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Abstract—Multi-Modal Data (MMD) can help educational
games researchers understand the synergistic relationship be-
tween player’s movement and their learning experiences, and
consequently uncover insights that may lead to improved design
of movement-based game technologies for learning. Predicting
player performance fosters opportunities to cultivate height-
ened educational experiences and outcomes. However, predict-
ing player’s performance utilising player-generated MMD dur-
ing their interactions with educational Motion-Based Touchless
Games (MBTG) is challenging. To bridge this gap, we imple-
mented an in-situ study where 26 users, age 11, played 2 maths
MBTGs in a single 20-30 minute session. We collected player’s
MMD (i.e., gaze data from eye-tracking glasses, physiological
data from wristbands, and skeleton data from Kinect) produced
during game-play. To investigate the potential of MMD for
predicting player’s academic performance, we used machine
learning techniques and MMD derived from player’s game-play.
This allowed us to identify the MMD features that drive rapid
highly accurate predictions of players’ academic performance
in educational MBTGs. This might allow us to provide real-
time proactive feedback to the player to support them through
their educational gaming experience. Our analysis compared
two data lengths corresponding to half and full duration of the
player’s question solving time. We showed that all combinations
of extracted features associated with gaze, physiological, and
skeleton data, predicted student performance more accurately
than the majority baseline. Additionally, the most accurate
prediction of player’s performance derived from the combination
of gaze and physiological data for both full and half data lengths.
Our findings emphasise the significance of using MMD for real-
time performance prediction in educational MBTG and offer
implications for practice.

Index Terms—motion-based games, educational games, multi-
modal data, education, prediction, machine learning

I. INTRODUCTION AND MOTIVATION

Motion-Based Touchless Games (MBTG) utilise sensing
technologies to capture, map and interpret, player’s body
movements [5] as game input. In the context of education,
MBTGs have recently emerged as a promising interactive
didactic approach in pursuit of sharpening children’s cognitive
abilities [48]. Notable studies report that MBTGs are an inter-
esting, effective and engaging way to support children during
learning [20]. Educational MBTG play engages the physical
body in a multi-modal learning experience [25], making these
games attractive candidates for the application of Multi-Modal
Data (MMD) collection; with potential consequences for the
analytics and design aspects of games. Exploration into this

space might enrich researchers insights of how body move-
ment may infer player’s understanding of the learning content.

Parallel to this, predicting a player’s learning performance
offers researchers and teachers opportunities to provide su-
perlative pedagogical experiences due to the advantageous
ability to deliver fine-grained, temporal and personalised
learner feedback. Example include identifying when learners
require additional assistance [17], [19] (i.e., real-time helpful
hints and constructive evaluation) and altering the method of
instruction to better accommodate the learner’s progress [9].
These didactic strategies support the cultivation of effective,
efficient learning trajectories by minimising unproductive prac-
tice and illustrate the importance of identifying adequate ways
to effectively predict the learner’s performance.

Predicting learning performance early on in an activity
offers several benefits for the design and support of the
learning experience [3], [17]. For example, Giannakos et al.
[17] demonstrated the feasibility of using an Empatica E4
wristband data to infer early predictions of student’s learning
experiences during university class sessions. Andrade et al.
[3] explored the potential of using MMD captured through
hand gestures for personalisation and prediction. Collectively,
the aforementioned works foretell potential benefits derived
from obtaining a deep understanding of how the synergis-
tic relationship between movement and learning experiences
might drive performance prediction. However, limited research
has attempted to interlace these ideas by investigating the
feasibility of predicting learning performance using MMD
collected during user’s interactions with MBTG.

This study aims to address shortcomings in the literature
by using MMD and machine learning to identify important
MMD features that drive rapid, highly accurate predictions
of players’ academic performance in MBTGs. Specifically,
our research question asks: How accurately can we predict
player’s learning performance (through the correctness of
answers) using educational MBTGs and MMD, and is early
prediction feasible?

