24.65 0.889
4 FalzAI 185.61 0.0 33.86 1.0
5 LGIST Bot 140.50 0.0 37.33 1.0
7 HaibuAI 254.50 0.0 35.42 1.0
8 DiceAI 310.44 0.0 31.65 1.0

- - MctsAi 198.89 0.0 32.41 1.0
Average 247.30 7.91 31.12 0.944

holding the position. Contrary to STAND B, the frequency of
CROUCH B rises after 3.0M steps. The agent finally mastered
strategy to reduce match times through DASH. Actions related
to AIR seems to be significantly ineffective because they were
rarely occurred for entire training steps.

Table III reports the detail results of evaluation by the
proposed method. The model overwhelmed the top 3 players of
2017, called GigaThunder, FooAI, and JayBot 2017, however
it had a tough game against 4th rank Mutagen. This is because
the style of Mutagen is similar to our proposed agent. Mutagen
is highly aggressive MCTS-based bot. It is also skillful at
guard actions like STAND GUARD and CROUCH GUARD.
The result from Mutagen means that high-rank bot is not
always strong and its counter-strategy exists. Sample videos
of our agent matching against other bots including Mutagen
are available at https://youtu.be/WFJlTS9Cogc

VI. CONCLUSION

One-on-one fighting game environment FightingICE has
been adopted by many researchers due to its unique charac-
teristics. It is also located at the middle of low complexity
genre like board game and high computation consuming genre
like real-time simulation game. In this paper, we proposed the
method to generate fighting game AI using deep reinforcement
learning with self-play and Monte Carlo Tree Search. Agents
were analyzed in terms of reinforcement learning configuration
and performance against other AIs which had participated
in the past competitions with novel evaluation measurement.
The fully-trained agent understands the mechanism and out-
performs all other bots in the game when using state vector
extracted from delayed frame and simulated frame, rewards
which consist of HP, round and time, and opponent pool of
mixing MCTS and self-play in a 1:3 ratio.

ACKNOWLEDGMENT

This research is supported by Ministry of Culture, Sports
and Tourism (MCST) and Korea Creative Content Agency
(KOCCA) in the Culture Technology (CT) Research & De-
velopment Program 2020.

REFERENCES

[1] M. Campbell, A. J. Hoane Jr, and F. H. Hsu, “Deep blue,” Artificial
intelligence, vol. 134.1–2, pp. 57–83, 2002.

[2] D. Silver, et al., “Mastering the game of Go with deep neural networks
and tree search,” nature, vol. 529.7587, pp. 484, 2016.

[3] F. Lu, et al., “Fighting game artificial intelligence competition platform,”
2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE),
pp. 320–323, October 2013.

[4] “Welcome to fighting game AI competition,” Accessed on: May. 8, 2020.
[Online]. Available: http://www.ice.ci.ritsumei.ac.jp/ ftgaic/index-R.html

[5] V. Mnih, et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518.7540, pp. 529–533, 2015.

[6] D. Silver, et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550.7676, pp. 354–359, 2017.

[7] O. Vinyals, et al., “Grandmaster level in StarCraft II using multi-agent
reinforcement learning,” Nature, vol. 575.7782, pp. 350–354, 2019.

[8] N. D. T. Tri, V. Quang, and K. Ikeda, “Optimized non-visual information
for deep neural network in fighting game,” ICAART (2), pp. 676–680,
February 2017.

[9] D. T. T. Nguyen, “Supervised and reinforcement learning for fighting
game AIs using deep convolutional neural network,” 2017.

[10] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.
[11] G. A. Rummery and M. Niranjan, “On-line Q-learning using connec-

tionist systems,” vol. 37, Cambridge, UK: University of Cambridge,
Department of Engineering, 1994.

[12] A. Osés Laza, “Reinforcement learning in videogames,” Bachelor’s
thesis, Universitat Politècnica de Catalunya, 2017.

[13] S. Yoon and K. J. Kim, “Deep Q networks for visual fighting game
AI,” 2017 IEEE Conference on Computational Intelligence and Games
(CIG), pp. 306–308, August 2017.

[14] Y. Takano, W. Ouyang, S. Ito, T. Harada, and R. Thawonmas, “Applying
hybrid reward architecture to a fighting game AI,” 2018 IEEE Confer-
ence on Computational Intelligence and Games (CIG), pp. 1–4, August
2018.

[15] I. P. Pinto and L. R. Coutinho, “Hierarchical reinforcement learning with
monte carlo tree search in computer fighting game,” IEEE Transactions
on Games, vol. 11.3, pp. 290–295, 2018.

[16] I. Oh, et al., “Creating pro-level AI for a real-time fighting game using
deep reinforcement learning,” arXiv preprint arXiv:1904.03821, 2019.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

