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Abstract—How does one build a healthy gaming ecosystem?
Recent evidence clearly demonstrates the existence of problematic
gaming [1]. Predicting problematic gaming is still in its infancy.
Here we focus on excessive gaming and model in-game behaviour
as a means to continuously predict future play time. This can
be used to help players maintain a healthy balance between the
virtual and real worlds. To do this, we convert game log data
into time-series and label such data with criteria of problematic
gaming. Deep learning is then used to solve the resulting multi-
class classification problem.

Index Terms—Modelling in-game behavior, Problematic gam-
ing, Deep Learning, Deep Auto Encoder (DAE), Long short term
memory (LSTM), Game log

I. INTRODUCTION

Video games occupy an increasing proportion of some
players’ time, sometimes to the detriment of their physical and
psychological health. Finding means to recognize abnormal
in-game behavior can help mitigate the harm of problematic
gaming. Current studies of problematic gaming are mostly
conducted using small-scale surveys, which does not scale.
The World Health Organization (WHO) [2] classifies gaming
disorder as an international disease and recommends all that
gamers be aware of their play time. Thus large-scale prediction
and early warning are important.

Using established means of assessing Internet Gaming Dis-
order (the Weekly Gameplay - WG), we create an effective
prediction model, using currently available data. We do this
by analyzing game log data of League of Legends (LOL) ,
which is available publicly. We first describe how problematic
gaming could manifest itself in such log data. Then we use
deep learning algorithms to analyze in-game behaviour. The
dataset, code and configurations for our work can be found
online 1. Finally, we evaluate our model quantitatively against
the established assessment of problematic gaming (the Game
Addiction Scale - GAS) through a player survey.

II. RELATED WORK

A. History of Problematic Gaming

Atari Home Pong and Magnavox Odyssey in the 1970s
heralded the first generation of video games targeted at a wide
audience. As console games became more prevalent in the
1990s, numerous reports of excessive gaming raised awareness
of the hazards of problematic gaming. Gaming addiction then
began to be assessed using pathological gambling criteria
based on the Diagnostic and Statistical Manual of Mental

Criterion Description
Salience Gaming becomes the highest priority
Tolerance Play time starts to increase gradually
Mood Mod-
ification

Emotion changes, such as releasing anger or stress,
when gaming

Withdrawal Unpleasant emotion associated to reducing play
time

Relapse Strong tendency to return to excessive play after
abstinence

Conflict Arising interpersonal conflicts owing to gaming
Problems Mental, physical, or behavioral problems caused

by excessive gaming
TABLE I

BRIEF DESCRIPTIONS OF 7-ITEM GAME ADDICTION SCALE [3]

Disorders (DSM-III or DSM-IV), from the American Psychi-
atric Association (APA) [4]. In early 2000, the rise of online
and mobile games led to an explosion in cases of gaming
disorder; a 2009 investigation showed that at least 3 million
teenagers were highly dependent on video games [5]. In 2013,
game addiction was added to DSM-V as a separate category
of mental disorders [6]. By 2018 showed that there were
2.3 billion mobile gamers worldwide [7], and rising. Also in
2018, the WHO added “gaming disorder” into its International
Classification of Diseases [2].

B. Techniques for Recognizing Problematic Gaming

Identifying problematic gaming is currently done by con-
ducting a survey such as GAS [3] for distinguishing Internet
gaming disorder (IGD) [8]. The reliability of these methods
has been verified [9], [10]. Gaming disorder has also been
subject to less subjective means, such as a classification model
based on electroencephalographs (EEG) [11]. A wearable
mobile EEG device logs the frequency attributes of the play-
ers’ brain waves. After the experimenters labelled abnormal
gaming behavior, a logistic regression is used to solve the
resulting binary classification problem. Genetic testing was
also used to try to estimate the probability of developing
gaming addiction [12].