To explore these issues, we conducted an empirical study
with 26 children playing two MBTGs for mathematics (i.e.,
arithmetic and geometry). We collected MMD from three
devices; gaze data from eye-tracking glasses, physiological
data from Empatica E4 wristband, and skeleton data from
Microsoft Kinect. Next, we generated a data sets for each
combination of the data streams originating from the three
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different features. That is, (1) gaze, (2) physiological, (3)
skeleton, (4) gaze and physiological, (5) gaze and skeleton, (6)
physiological and skeleton, and lastly (7) gaze, physiological
and skeleton. Finally, we applied machine learning to each
data-set twice; as defined by full and half duration of students’
answer time. In particular, we make the following contribution:

• We present insights from an in-situ study that collected
MMD during player’s physical engagement with two
different educational MBTGs.

• We show that MMD collection facilitates early prediction
of children’s performance playing educational MBTGs.

• We discuss how our findings can be used to inform
pedagogical research and practice.

II. RELATED WORK

A. Educational Motion-Based Touch-less Games
Though evolution of motion sensing technologies has only

recently enabled the development of MBTGs, the literature
illustrates that researchers consider movement as a powerful
pedagogical tool in children’s education [21]. In these games,
the child enters into a virtual world in which they use their
body to interact naturally with educational material purposed
to playfully develop their cognitive skills [48]. Numerous
educational MBTG have been proposed and implemented,
spanning a multitude of domains, such as maths [23], [28],
[41], science [27], [44], language development [20], [48],
vegetation succession [1] and special educational needs [5],
[6], [8]. Encouraging results suggest that the positive impact
of MBTGs on learning is multifaceted; with studies indi-
cating strengthened self-confidence while learning [15], [26],
increased engagement [20], and more fluid problem solving
ability [14]. Additionally, the use of MBTGs in learning has
also been shown to foster creativity and facilitate collaboration
strategies through playful learning experiences [48].

Moreover, research in MBTGs has seen much traction in the
context of mathematics, with research permeating numerous
branches such as arithmetic [43], algebra [23], calculus [34],
and geometry [41]. Notable studies suggest that MBTGs
might have a positive impact on player’s maths learning
experience; particularly concerning reduced anxiety [22], en-
hanced problem understanding [4], [41], and increased aca-
demic performance [26], [39], [44]. Moreover, computational
thinking skilled may be amplified via introducing students to
programming languages that exploit MBT technologies, such
as Scratch for Kinect (i.e., Kinect2Scratch) [2], [12].

Collectively, these contributions demonstrate that educa-
tional researchers and teachers are beginning to consider
MBTG as a viable solution by which to augment the current
instructional approach [21], particularly concerning maths.
Despite the indicated advantages of introducing playful move-
ment into educational spaces, little research has been con-
ducted to uncover exactly how MMD generated during user’s
MBTG play might inform research on improving game de-
sign and development (e.g., to utilise early predictions, offer
MMD-based analytics dashboards), as well as learning design
practices (e.g., inform the instructor in real time).

The following section provides an overview of researcher’s
exploration of MMD to direct performance prediction in
educational settings. As well, we touch on its application to
movement based learning technologies (i.e., games).

B. Multi-Modal Data-Based Predictions in Education

MMD has been used to predict performance and engage-
ment in educational contexts in previous research [3], [18],
[42]. These contexts vary from games [18], [25], to assess-
ment systems [40], to adaptive systems [32], to collaborative
systems [24]. However, one common factor in these studies is
the use of multiple data streams (e.g., gaze, facial expressions,
Electroencephalography (EEG), heart rate, log data) to predict
and explain learning performance [18], [40], behaviour [3],
[42] or experience [37], [38].

