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Abstract—Game Artificial Intelligence Engines of commercial
games run on CPUs and not on GPUs. With more and more
powerful GPUs and Cloud gaming, our vision is that GPUs
will become the dedicated Game AI hardware, just as it now
provides computing power for Game Physics (e.g. nVidia PhysX).
In particular, we believe GPUs can run Game AI Planning,
which computes plans in order to control the behaviors of Non-
Player Characters (NPCs) in video-games. Our objective is an
efficient online GPU-based Game AI Planning component with
Cloud gaming as a target. We here report on our most recent
implementation which can control thousands of NPCs each frame
with only one GTX 1080 on the AI server, pushing thousands of
plans to the client (PC or console).

Index Terms—Cloud gaming, artificial intelligence, goal-
oriented action planning (GOAP), graphics processing unit
(GPU), real-time.

I. INTRODUCTION

Modern video games immerse players in ever larger worlds
in which non-player characters (NPCs), controlled by Game
Artificial Intelligence (Game Al), are increasingly numerous
and need to be more realistic, more “human”. How can we
offer players larger cities, teeming with NPCs living their
“own” life, while CPU computing power is stabilizing? We
believe that in the near future, Game Al will be boosted by
Graphics Processing Units (GPUs) [2], [6], [16] and, on a
larger scale, will be deported to GPU-accelerated clouds.

Our work focuses Game Al action planning which was first
introduced in the game F.E.A.R. [13] as Goal-Oriented Action
Planning (GOAP) [15]. In its first version, it made it possible
to control teams of about ten NPCs and the average plan length
was one or two actions (the numerical value calculated from
our in-game data is 1.48 [11]). We observe that the average
plan length has little or not increased since 2005 while the
number of NPCs has increased from 10 to 50, as is the case
in the game Shadow of Mordor, for instance [10]. 15 years
later, the problem is the scaling up of GOAP to manage several
hundred, even several thousand, NPCs online, with, if possible,
longer plans; in this paper we here report our first results on
a benchmark using a GPU to speed-up GOAP to the desired
performance.

We first developed a GPU-based planner [4], [5] which
proved to be about 100 times faster than its CPU version on
the well-known example of the blocksworld [7]; for this new
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work, we started from the premise that a predicate (e.g. is the
top of a block clear? is block-a above block-b? etc) merely
returns a binary value, to encode a blocksworld state over
the 32 bits of an integer. We here reuse this binary encoding
for (game) predicates: is the position of the point of interest
reached? Is the NPC facing the point of interest? Is it possible
to move forward to reach the point of interest? As a result, the
state of an NPC is a conjunction of boolean value, that is, an
integer. An action transforms a state into another, and thus can
be encoded as a pair of states; we decided otherwise, however.
Indeed, actions have specific preconditions and effects and
using a whole state would be a waste of memory space. We
thus encode actions as functions checking specific bits of an
integer, i.e. its preconditions, and modifying only some bits
of an integer, its effects: when the preconditions are met,
the new state is computed from the logical effects of the
action encoded into the function. Algorithm 1 illustrates the
function for action facing the point of interest: if a noise has
been spotted and the NPC is not yet facing the noise then he
turns to the noise direction. Note that actions as C++ classes
were introduced in FEE.A.R. [14] and actions in Dana Nau’s
PyHop [8] uses Python functions to implement methods and
operators, for example. Consequently, we encode the situation
of each NPC with an integer and then send the vector of these
integers to the planner which computes, on the GPU, the plans
according to the goal of each NPC. These plans are then sent
to the game engine for the execution of the NPC behaviors.
We will describe our GPU-Planning in the next section. The
experiments we carried out have allowed to control more than
a thousand NPCs in 1.6 milli-second (10% of a frame when
the frame rate is 60 frames per second); average plan length
was above 2 actions.

The rest of this paper is organized as follows. In the next
section, we detail how we encode a planning problem so as
to solve it with a GPU using breadth-first search. We then
present our results on a first benchmark. We conclude with a
brief discussion and highlight perspectives of our work.

