
Generating Angry Birds-Like Levels With Domino
Effects Using Constrained Novelty Search

Febri Abdullah∗, Pujana Paliyawan∗†, Ruck Thawonmas∗, Fitra A. Bachtiar‡
∗Intelligent Computer Entertainment Laboratory, Ritsumeikan University, Japan

†Research Organization of Science and Technology, Ritsumeikan University, Japan
‡Faculty of Computer Science, Brawijaya University, Indonesia

ruck@is.ritsumei.ac.jp

Abstract—This paper proposes a method to generate interest-
ing Angry Birds-like game levels featuring the Rube Goldberg
machine (RGM) mechanism using Constrained Novelty Search
(CNS). An RGM level in Angry Birds emphasizes a domino effect,
which allows it to be completed by only one bird shooting. By
evolving the feasible population and infeasible population in CNS,
our results show that the entropy of block-type frequencies is
higher than the entropy by our previous generator and that two
requirements to achieve playable RGM levels – the 100% stability
and the perfect-shot rate – are met. The results indicate that the
proposed method can generate levels with more diversity than
our previous generator while maintaining their playability.

Index Terms—Angry Birds, Constrained Novelty Search, Pro-
cedural Content Generation, Rube Goldberg Machine

I. INTRODUCTION

The goal of procedural content generation (PCG) is to
provide in-game contents (e.g., game levels, textures, or au-
dios) that are not only playable but also different from each
other. Key factors of PCG are the quality and the diversity
of generated contents [1]. Our previous study [2] presented
a PCG approach to automatically generate Rube Goldberg
machine (RGM) [3] levels, where there are several constraints
introduced to ensure that objects are arranged in a way that
can create a domino effect among them. Those constraints
were tackled by employing pre-designed sets of objects called
segments. However, due to relying on such segments, the
generator tends to generate levels with low diversity.

This paper proposes a search-based approach using Con-
strained Novelty Search (CNS) [4] to generate RGM levels.
We hypothesize that the proposed method using CNS can gen-
erate RGM levels that are playable with higher diversity than
levels generated by our previous generator. This hypothesis is
examined by an experiment comparing 100 levels from each
generator.

II. RELATED WORK

A Rube Goldberg machine (RGM) is a machine built from
smaller parts or devices connected in an overly complex way
to achieve a simple goal. In our previous studies [2], [5], we
implemented the generator on Science Birds. Science Birds is
a clone version of the Angry Birds video game for science
and research purposes, developed by Ferreira et al. [6]. The

game has been the platform for the annual Science Birds Level
Generation Competition [7].

In both of our previous studies, a rule-based approach
was adopted to generate Angry Birds-like levels featuring
RGM mechanisms, where preliminary results suggested that
a structure collapsing motion produced by a domino effect
in an RGM level could improve the spectator’s mood [5]. A
structure is a set of stacked game objects that resembles a
building and constitutes a part of an entire Angry Birds-like
level. However, the method presented therein relies on pre-
designed segments, which leads to generation of levels with
low diversity.

CNS rewards the diversity of its solutions while maintaining
their quality and aims to produce a novel individual that
satisfies given constraints by combining the Feasible-Infeasible
Two-Population of Genetic Algorithm (FI-2Pop) and novelty
search. A previous study conducted by Liapis et al. [8] focused
on utilizing novelty search to generate game contents. FI-
2Pop evolves feasible and infeasible populations separately;
the feasible population evolves individuals to maximize their
novelty, and the infeasible one evolves individuals to minimize
their distance from the feasibility.

In the aforementioned work by Liapis et al. two approaches
of the FI-2Pop were proposed: Feasible-Infeasible Novelty
Search (FINS) and Feasible-Infeasible Dual Novelty Search
(FI2NS). FINS employs a novel archive in the feasible pop-
ulation. In addition to employing a novel archive in the
feasible population, FI2NS employs another novel archive in
the infeasible population. Their results suggested that FI2NS
outperforms FINS in terms of diversity, while FINS outper-
forms FI2NS in terms of the speed of reaching a solution.
Their study utilized CNS to generate diverse levels in a
strategy game. However, the capability of CNS to generate
physics-based levels has not been evaluated.

III. METHODOLOGY

A. Level Generation

An entire RGM level consists of several structures con-
nected to each other. These structures are generated by CNS
and connected accordingly. To achieve a desired domino effect,
each structure in an entire RGM level must satisfy several rules
as follows:

• The structure is stable.
978-1-7281-4533-4/20/$31.00 ©2020 IEEE

• All available pigs in the structure must be destroyed when
the structure is collapsing.