For example, in the terms of learning performance pre-
diction, researchers used EEG and behavioural data (e.g.,
reaction time from click streams, [7]) to predict students’
recall, or gestures, postures, and body movements to predict
students’ performance in repeating, recalling and association
tasks [24]. In a project-based learning case, Spikol et al.
[42] used objects created by the students in their respective
projects, combined with students’ positions, hand gestures,
facial expressions, audio, video and interaction patterns with
the physical computing platform, to predict the quality and
correctness of their solution. Liu et al., ([29] and [30]) used
the log data, audio and video. In all studies, the prediction
of performance achieved was highly accurate. Additionally,
a combination of EEG, gaze data, facial expressions and
physiological data was used to predict performance in an
adaptive test [40] and game-play (i.e., Pacman game) [18] with
a “high” level of accuracy (i.e., error rate was close to 6% in
both the cases).

Moreover, when it comes to predicting learning behaviour or
experiences, several researchers have pointed out the capability
of MMD to be able to predict and explain the learning pro-
cesses or students’ trajectories. In particular, full body motion-
based features/measurements have been found to explain and
predict students’ short-term memory and recall (e.g using
kinematics and skeleton data [24], [25]). Furthermore, hand
movement was used to predict the quality of students’ projects
[42], [46]. Physiological data such as, electrodermal activity
(EDA), Galvanic Skin Conductance (GSC), skin temperature
and accelerometer data, was used to predict students’ engage-
ment [37], [47] and perceived satisfaction with the learning
task [17]. These studies report several results showing that
MMD can be successfully used to used to explain students’
behavioural trajectories while they engage in the learning task.

III. THE MOTION-BASED TOUCHLESS GAMES

This section presents a detailed account of the educational
MBTGs used in this study, Marvy Learns and Sea Formuli.

A. Marvy Learns: A Geometry Sorting Game

Marvy Learns was used to sharpen the player’s geometry
skills by mapping 2D flattened shapes (i.e., shape-nets) to



their 3D representations. In this game, the player helped a
creature, Marvy, organise a collection of shape-net cards, by
moving each card into the box labelled with the corresponding
3D shape names. The player’s body movement was mirrored
by Marvy, so arrangement of shape-net cards occurred as
the player moved their body in physical space, performed a
mid-air hand gesture to select a card, and then bent down
to place the shape-net card in the proper box. For example,
Figure 1b shows 4 shape-nets to be sorted: an unfolded green
triangular prism (upper left), an unfolded pink cube and an
unfolded red cube (lower left and upper right, respectively),
and an unfolded pink tetrahedron. The player must read the
box labels (Triangular Prism, Tetrahedron, and Cube), then
for each shape-net, visualise the objects that results from
folding the shape-net into a 3D shape and move the card to
the box with that name. In this way, players became familiar
with new concepts by associating the displayed items with
the defined words on the boxes. Each game consisted of a
single matching question with 6 cards to be sorted. In addition,
Marvy Learns fosters logical and inductive thinking through
practice of arranging and classifying objects.

B. Sea Formuli: An Arithmetic Operations Game

Sea Formuli focused on developing a player’s algebraic
thinking by practising arithmetic problems involving whole
numbers, decimals and fractions. To solve a problem, a
player needed to calculate the missing number (i.e., operand)
or operator in an equation relating 3 terms. Each question
was represented by baskets sitting on the ocean floor (see
Figure 2a), paired with three potential answers characterised
by swimming jellyfish labelled with an operator or operand.
The player was represented by a photo-realistic avatar that

mimicked the complete range of their movements. To answer
a question, a player selected a jellyfish by performing a mid-air
hand gesture, and then moving their body by bending down
to place the jellyfish into the empty basket to complete the
equation. Figure 2a illustrates the decimal addition question:
4.02+ = 8.12, with potential answers: 4.1, 6.36, and 6.07.
The player must perform the mental calculation, gesture to
select the jellyfish labelled 4.1, and then move their body (and
the selected jellyfish) into the empty basket on the ocean floor.
Each game play session consisted of 5 multiple choice maths
questions.