C. Techniques Chosen

We use the principle of Weekly Gameplay (WG) [13], as
developed by the APA in determining IGD. It defines six
levels, defined by time bounds, of 7, 14, 20, 30 and 40 hours

1. https://github.com/LelouchWu/Qirui
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of play per week (seven consecutive days). If the total play
time is less than 7 hours over seven days, this is judged as
level 0; 8-14 is level 1, and so on to level 5 for more than
40 hours of play per week. To further validate our model,
we conducted a quantitative analysis among college students
(gamers). The assessment result of GAS is applied to compare
with our predictions. All criteria of GAS, described in Table
1, were assessed on a 5-point scale from 1 (“never”) to 5
(“very often”). If 4 criteria are validated (≥3 (“sometimes”)),
problematic gaming can be identified [3].

III. MODELLING

A. Dataset

We use data from the popular game LOL released by
Riot Games in October 2009 for both macOS and Windows.
It is a multiplayer online battle arena (MOBA) and free-
to-play (FTP) game. We used a public API to access the
database of log data available at www.op.gg . To obtain our
data set of players ranked according to the nine levels of
the LOL ranking system, from “Iron” to “Challenger”, we
used stratified random sampling to randomly extract 1,614
players in each rank. Based on this user list, we collected
corresponding log data of each player (14,526 of them) with
timestamps from Apr 1, 2019 to Aug 19, 2019.

B. Data Pre-processing and Labelling

Since gamers’ behavioral patterns are directly reflected in
their daily routine and habits, we need time-series data. As
we wish to use a recurrent neural network (RNN) as our
prediction model, we need to have adequate data. Although
we could have used a regression model, we prefer to learn a
prediction model that establishes a connection between game
log data and the psychological model. The advantage of this
is that the relationships between classes could be analyzed
by the confusion matrix method. Such analysis is particularly
important for models that use DAE. Thus we need to pre-
process and label the log data.

Most games log player’s in-game behavior in similar ways.
A User ID and timestamp, followed by “lines” that describes
information about that player at that particular moment. WG
only uses play time to evaluate and predict excessive gaming.
We pre-process the data as follows: make the User ID as index,
and separate time into discrete periods, that then become
“columns”. Ultimately, we want a time chain (TMC) labelled
by hours that covers all players’ in-game behaviour. Thus
we aggregate the data, as it is represented too finely in the
logs. For each cell of the resulting TMC, the portion of time
that exceeds 24 hours will be passed to the subsequent cells
in chronological order. We want to continually predict every
seven-day play time (SDPT) to push notifications everyday for
warning players of potential problems. Thus we use a rolling
time window with size = 7 days and step = 1 day in each
player’s TMC to sum every SDPT. The tags from 0 to 5 are
applied to label the corresponding SDPT based on WG.

Algorithm 1: Computing Observation Period (OP)
Input:
1.Set Seven-day Play Time(SDPT) = [T1, T2, . . . , Tn]
2.∀Ti ∈ SDPT, Ti = [t1, t2, . . . , tm]
3.Set the range of OP = [LB,UB]
4.i ∈ [1, n] , j ∈ [1,m]
Output: List of OP (OPs)

1 Set SDPT′,OPs to empty list
2 for each Ti in the set of SDPT do
3 Set T ′

i to empty list
4 for each tj in the set of Ti do
5 if tj > 7 hours (based on the first level of WG)

then
6 T ′

i .Append(Abnormal Play)

7 else if tj > 0 then
8 T ′

i .Append(Normal Play)

9 else
10 T ′

i .Append(Null)

11 SDPT′.Append(T ′
i )

12 for each T ′
i in the set of SDPT′ do

13 for each tj in the set of T ′
i do

14 while tj 6=Null do
15 Starting = j

16 Break
17 for each tj in the set of T ′

i do
18 while tj = Abnormal Play do
19 if j − Starting > UB then
20 OPs.Append(UB)
21 Break
22 else if j − Starting > UL then
23 OPs.Append(j − Starting)
24 Break
25 else
26 j = j + 1

27 return OPs

C. Observation Period
The observation period (OP) is important for prediction: If it

is too brief, neural networks will lose accuracy on the testing
set; if too long, we may miss the best opportunity to warn
gamers. Thus we calculate a duration based on characteristics
of the training set, see Algorithm 1. T represents the SDPT
of each player, t is weekly play time in every SDPT, n is the
player number, and m is the week number in the TMC. We
first set a reasonable value range for the observation period:
lower bound of 7 days, upper bound of 28 days. This range is
then used to extract a duration required for the development
of the first excessive gaming behavior within each player’s
SDPT time distribution (if it exists). A frequency histogram



over OP is used to establish that the average duration is
approximately 14 days, giving us the size of our rolling
window. We convert every player’s TMC into time-series data,
using 14-day windows of 1-day intervals. The output will be
a prediction of their future weekly play time labelled by WG.