• The structure has at least one object flying outside the
structure’s boundary when it is collapsing.

In addition, as done in our previous work [2], we employ
several variables for structures as follows:

• Structure boundary: the width and height of the structure
in which all of its objects must reside.

• Input object: the object that needs to be destroyed to
trigger a structure collapse. In this study, it can be a TNT
(explosive) object or a b3 object, shown in Fig. 1.

• Output object: the object that flies beyond the structure
boundary in a moment after the structure is collapsed.

• Input direction: the direction of an incoming object that
will trigger the structure-collapse. There are four types
of direction: “left”, “right”, “down”, and “up”.

• Output direction: the flying direction of the output object.
There are four types of direction similarly to the input
direction.

• Output position: the x and y coordinates representing the
new position of the output object one time-frame after it
flies beyond the structure boundary.

Algorithm 1 Level Generation

1: for all direction do
2: structures.Append(CNS(direction, nBest))
3: end for
4: for i = 1 : lvCount do
5: levels.Append(Selection(structures, strCount))
6: end for
7: Output(levels)

Algorithm 1 shows the process to generate multiple levels
defined by lvCount. By utilizing CNS (line 2), the algorithm
generates nBest structures with the input direction for each
direction type (i.e., “left”, “right”, “down”, and “up”). This
process is to ensure the availability of necessary structures
when connecting them to form an entire RGM level. By
the end of the first for-loop (line 3), a total of 4 × nBest
structures are collected. The “Selection” function (line 5)
selects strCount structures according to their probability that
is updated at each iteration and connects selected structures to
form an entire RGM level.

B. Structure Generation

This section explains the structure generation process using
CNS (cf., line 2 of Algorithm 1). In CNS, an individual
is represented by a two-dimensional array of integer-type
identifiers corresponding to every object in Science Birds,
excluding platforms and birds. A platform is a type of object
to which gravity is not applicable and cannot be destroyed.
Platforms can be used to support any object placed above the
ground of a level.

Figure 1 shows the objects with their corresponding identi-
fiers. These identifiers are treated as genes and decoded into

Figure 1: Objects with their corresponding name on the top
and identifier on the bottom. Note that same objects but with
different rotation have different identifiers.

Figure 2: A structure decoded from a set of identifiers on
the right side. It has the “left” input direction and the “right”
output direction shown by a red and a magenta arrow, respec-
tively. The input and the output objects are shown by a red
and a magenta circle, respectively. The structure boundary is
shown by a blue rectangle.

a structure. During decoding, genes in a column represent
objects with the same type that are stacked starting from the
top row regardless of their material. Objects are arranged in
each row by a simple mechanism, not shown here due to space
limit, in such a way that only the minimum number of them
are placed that can support the objects in the above row, if
any.

After the decoding process is done, an input object is
placed according to the input direction. The input object for
an incoming object from the “down” direction, coming from
below, is a b3 object while it is a TNT for an incoming object
from the other directions. Finally, a number of platforms are
determined to support all generated objects in a structure.
Figure 2 shows a structure decoded from an individual.

We rely on a simulation process to evaluate each individual.
Due to the use of simulation, which in some cases could take a
large amount of time, FINS is preferred. As mentioned earlier,
Liapis et al. [8] suggested that FINS outperforms FI2NS in
terms of the solution speed. Some of the aforementioned
variables, i.e., the output object, output direction, and output
position, are determined at the end of the simulation when
there is no moving block detected.

Following a recipe in Liapis et al. [8], a feasible individual
is scored using the novelty score (Nf) defined as

Nf (a) =
1

k

k∑
i=1

d(a, bi), (1)

where bi is individual a’s ith-nearest-neighbor among indi-
viduals in the feasible population and the novel archive, and
d(a, b) is a distance function measuring the difference between

individuals a and b. Note that the evolution goal for the
feasible population is to maximize the novelty score.

Since the output of our proposed method is a game level,
diversity among individuals should be visually observable.
Thereby, the visual distance dv [8] is applied here:

dv(i, j) =
1

hw

h∑
y=1

w∑
x=1

Dx,y(i, j), (2)

where, because the size of every object in Science Birds
are significantly different and one gene can lead to multiple
objects of the same type, we compute the distance as the
accumulated pixel-wise difference between the two structures;
h and w are the longest height and width of both structures
measured in pixel units, respectively; for the sake of compu-
tation efficiency, if pixel (x, y) in structures i and j belong
to the same object although they might render different parts
of the object, Dx,y(i, j) = 0; otherwise, 1. In addition, pixels
that do not belong to any object are labeled as ‘empty’ and
compared using the same method.