IV. METHODOLOGY

A. Context

Our study was conducted in on a grade 6 class at Ila Skole
in Trondheim, Norway in fall of 2019. Children volunteered to
participate upon receiving a thorough explanation of the study
by researchers and their maths teacher. The study was con-
ducted by the researchers/authors, in a room dedicated strictly
to the experiment. The room was arranged to accommodate
two MBTG play session setups running in parallel.

B. Participants

Our sample was composed of 26 typically developing
children (10 F, 16 M) with an average age of 10.95 years
(SD = 0.21 years). All children participated in 6 game play
sessions, for which they received a gift card for their participa-
tion. All procedures were approved by the Norwegian Centre
for Research Data, (i.e., a national human research ethics
organisation) and all children and their guardians provided
verbal/written informed assent/consent, respectively, prior to
participation.

(a) player is presented with geometric shapes to
sort into labelled boxes using the avatar, Marvy.

(b) player gestures and Marvy’s body moves in
sync to select the geometric shape.

(c) player bends down to place the selected geo-
metric shape into one of the labelled boxes.

Fig. 1: A player gesturing through a Marvy Learns game problem.

(a) player is presented with an arithmetic problem
to solve using a photo-realistic avatar.

(b) player gestures and the avatar mimics the
player to select the jelly fish.

(c) player bends down to guide the selected jelly-
fish to the empty basket completing the equation.

Fig. 2: A player gesturing through a Sea Formuli game problem.



C. Procedure

We conducted a study to investigate learner prediction
through the application of MMD to children’s engagement
with two maths MBTGs. Upon receiving legal guardian con-
sent and children’s assent, children were given an Empatica
E4 wristband and pair of Tobii eye-tracking glasses to wear.
Children played 6 game play sessions; 3 consecutive sessions
of Marvy Learns and 3 consecutive sessions of Sea Formuli.
For each game, the 3 sessions consisted of a practice round,
in which researchers assisted the children in understanding the
associated game’s objective and rules, and two non-practice
sessions. In total, the 6 MBTG play sessions lasted between
20− 30 minutes. We ensured a balanced game order. None of
the children had prior exposure to MBTGs.

D. Data Collection

We collected MMD from three different sources: gaze data
from eye-tracking glasses, physiological data (with sensors for
heart rate, blood-pressure, temperature and EDA levels) from
wristbands, and skeleton data from Microsoft Kinect.

Eye-tracking: To capture children’s gaze data, we used
Tobii eye-tracking glasses at 50Hz sampling rate and one-point
calibration. Tobii glass controller software recorded video
documenting the child’s field of view, via objective camera
built into the nose-bridge of the glasses. Video resolution was
1920x1080 at 25 Frames Per Second (FPS).

Empatica E4 wristbands: Children’s wristband data cap-
tured 4 different variables: Heart Rate Variability (HRV)
(1Hz), EDA (64Hz), skin temperature (4Hz), and Blood Vol-
ume Pulse (BVP) (4Hz).

Kinect Skeleton: Kinect sensor was used to capture skele-
ton data, recorded at a a sampling rate of 1Hz. It consisted of
the 3D position for 25 joints shown in the Figure 3.

E. Data Pre-processing

Eye-tracking: Fixations and saccades were identified using
Tobii’s default algorithm (for details please see [33]). A filter
was applied to remove raw gaze points that classified as
blinks. Pupil dilation is highly susceptible to personal and
contextual biases. For example, time of day, screen-brightness,
physical/medical health conditions, the child’s age, gender,
age, amount of sleep, and so on. To accommodate for this,
we used the first 30 seconds of gaze data to normalise pupil
dilation, effectively removing subjective and contextual biases.
Further normalisation was obtained using the darkest (i.e., set
to maximum) and brightest (i.e., set to minimum) screen shots
obtained from the player’s complete interaction, to account for
screen brightness.