D. Constructing Deep Neural Networks

Four deep neural networks, RNN (baseline), LSTM, Bidi-
rectional LSTM (Bi-LSTM), and DAE-Bi-LSTM, were tested.

LSTM and Bi-LSTM were used to guard against the po-
tential problem of vanishing gradient and exploding gradient
of RNN, as they perform better for long sequences. LSTM
needs to be provided with high correlation features and a
sufficiently large sample. For each player, LSTM keeps only
a window of log data. With the passage of time, the past
data will be overwritten, whether or not there is in-game
activity. Thus we had to compensate for the lack of sample
capacity by crawling data from large numbers of players.
To avoid the possibility of data irrelevance within the same
batch, we put each player’s data in a specific mini-batch. To
find the best network architecture, we tested the models by
adding additional layers and batch normalization. Dropout was
applied to avoid overfitting. Finally, SoftMax was selected as
the activation function to calculate the predictive probability
of classes.

DAE was introduced to mitigate the impact of uncertainties
on log data, such as server maintenance. DAE works before Bi-
LSTM to reconstruct the input through encoder and decoder.
The encoder takes the original input and compresses it into a
feature vector which is then reconstructed by the decoder to
full dimensionality. As for the selection of activation function,
we decided to use the standard Sigmoid function both on input
layers and hidden layers by comparing the optimization effect
of the average loss.

IV. EXPERIMENTAL RESULT

A. Modelling Experiment

The models were trained on over 1.7 million log entries
from 12,526 players and tested on log entries from another
2000 players. From class 0 to class 5, the distribution of
labels of the training set is 10%, 30%, 22%, 18%, 15%, and
5%. Labels in the testing set distribute as 11%, 33%, 20%,
15%, 14%, and 7%. Average cross-entropy (ACE) was used as
the optimization parameter. ACE is a loss function commonly
used in multi-class classification to assess optimization, which
describes the distance between the output vector and the
ideal vector. To represent the forecasting performance visually,
overall accuracy (ACC) of six classes was applied. They can
be calculated as

ACC =
1

N

6∑
i=1

∑
Y (x)=i

Equal(Y (x), Ŷ (x)) (1)

ACE =− 1

N

N∑
n=1

6∑
i=1

yi log ŷi (2)

Days RNN(Baseline) LSTM Bi-LSTM DAE-Bi-LSTM
Ahead ACC ACE ACC ACE ACC ACE ACC ACE

1 0.802 0.307 0.861 0.202 0.880 0.112 0.684 0.696

2 0.783 0.588 0.811 0.418 0.821 0.205 0.675 0.716

3 0.714 0.763 0.760 0.515 0.771 0.349 0.669 0.729

4 0.663 0.865 0.726 0.570 0.723 0.537 0.661 0.741

5 0.629 0.905 0.692 0.698 0.683 0.662 0.652 0.745

6 0.616 0.987 0.658 0.797 0.656 0.705 0.640 0.752

7 0.590 1.169 0.625 0.823 0.631 0.784 0.635 0.763

TABLE II
AVERAGE CROSS-ENTROPY (ACE) AND OVERALL ACCURACY (ACC) OF

TESTING SET OF FOUR NETWORKS WITH THE CHANGE OF DAYS AHEAD

where Equal returns 1 if the classes match and 0 otherwise,
and ŷi represents the prediction probability for each class.