II. GAME Al BINARY GPU-PLANNING
The main features of GOAP are [14]: states as array
of values!, actions as C++ classes, action costs, procedural

IThis feature alone makes GOAP much closer to the Sequential Action
Structure (SAS Planning) [1] than to STRIPS [9] as reported in [14].



action pre pos

MoveTolnterest [ET,E2.E?2,?] [EEE?,T,2,2,7]
Facelnterest [T,E?2,2,2,2,2,7] [ET,2,2,2,2,2,7]
BypassRight [ET,T,E?2,2,2,71 | [ET,EEE?,2,?]
BypassLeft [ET,T,T,2,2,2,7] [ET,EEE?2,2,7]
Attack 2,222, T,TEF] | [2,2,2,2,EETF]
Eat [2,2,2,2,2,ETF] | [2,2,2,2,EEET]
Wander [2,2,2,2,T,EEF] | [2,2,2,2,EEET]

TABLE I: Actions for the Zombies benchmark; T stands for
true, F for false and ? for unknown or useless; bits
[b1, ba, bs, by, bs, bg, b7, bs] in a state correspond to the follow-
ing predicates: [InterestSpotted, InterestFaced, Blocked-
Forward, BlockedRight, InterestReached, MealsPresent,
MealsReady, Giut].

preconditions and the use of A* to build plans from the goal
state to the initial state. To begin with, we consider states as
32-bit integers, actions as functions over these 32 bits, and
leave out both costs and context preconditions. Search thus
becomes breadth-first: completeness (i.e if a solution exists
then it shall be build) is at the cost of O(b%) where b is the
branching factor (the number of actions applied to a state) and
d is the depth (the solution length) of the search from the initial
search node. We eventually decided to search from the initial
state to the final state to ease debugging. In this section, we
detail how we reduced space complexity so that our planning
algorithm can run on a GPU; throughout this section, we use
a set of zombies looking for food to illustrate our purpose.

A. Networks of action segments

We begin with an informal presentation. A planning prob-
lem is made of an initial state, a final state and a set of actions.
As we represent predicates as bits and states as integers, we
encode each action a as a function a : N — N. Algorithm 1
details the function which encodes the action allowing an
NPC to face a point of interest (&, |, and ~ respectively
correspond to the bitwise operators and, or and neg): both
the preconditions and the postconditions of this action concern
only a subset of the bits of a state. Table I gives the bit
values which need to be checked as preconditions and the
bit values after the execution of each action; ’?’ marks bits
that are irrelevant for each action.

We furthermore gather actions into disjointed sets so that
all the actions in a set concern only certain relevant states; we
call these sets action segments. Our objective is to reduce the
branching factor: in a given state, we only consider the actions
of the action segments relevant for that state. Then, we order
action segments in a directed acyclic graph [3] (see figure 1
for an illustration) which we call a network of action segments
(NAS); the longest path of an NAS gives us an estimate of the
depth of our planning search space and we can then allocate
memory on the GPU.

We now turn to formal definitions. Let P be a set of
predicates encoded over | B| bits of an integer and let S be the
set of states with |S| = 2!5l. Let pre(a) be the preconditions
of action q; it is a set of predicates to be checked so that a
can be executed. Let pos(a) be the postconditions of action

a; it is a set of predicates which shall be modified by the
execution of action a. Formally, we can think of an action «a
as a function taking two sets of integers C [—|B|..| B|], say pre
and pos, and one state, say s, as parameters. The semantics
of executing a are the following: a returns a state, says r,
such that r = a(pre, pos, s). If there exists ¢ € pre such that
s[b;] =1 when ¢ < 0 or else s[b;] = 0 when ¢ > 0 then q fails
and returns » = s; otherwise a succeeds and returns r such
that: let » = s and for all ¢ € pos, let 7[b;] = 0 when i < 0
and r[b;] =1 when i > 0.

Algorithm 1 Fuacelnterest(e)

Require: e a state
Ensure: state built from e where interest point is faced, if possible
if (e A InterestSpotted) A —(e A InterestFaced) then
return (e | InterestFaced) & (~InterestSpotted)
end if
return e

To make sure that search shall not exceed the available
memory on the GPU, our central idea is to pre-compute
a directed acyclic graph which we call Network of Action
Segments (NAS):

Definition 1: Let A be a set of actions; a network of action
segments is a directed acyclic graph NAS = (V, E) such that:

1) V C P(A) is the set of vertices of NAS where each
vertex v is a set of actions called an action segment
such that:

a) Ya € v,3a’ € v,a # a st pos(a) N pre(a’) #
) v pre(a) Npos(a’) # 0,
b) Ja € v st Va' €v,a # d,pre(a) Npos(a’) =0,
¢) Ja €v st Va' €wv,a#a,pos(a) Npre(a’) =0,
d) Vn > 2,Y(a1,az2,....,an) € {v"|Vl < n,pos(a;) N
pre(ait1) # 0}, pos(an) N pre(ar) = 0,
e) pre(v) ={p € B|Va € v,p ¢ pos(a)},
f) pos(v) = {p € B|Va € v,p ¢ pre(a)}.
2) E is the set of directed edges of NAS such that £ =
{(i,j) € V. x Vpre(j) N pos(i) # 0}.
3) Vn > 2,Y((i1,51), (i2, j2), s (in, Jn)) € {E"|VI <
n, ji = i1}, 91 F Jn-

la) to 1d) define a lattice structure over the actions of an
action segment, while 2) asserts that a NAS is a directed graph
and 3) that it is acyclic. Starting from the complete graph of
actions, it is possible to build the corresponding NAS in O(a?)
time, checking the above definition against each edge of the
graph.

Figure 2 illustrates a NAS for our Zombies. Let’s assume
the goal of a Zombie is to eat. To achieve his goal, his
behaviour can be segmented into three parts: moving, pos-
sibly obtaining food with his consumption, and wandering.
More precisely, to define a point of interest as the place
that may contain food. Obviously, if the point of inter-
est does not contain food, the Zombie’s behavior at that
point will be limited to randomly generating another point
of interest, in which there may be food. We thus define
three joining predicates InterestSpotted, InterestReached,
and MealsPresent which respectively correspond to the three
action segments MoveTolnterest, HaveMeals and Wander.
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Fig. 1: NAS,: an abstract NAS; red edges mark the longest
path of 4 action segments starting from action segment ASj.
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Fig. 2: NAS,: our Zombies benchmark NAS.
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For the MoveTolnterest action segment, we have the predi-
cates Facelnterest, BlockedForward, and BlockedRight. For
the HaveMeals action segment, we have MealsReady indicat-
ing whether there is a dead body or a living entity.

In order to find an upper-bound of the size of our binary
GPU-Planning search, we need to define a predicate segment
in a NAS:

Definition 2: Let (V,E) be a NAS and as a vertex; a
predicate segment of as is the set of predicates involved in
any action of as: PS;s = {p € B|Ja € as,p € pre(a) Vp €
pos(a)}.

As a corollary to this definition, we have the following
properties:

V(i,5) € E,PS; NPS; = pos(i) N pre(j)
V(i,7) €V XV sit. (Z,]) ¢ E PS; N PS] =0

(D
2)

Property (2) says that two disjoint action segments compute
disjoint predicate segments. Predicates satisfying property (1)
are sufficient to build the plan when considering the actions
of a given action segment; we call them joining predicates.

Let A(NAS) be the maximal degree of a NAS (for instance,
A(NAS,) = 3 and A(NAS,) = 2). The number of reachable
states from the predicate segment PS of any action segment
as of NAS is at most 2/PS=l+ANAS) Thys, an upper bound
for the size of our binary GPU-Planning search space along a
path of NAS is Y, o ., 21751 TA(NAS) Therefore, an upper-
bound for the size of our binary GPU-Planning search is
IMAXvpathcpathsyas ZasEpath 9IPSas|+A(NAS)2

We use 5 bits to encode an action, thus allowing at most
32 actions. We would need 5 x 32 = 160 bits to encode a 32-

2This maximum amounts to the computation of the longest path in terms
of predicate segments. The longest path in a directed acyclic graph (V, E)
can be found in O(|V|+|E]|) [12]; it thus is possible to compute the longest
path in terms of predicate segments in linear time as well, and therefore to
compute this maximum in linear time. The description of such an algorithm
is outside the scope of this paper.

action plan but we decided to limit ourselves to 64-bit integers,
which allows plans of up to 12 actions; we use the last 4 bits
to encode the plan length.

B. Solving the Binary GPU-Planning Problem

Solving a planning problem means finding a totally ordered
set of actions which, once applied in order from the initial
state, will reach the goal state. In the case of NASs on a CUDA
architecture, this solving is equivalent to a breadth-first search
over a set of tuples (NPC number, NPC state, associated action
plan to reach this state) as described in figure 3.