Empatica E4 Wristband: To remove unwanted spikes in
the data, a simple smoothing function was applied to the
time series of the four data streams obtained by the Empatica
E4 wristband. Data was sectioned into windows, where a
“window” refers to a time segment containing 100 successive
data points. Our function examined consecutive windows in
the time series and calculated a running average accordingly.
Successive windows contained a 50 sample overlap. Like the

Fig. 3: The 25 joints captured by the Kinect skeleton data.

gaze data, the physiological data obtained by the wristband
(namely, EDA, HRV, BVP and skin temperature), is highly
susceptible to personal and contextual biases; such as time
of day, pre-existing physical health conditions, the player’s
gender, age, amount of sleep, and so on. We normalised these
features using the initial 30 seconds of the data streams to
remove the subjective and contextual bias from the data.

Kinect Skeleton: No pre-processing was required.

F. Dependant variable: Correctness of answers

In our analysis, learning performance was computed based
on the correctness of answer to a maths question during game-
play progression with the two MBTGs, (i.e., the dependant
variable which also acted as the predicted variable). Correct-
ness of answer is a binary variable (i.e., possible values or
correct or incorrect). For the purpose of evaluating prediction
quality, the “correct” class is the “positive” class.

G. Feature Extraction

We computed a total of 725 features from the different
data streams: gaze, physiological (EDA, HRV, BVP, skin
temperature), and 25 features from the Kinect joints. See
Table I.

H. Feature Fusion

We computed seven combinations of features defined by
the different data streams allocated to each input device: gaze
(eye-tracking glasses), physiological (Empatica E4 wristband),
skeleton (Kinect data), gaze and physiological, gaze and
skeleton, physiological and skeleton, and all (gaze and
physiological and skeleton). This allows us to explore the
potential of each stream and their combinations.

I. Data Partition

We compared two data lengths: full and half. For the full
data-set (mean duration = 94.75 seconds, SD = 61.20), we
computed the features from the entire duration of one question
(i.e., from the moment the question is displayed until an
answer is logged). For the half data-set we used the initial
50% of the duration of one question (mean duration = 47.37
seconds, SD = 30.60).



TABLE I: Features Extracted

Wristband features (28 for four streams)

Value histogram Mean, SD, kurtosis and skewness
of value histogram

Spectral histogram Mean, SD, kurtosis and skewness
of frequency histogram

ARMA
Auto-regressive moving average:
maps the current value
to the history of time series.

GARCH

Generalized Auto-regressive conditional
heteroskedasticity: maps the current variance
to the historical variance of time series and the
heterogeneity of the appearance of the values

Joint distance travelled features (24 for 25 streams)
Value histogram same as above
ARMA same as above
GARCH same as above

Eye-tracking features (25)
Pupil diameter Mean, SD, kurtosis and skewness
Fixation duration Mean, SD, kurtosis and skewness

Saccade

ratio of forward to backward saccades
ratio of global to local saccades
velocity (Mean, SD, kurtosis and skewness)
amplitude (Mean, SD, kurtosis and skewness)
duration (Mean, SD, kurtosis and skewness)

Events Number of fixations, number of saccades,
fixation to saccade ratio

J. Prediction using Ensemble Learning

To identify how each of the seven data combinations predict
learning performance, we divided the complete data-set into
training and testing subsets, retaining 15% data for testing (see
details in the next section). Then, we used ensemble learning
with model trees, support vector machines and Gaussian
process modelling to predict the players’ learning performance
using the MMD. Ensemble models in machine learning com-
bine the decisions from multiple models to improve the overall
performance. In this paper, we combine predictions from seven
different algorithms: Support Vector Machines [13] with linear,
radial and polynomial kernels; Gaussian process models [45]
with linear, radial and polynomial kernels; and M5 model
trees. These methods are designed to improve the stability and
accuracy of machine learning algorithms. One way of using
the results from multiple models is to use a weighted average
from all the prediction algorithms. The weights for individual
prediction are considered based on their accuracy during the
validation phase.