To assess whether individuals are feasible or not, we pro-
pose a fitness function to calculate their fitness score (Fi) as
follows:

Fi(c) =
1

3
F1 +

1

3
F2 +

1

3
F3 (3)

Note that individuals with the fitness score of 1 are feasible
and the rest are infeasible. At the end of each generation,
individuals in both populations are assessed and moved be-
tween the two populations according to their fitness score. In
addition, the evolution goal for the infeasible population is to
maximize the fitness score.

In the above equation, F1 is the function representing the
stability of a structure of interest and is calculated by consid-
ering the number of moving blocks, hence being destructed, in
the structure during the first 10 seconds of the simulation when
there is no bird-shooting occurred. The function is described
as follows:

F1 = 1− Bs −Be

Bs
, (4)

where Bs and Be are the number of blocks at the beginning
and the end of the simulation, respectively.

Next, F2 is the function that calculates the number of
destroyed pigs in a structure of interest. It represents whether
the structure can be completed and, hence, a level containing
it is playable. The function is described as follows:

F2 =
Ps − Pe

Ps
, (5)

where Ps and Pe are the number of pigs that reside on the
structure at the beginning and the end of the simulation,
respectively.

F3 is the function that constrains a structure of interest
to have at least one object flying outside its boundary. The
function is described as follows:

F3 =

{
1, #flying object ≥ 1

0, otherwise
(6)

(a)

(b)

Figure 3: Two levels generated by our proposed method.

C. Structure Selection

This section explains how structures are connected each
other to form an entire RGM level. This corresponds to the
“Selection” function in line 5 of Algorithm 1. Structures are
selected from a list of structures generated by CNS.

In Science Birds, structures are supposed to be placed on
the right side of the slingshot. This specification requires the
player to shoot a bird to the right direction of the slingshot.
Because of this specification, we only select the first structure
from candidate structures with the input direction of “left”.
The next structure is then selected according to the current
structure’s output direction; more specifically, it is selected
from candidate structures with the input direction opposite
to the current structure’s output direction. The probability of
structure s being picked from candidate structures, p(s), is
defined as follows:

p(s) =
1

n− 1

(
1− vs∑n

i=1 vi

)
, (7)

where n is the number of candidate structures, va is initialized
to 1 and incremented each time s is selected to form an entire
RGM level. Structure selection continues until the desired
number of structures defined by strCount (cf. line 5 of
Algorithm 1) is reached.

IV. EXPERIMENT AND RESULTS

We used stability, perfect-shot rate, and block frequency
from existing expressivity metrics [2], [9] to evaluate gener-
ated levels. The first two metrics evaluate the playability of
generated levels. For RGM levels, playable levels are those
that are stable and can be completed by one bird shooting (in
other words, all the pigs can be destroyed in one shot). On the
other hand, the last metric is used to represent the diversity
of generated levels, and, in particular, the entropy of block
frequencies is evaluated to represent the usage distribution of
blocks in a generated level.

Figure 4: Block frequency comparisons over 100 levels.

In total, 100 levels generated by the proposed method (CN-
SRGM) were evaluated. The same number of levels generated
by our previous generator (Baseline) [2] were compared. In
both generators, the number of structures in a level, strCount,
was set to 5. Figure 3 shows RGM levels generated by our
proposed method1.

The parameters in use are as follows: nBest=250, the popu-
lation size=500, the number of generations=100, the mutation
probability=40%, and the number of offspring=500. One-point
crossover, as adopted in the study by Ferreira et al. [6],
was applied in the infeasible population. This is based on
findings in Liapis et al. [8] that evolving via mutation is
faster and leads to more diverse feasible individuals. As a
result, we only applied mutation to produce offspring in the
feasible population, but applied both crossover and mutation
in the infeasible one. Finally, the minimum number and the
maximum number of columns were set to 1 and 5, and those
for rows were set to 5 and 8.

We evaluated a level’s stability in the same way as done in
our previous study [2]. It was measured through a simulation
that runs for 10 seconds. There is no bird shooting during the
simulation. A level is labeled as stable if there is no object
(i.e., block, pig, or TNT) being destroyed due to the in-game
gravity during the simulation. The result of stability evaluation
shows that both generators, Baseline and CNSRGM, have a
100% stability.