Compute new set using res list
such as each 3-tuple is unique
and not already marked

Goal reached for
each NPC?

Mark all 3-tuples

Create the set of 3-
tuples (NPC, initial
state, empty plan)

Copy the set on
GPU’s memory

les for a 3-tuple in the set and
putitinareslist

Fig. 3: GPU-Planning activity diagram.

The initial set of tuples is made of the (NPC number,
current status of the NPC, empty plan) tuples for all NPCs.
Then, as long as the goal of each NPC is not reached, two
parallel computations will run: (1) on the CPU, we make an
asynchronous copy of the current set of tuples to the GPU
memory and then mark these tuples as already visited; (2) on
the GPU, we execute a 256 threads block grid (i.e. |T| = 256
in Algorithm 2) computing the next tuple by applying the
available actions, for each (a NPC, state, plan leading to this
state) tuple (cf. Algorithm 2). We eventually copy the list of
tuples to the CPU which takes care of updating the new set
so that the tuples are unique and are not already marked.

Algorithm 2 ThreadComputeN ext(actions, current)

Require: actions the set of possible actions
Require: current the current set of 3-tuples (NPC, state, plan)
Ensure: nezt contains the result set of 3-tuples
i < threadldz.x + blockldz.x x |T|
if (i >= |current|) then
This thread do nothing
else
(npc, e, plan) <+ current|i]
for all a € actions do
next[i X |actions| + a] < (npc, actions[a](e), plan U a)
end for
end if

III. BENCHMARKING

We implemented a demonstrator involving thousands of
Zombies in search of food. This benchmark follows a client-
server architecture, described in figure 4, and uses the Unreal
4 game engine. It is split into several parts. The game,
implementing Zombie actions, delegates the Al to a dedicated
controller. The latter queries the game engine to obtain the
state of each Zombie and then sends to the plugin a vector



of initial states. Then, it sends a scheduling request. Finally,
at each frame, it queries the plugin to obtain the plans and in
particular the action to execute. During this time, the controller
stays on the previously obtained plans and does not send other
requests. When the plugin receives the request, it sends a
schedule request, with the initial states of the NPCs still alive,
to the server via the network. Then it waits for the response.
As it is a DLL-based plugin, it does not block the execution of
the engine. The server application then receives a scheduling
request and calculates the result as described in II-B. When
the plans are computed, they are returned to the client through
the network which makes them available to the AI controller.

Client

UE4 [ Plugin

I
| P
Game Engine 1 CUDA GPU Planner
I
Y |
1
]

DLL G+
Als Controll _———
> SONETONEE Winsocks2 Network

Server

Server
Winsocks2

Fig. 4: Architecture of the Zombies benchmark.

This benchmark was implemented on a client and a server
which are roughly equivalent in their configuration: Intel Core
i7 + GetForce GTX 1080. We ran our benchmark in a local net-
work over 3600 frames and measured: (a) the total time taken
by the AI controller from sending the request to receiving the
plans; (b) the time taken by the server (CPU+GPU) to compute
the plans when receiving a request and (c) the time taken by
the GPU to compute all the plans only. Figure 5 shows the
average of the 3 measured runtimes, in milli-seconds : (a) red,
(b) blue, and (c) green.
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=w=GPU Only
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Fig. 5: Average runtimes for the Zombies benchmark.

IV. CONCLUSION

As far as we are aware, the benchmark presented in this
paper is the first proof of concept for binary GPU-Planning.
It shows that it is possible to control more than one thousand
of NPCs in a frame, thanks to GPU computations driven by
one CPU thread which we use to mark the new states of our
binary planning problem.

If we can dream of multiple GPUs, then our numbers show
that 8 GPUs coupled to 2 CPUs with 64Mb of RAM would
allow to control more than 30.000 NPCs in one frame. Each

GPU could focus on one or more types of NPCs and thus
allow an enrichment of the diversity of NPCs. Moreover, the
computing time on CPU+GPU being 10 times less important
than the latency time of the network (a good ping to play is
around 50 ms), the latter will prevail. The online control of
tens of thousands of NPCs is therefore possible on a dedicated
data server within a few frames between the planning request
and its response.

With regard to our future work, we would like to list two
of the possibilities open to us: (1) benchmarking with several
GPUs, and (2) enrich our state representation from boolean
values to integer values. For this second option, SAS planning
can certainly be a source of inspiration.
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