K. Training, validation, testing

First, we kept 15% samples (based on the participant IDs)
aside for out of sample testing. Next, we performed training
and validation on the remaining 85% samples. Validation
was completed using the leave one participant out scheme
(in each validation iteration samples corresponding to one
participant were kept for validation). Finally, we tested the best
model from the cross-validation phase on the out of sample
test data set.

We observed our data-set to be heavily unbalanced. Par-
ticularly, it contains four times more correct answers than
incorrect answers. To account for this we applied SMOTE
(Synthesizing Minority Oversampling Technique) [31]. We

implemented a SMOTE strategy by identifying the three
nearest neighbours for each original point of the minority class
and then adding three new (synthetic) points. The three new
points were generated using the mean of the original point’s
three closest neighbours and then adding/subtracting 50% of
standard deviation of the three neighbours to/from the mean.

L. Evaluation

We used the following metrics to evaluate the performance
of the ensemble classifier: Precision = TP / (TP + FP);
Recall = TP / (TP + FN); Accuracy = (TP + TN) / (TP +
TN + FP + FN); F1 score = 2TP / (2TP + FP + FN).
Where, TP = true positive; FP = false positive; TN = true
negative; FN = false negative. For the purpose of evaluating
the prediction quality the “correct” class is the “positive” class.
For the baseline prediction, we selected the “majority class
baseline”, rather than the “random allocation baseline” due to
the skewed nature of our data-set.

V. RESULTS

Table II shows the results of predicting correctness of
answers using the seven different combination of MMD fea-
tures coming from gaze data, physiological data (EDA, HRV,
BVP, temperature), and skeleton data, for both the full and
half time segments. We observe that all seven MMD feature
combinations perform better than the majority class baseline
(F1 = 0.853, Figure 4), in both the full and half data length
scenarios.

For the full data length case, the feature combinations of
gaze and physiological data result in the highest F1-score
(0.946, Figure 4) closely followed by the combination of
features from all data sources (F1 = 0.9344, Figure 4).
Whereas, the features extracted from the skeleton provided
the worst F1-score (0.8917, Figure 4).

Fig. 4: F1-scores using different combinations of features from
gaze (G), physiological (P; EDA, BVP, HRV, skin tempera-
ture) and skeleton (S) data. Two data lengths in time were
compared: full and half.



TABLE II: Prediction results calculated using different com-
binations of MMD features from gaze (G), physiological (P;
EDA, BVP, HRV, skin temperature) and skeleton (S) data. Two
data lengths in time were compared: full and half.

Data Features Precision Recall Accuracy F1-score

Full

G 0.9243 0.9243 0.8875 0.9243
P 0.9090 0.9243 0.875 0.9166
S 0.9196 0.8655 0.8437 0.8917

G-P 0.9344 0.9579 0.9187 0.9460
G-S 0.9304 0.8991 0.875 0.9145
P-S 0.9380 0.8907 0.875 0.9137
All 0.912 0.9579 0.9 0.9344

Half

G 0.9230 0.9075 0.875 0.9152
P 0.9279 0.8655 0.85 0.8956
S 0.9035 0.8655 0.8312 0.8841

G-P 0.92 44 0.9243 0.8875 0.9244
G-S 0.9292 0.8823 0.8625 0.9051
P-S 0.9104 0.8403 0.8250 0.8772
All 0.9016 0.9243 0.8688 0.9129

Majority baseline 0.7438 1 0.7438 0.853

Similarly in the half data length case, the combination
feature of gaze and physiological data also result in the highest
F1-score (0.9244, Figure 4), as well, again closely followed
by the combination of features from all data sources (F1 =
0.9129, Figure 4). However when using only half of the data to
calculate the prediction, the physiological and skeleton feature
combination resulted in the worst F1-score (0.8772, Figure 4).