The perfect-shot rate was also evaluated with the same
method used in our previous work [2]. A perfect shot is a
single shot that completes a given level by destroying all
available pigs. It is necessary to evaluate the performance of
each generated level in producing the domino effects among
their structures. The result of perfect shot evaluation shows
that both generators have also a 100% perfect-shot rate.

Block frequency can be used to express a block-usage
distribution in a generated level. Note that only b1-b12 are
considered blocks (cf., Fig. 1). For each of those 12 block
types, its ratio is calculated over all blocks on a level. Figure
4 shows the frequency of each block defined as a mean value
for all 100 generated levels. Ranging from 0 to 1, 0 means that

1bit.ly/rgmcog2020

a block of interest is not used on any levels, while 1 means
that all levels only consist of it. Figure 4 shows that CNSRGM
has a higher entropy (3.296) than Baseline (3.027).

V. CONCLUSIONS AND FUTURE WORK

The result of stability evaluation shows that both generators
(i.e., the previous and proposed generator) could maintain the
stability of all generated levels. The result of perfect shot
evaluation shows that both generators could guarantee that
the generated levels feature RGM mechanisms. Both results
indicate that the proposed generator could generate levels with
equally high quality as the previous one and guarantee that the
generated levels are playable RGM levels.

The result of the block frequency metric shows that our
proposed generator has a better block distribution compared to
the previous generator. It indicates that levels generated by our
proposed generator have higher diversity than those generated
by the previous generator. In conclusion, the proposed gener-
ator could generate levels with higher diversity compared to
the previous generator without sacrificing their RGM quality.

For future work, a more efficient evaluation method to
reduce computation time needs to be considered. A deeper
analysis of the evolution performance needs to be addressed.
In addition, a qualitative appraisal to determine gaps between
the evaluation metrics and human perception needs to be
investigated. Finally, other implementations of search-based
algorithms focusing on the diversity of solutions should be
examined.

ACKNOWLEDGEMENT

This research was supported in part by Grant-in-Aid for
Scientific Research (C), Number 19K12291, Japan Society for
the Promotion of Science, Japan.

REFERENCES

[1] D. Gravina, A. Khalifa, A. Liapis, J. Togelius, and G.N. Yannakakis,
“Procedural Content Generation Through Quality Diversity,” IEEE Con-
ference on Games (CoG), IEEE, 2019, pp. 1-8.

[2] F. Abdullah, P. Paliyawan, R. Thawonmas, T. Harada, F.A. Bachtiar,
“An Angry Birds Level Generator with Rube Goldberg Machine Mech-
anisms,” IEEE Conference on Games (CoG), IEEE, 2019, pp. 1-8.

[3] M.F. Wolfe, R. Goldberg, “Rube Goldberg: Inventions!,” Simon and
Schuster, 2000.

[4] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “On a feasible–
infeasible two-population (fi-2pop) genetic algorithm for constrained
optimization: Distance tracing and no free lunch,” European Journal of
Operational Research, vol. 190, no. 2, 2008, pp. 310–327.

[5] F. Abdullah, C. Yang, P. Paliyawan, R. Thawonmas, T. Harada, F.A.
Bachtiar, “Promoting Emotions with Angry Birds-like Gameplay on
Rube Goldberg Machine Levels,” 2019 IEEE International Conference
on Consumer Electronics - Asia (ICCE-Asia), IEEE, 2019, pp. 149-150.

[6] L. Ferreira and C. Toledo, “A Search-Based Approach for Generating
Angry Birds Levels,” 2014 IEEE Conference on Computational Intelli-
gence and Games, IEEE, 2014, pp. 1-8.

[7] M. Stephenson, J. Renz, X. Ge, L. Ferreira, J. Togelius, and P. Zhang,
“The 2017 AIBIRDS Level Generation Competition,” IEEE Transactions
on Games, 11.1, IEEE, 2018, pp. 275-284.

[8] A. Liapis, G.N. Yannakakis, and J. Togelius, “Constrained Novelty
Search: A study on Game Content Generation,” Evolutionary compu-
tation, 23.1, 2015, pp. 101-129.

[9] M. Stephenson, and J. Renz, “Generating Varied, Stable and Solvable
Levels for Angry Birds Style Physics Games,” 2017 IEEE Conference
on Computational Intelligence and Games (CIG), IEEE, 2017, pp. 288-
295.