To verify the feasibility of predictions, we conducted seven
experiments, as shown in Table II, fixing the number of days
in advance as the independent variable, from 1 to 7, to seek
which network has optimal performance for each test. RNN
is considered as the baseline. Maximum ACC and minimum
ACE on the testing set are the primary evaluation criteria
and also the dependent variables. In theory, the correlation
of data decreases with the increase of days in advance. More
narrowly, when predictions are made one day ahead, networks
only need to predict play time on the 7th day, as there is
a six-day overlap between the target week and observation
period. However, such overlap does not exist when predictions
are made seven days or more ahead, and there is thus no
partial correlation among features and labels. In the first three
experiments, Bi-LSTM got the best optimization and accuracy,
since it can more accurately find patterns in strongly correlated
data. In experiment 4, 5, and 6, as correlation decreased, the
advantages of Bi-LSTM gradually decreased and almost were
overshadowed by LSTM. For DAE+Bi-LSTM, the ACC failed
to get more than 0.69 in all tests, because DAE broke the
correlation when rebuilt data. However, in the last experi-
ment, the negative effect of DAE was non-existent, and the
reconstructed data also obtained new patterns from compressed
feature vectors, which further improved the ACC of Bi-LSTM.
More details and hyperparameters for all models can be found
at https://github.com/LelouchWu/Qirui.

The Confusion Matrix was used to analyze the accuracy on
every class as shown in Figure 1. Due to space constraints, we
only give the two most extreme experiments, 1 day and 7 days.
From Figure 1(a), we can see that Bi-LSTM is struggling to
discriminate between class 4 and 5. We believe this is caused
by either very similar behavior patterns or the limited number
of samples with weekly play time over 40 hours. In Figure
1(b), the same problem also arose for the DAE-Bi-LSTM.
Worse, because the proportion of class 1 was 0.302, after the
processing of DAE, all inputs obtained some characteristics
from class 1, driving to a decrease of predicted accuracy in
other classes, especially for class 0 whose sample may contain
a large number of zero data points. However, it is worthy to
sacrifice the characteristics of minority classes, since DAE-Bi-
LSTM did improve the overall accuracy in the 7th test.



Fig. 1. Confusion Matrix of using Bi-LSTM in experiment 1(a) and DAE-
Bi-LSTM in experiment 7(b).

B. Quantitative Research

On May 12, 2020, we conducted an experiment with
115 college students (%56 male), age between 17 and 22
(Mean=19.1, SD=1.69), and filtered out those who did not
play LOL from Apr 28 to May 4. We obtained 26 LOL
players (%62 male) with age between 18 and 21 (Mean=19.6,
SD=1,15). All subjects indicated willingness to participate
in the survey and read the related content before taking the
survey.

First, we asked each participant to fill the 7-item GAS
survey. Second, we used WG to label each player’s actual
weekly gameplay (AWG) from May 5 to May 11. Third, DAE-
Bi-LSTM and players’ log data, from Apr 28 to May 4, were
then used to predict weekly gameplay (PWG) from May 5 to
May 11. Based on [13], problematic gaming of WG can be
distinguished by whether the weekly gameplay is greater than
30 hours (class 4 and 5 in our model). While play time is not
the only factor that defines problematic gaming, it is a strong
correlate and most easily observable.

Fisher’s exact test (FET) was applied to analyze the con-
tingency tables shown in Figure 2. Results showed positive
problematic gaming in 35% of players from GAS, 27% from
AWG, and 27% from PWG, differences that were both statis-
tically significant (PA = 0.002, PB = 0.028, α = 0.05,
FET). Therefore, Study A showed that WG could be used to
assess problematic gaming of college students, and Study B
proved that our model could also be applied to make a seven-
day ahead prediction in student-player community.

V. CONCLUSION AND FUTURE WORK

We built a deep learning model to predict excessive gaming.
Log data from LOL gamers was pre-processed and labelled
using the WG criteria to model future play time. A quantitative
analysis was conducted among student gamers to assess the
positive correlation between the validated GAS and predicted
results of DAE-Bi-LSTM, which were verified by FET.

Fig. 2. Contingency tables of assessing problematic gaming among 26 student
gamers. Study A: Game addiction scale (GAS) and Actual Weekly Gameplay
(AWG). Study B: GAS and Predicted Weekly Gameplay (PWG).

Since the student-player community’s behavior patterns are
less complicated, the generality of this approach still needs
to be investigated by large-scale quantitative experiments. Pri-
vacy policies make some valuable features inaccessible to us
(from the public log data), such as age, gender, and occupation.
With such features, conducting a clustering before prediction
will make the results more generalizable and hopefully more
precise. In the future, we would also like to work on pay-
to-play games, where features such as the history of in-game
payment may further improve accuracy.
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