VI. DISCUSSION

We observe that the combination of MMD features derived
from gaze and physiological (EDA, BVP, HRV, temperature)
data provide the most accurate prediction for both the full and
half data length (see the F1-score column of Table II). A plau-
sible explanation for this might be attributed to gaze’s capacity
to capture problem solving behaviour, such as cognitive load
[10], attention [35] and anticipation [36]. Moreover, previous
research [17] has shown that the four data streams included in
the Empatica E4 wristband data have demonstrated the ability
to capture constructs, such as, stress and physiological arousal.
Such constructs (e.g., cognitive load, attention, stress) relate
to problem solving behaviour. Thus, their capture aided us in
achieving the reported prediction performance.

On the other hand, including the features provided by the
skeleton data does not provide advantages. Rather, these data
reduce prediction quality. This can be observed in Table II,
by noting that in all occurrences, combining skeleton features
with any other feature set always results in an reduced F1-
score. For example, combining skeleton features with gaze
features decreases the F1-score from 0.9243 (gaze) to 0.9145
(gaze and skeleton data) when using the full data length. Sim-
ilarly, including the skeleton features with physiological fea-
tures from the Empatica E4 wristband also degrades prediction
accuracy by lessening the F1-score from 0.8956 (physiological
data) to 0.8772 (physiological and skeleton data) when using
the half data length. This indicates that skeleton data does not
capture useful behaviour related to children’s problem solving
strategies. However, using the skeleton data to support the

interaction (i.e., to play the game) during learning is important
as MBTG have been found to a playful and engaging [20],
[25].

One might conclude that in both the full and half data length
scenarios, the difference between the most and least accurate
predictions is negligible. By directly comparing the F1-score
values corresponding to most and least accurate predictions,
this may indeed seem convincing. In the full length data
case, the least and most accurate prediction values are 0.8917
and 0.9460, respectively. Whereas, in the half data length
case, least accurate prediction value is 0.8772 , and the most
accurate is 0.9244. Hence, directly comparing these values,
the resulting prediction accuracy improvements for the full and
half data length scenarios are 0.0543 and 0.0472, respectively.
However, such comparisons construct a false narrative, as the
actual improvements to consider are calculated relative to the
majority baseline (0.8530). Ergo, the least accurate prediction
in the full and half data length cases are 0.0387 and 0.0242.
Whereas, the most accurate predictions are 0.0930 and 0.0741.
These represent improvements1 of 240% and 306% in the full
and half data scenarios, respectively.

One of the key findings of this contribution is utilising
the capabilities of MMD to conduct early predictions during
children’s engagement with educational MBTGs. Table II
indicates that using half (as oppose to full) data lengths to
extract features and predict correctness, imposes relatively
small decrements in the F1-scores (and all the other quality
indicators). For example, for the gaze and physiological data
feature combination, the half data length scenario improves
the majority baseline prediction by 80% of that for the full
data length scenario. To clarify, reducing the data set by half,
only reduces the prediction quality by 20%. This illustrates
the power of using partial data for early predictions, which
leads to research implications regarding the ability to provide
proactive and real-time feedback. Additionally, MMD provides
clear benefit over alternative conventional methods used to
capture children’s learning experiences, such as self-reported
data (e.g. questionnaires). In many cases, questionnaires can
be inappropriate instruments for children with special needs
or from different populations [17]. However, different MMD
can be collected quickly, unobtrusively, universally and in a
non-invasive manner while at simultaneously enabling high
frequency user activity tracking.

VII. IMPLICATIONS

Wearables Support Academic Performance Prediction: A
primary outcome to emerge from our analysis was the use
of wearables as a driving force towards accurate prediction
of children’s maths performance resulting from MBTG play.
Specifically, we identify the unification of data derived from
the Empatica E4 wristband and eye-tracking glasses to deter-
mine the most accurate predictions in both the full and half
time scenarios (see Table II, column F1-score). Notably, these
wearables also greatly outperform the majority baseline on an

1improvement = 100 ∗ ( best F1 − baseline ) / ( worst F1 − baseline )



individual basis, offering flexibility of use (i.e., to be used
separately or together).

Advantages of Early Prediction: We observed that early
prediction, using partial data length as measured by time,
substantially outperformed the majority baseline prediction
algorithm for all feature combinations (see Table II). Specifi-
cally, our analysis indicated that performance prediction with
F1-score of 0.9244 (gaze and physiological data) could be
conducted within the first 47.38 seconds (SD = 61.20 seconds)
of children’s engagement with the current question. Corre-
spondingly, we identified two feedback design implications
that enhance the real-time capability of artificial agent driven
MBTG technologies. First, early prediction could be exploited
to direct rapid proactive feedback (i.e., hints), thereby scaf-
folding children’s learning as they develop, learn and master
new skills during game play, as well as provide opportunities
for reflection throughout the learning process. Second, early
prediction provides the artificial agent additional optimisation
time to prepare/select an appropriate follow-up question to
present to the child, where appropriateness is determined by
interplay of the child’s learning goals and their academic
understanding. Thus, the artificial agent might adjust the level
of problem difficulty to keep the child in a state of flow
(i.e., challenged, but not overwhelmed by questions posed).
Lastly, the time saved by using early prediction (i.e., amount
of time between prediction and logging of answer) translates
to additional time for algorithm’s optimisation purposes, which
might yield better results.

Using Adequate Performance Predictors: Our results
showed that use of body movement (i.e., skeleton data)
to predict children’s performance is not as accurate as the
remaining extracted features (gaze and physiological data)
included in our analysis. Therefore, grounded in our results
and our specific context, we do not recommend that skeletal
data be used for predicting for children’s correctness or
providing feedback. However, as previously mentioned, body
movement’s beneficial contribution to engage children during
MBTG play is not diminished. This finding, also supports the
fact that different data sources may have different purposes,
possibly depending on the context of the educational activity
(e.g., subject material). Encouraging the use of MMD will
provide evidence for finding the appropriate context specific
features for prediction.

Value for Educators in Classrooms: One implication re-
vealed from our results is the benefit of using of MMD
and early prediction within traditional classroom settings.
Educators require technologies that will allow them to achieve
effective educational practice. Thus, providing adequate infor-
mation and prediction of children’s performance on a given
task, specially within 47.38 seconds (SD = 61.20 seconds),
can result in identifying their learning and offer them ap-
propriate guidance and personalised support. Moreover, the
features used in our study can be combined or extended with
additional MMD derived from different sources; for example,
video recordings which can show children’s affective state and
contribute to explain more aspects of the learning experience,

gaining a more holistic view.
Personalised Monitoring: Combining different data sources

and predicting children’s performance offers new possibilities
for the development of technologies that support children
in advancing their performance. More precisely, each (or
even multiple) children can have a profile documenting their
progress. This will allow them to track their advancement over
time, see the potential changes in their own performance and
act accordingly. Self-monitoring may possibly motivate them
and advance their performance.

VIII. CONCLUSIONS & FUTURE WORK

In this paper, we motivate our research question with
relevant literature and present an in-situ study that investigates
the application of MMD collection to player’s interactions with
education MBTGs for the purpose of performance prediction.
We considered both half and full question answering dura-
tions to determine whether the predicted outcomes justified a
decrease in prediction accuracy. We conclude that the feature
combination of gaze and physiological MMD provide the most
accurate predictions. As well, we show the feasibility of early
prediction. Though our learning context was limited to mathe-
matics, our results echo and augment the findings of Giannakos
et al. [16], [17], by showing that gaze and physiological from
wristbands data can afford highly accurate early estimates of
student performance, in the context of educational MBTGs.
We note that the Kinect is no longer supported by Microsoft,
however there exist other motion-based sensing technologies
from which skeleton data can be extracted [11], and in no way
are our results platform dependant. Lastly, we direct research
and practice focused on MBTGs, by providing implications
for learner experience design involving MMD in the context
of education. Our findings emphasise the need for additional
studies into investigate MMD within MBTGs, in efforts to
create more fluid, reflective, and supportive educational expe-
riences for both learner and instructor, particularly concerning
learner feedback.
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