
Towards Game Design via Creative Machine
Learning (GDCML)

Anurag Sarkar
Northeastern University

Boston, USA
sarkar.an@northeastern.edu

Seth Cooper
Northeastern University

Boston, USA
se.cooper@northeastern.edu

Abstract—In recent years, machine learning (ML) systems have
been increasingly applied for performing creative tasks. Such
creative ML approaches have seen wide use in the domains
of visual art and music for applications such as image and
music generation and style transfer. However, similar creative
ML techniques have not been as widely adopted in the domain
of game design despite the emergence of ML-based methods for
generating game content. In this paper, we argue for leveraging
and repurposing such creative techniques for designing content
for games, referring to these as approaches for Game Design
via Creative ML (GDCML). We highlight existing systems that
enable GDCML and illustrate how creative ML can inform new
systems via example applications and a proposed system.

Index Terms—game design, creative AI, creative ML, compu-
tational creativity, procedural content generation, PCGML

I. INTRODUCTION

Advances in machine learning, such as those in the field
of computer vision and image processing [1]–[4], and the
emergence of generative models such as GANs [5] and VAEs
[6], [7], have enabled a wide variety of ML applications for
performing creative and artistic tasks. In the domain of visual
art, this has led to applications such as artistic style transfer
[8]–[10], texture synthesis [11], [12] and image manipulation
and translation [13], [14]. Similarly, the domain of music
has also been a fertile ground for such creative applications
including generation using a number of different approaches
[15] and in different genres and styles [16]–[19]. Moreover,
such creative AI [20] approaches and models have enabled
the creation of generative systems and co-creative tools in
both visual art [21]–[26] and music [27]–[29], helping in
democratizing such AI and ML systems and better facilitating
human creativity.

However, such ML-based creative approaches have not been
as widely adopted for game design. Due to the relative dearth
of good training data compared to visual art and music and the
added complexity of ensuring that models can produce content
that is functional and playable, most generative approaches for
games, often termed as procedural content generation (PCG)
[30], have primarily leveraged methods involving evolutionary
search [31], generative grammars [32], constraint solving
[33] and cellular automata [34]. More recently, a number
of works have demonstrated the feasibility of using ML to
build generative models for games and game content. PCG via

machine learning (PCGML) [35] has emerged as a subfield of
games research concerned with generating new game content
using models trained on existing game data. A number of
ML techniques have been used for this purpose such as
LSTMs [36], Bayes Nets [37], Markov models [38], GANs
[39] and autoencoders [40], mostly for level generation for
games such as Super Mario Bros. [41], The Legend of Zelda
[42] and Doom [43]. While these works successfully used ML
to generate levels, they mostly focused on a specific game
and are more comparable to simpler generative applications in
visual art and music rather than the more creative applications
such as style transfer and ML-based co-creativity.

In this vein, a recent trend of more creative PCGML has
emerged [44], focusing on applications such as domain transfer
[45], [46], level and game blending [47]–[49] and generation
of entire new games using ML models [50]. These new works
combined with the emergence of new ML-powered game
design tools [51] signal that creative ML approaches prevalent
primarily in visual art and music thus far, can be repurposed
for use with ML models for game design.

In this paper, we expand on our prior exploratory work [52]
and introduce the term Game Design via Creative Machine
Learning or GDCML to refer to such techniques and models.
More specifically, we use GDCML to refer to a subset of
PCGML techniques that use models trained on one or more
games to enable creative ML applications and affordances
for automated as well as mixed-initiative design tools for
game design, similar to those seen in visual art and music
as highlighted previously. In the remainder of the paper, we
briefly survey creative ML approaches in visual art and music
and connect them to related existing and potential applications
in game design, highlight existing creative ML work in games
and demonstrate applications for game design via a number
of illustrative examples. We also discuss the blueprint for a
proposed co-creative ML-based design tool that encompasses
the demonstrated applications and conclude by highlighting
future directions and challenges in the field.

II. CREATIVE ML FOR VISUAL ART AND MUSIC

Seminal to the eventual emergence of creative ML in visual
art was the work of Gatys et al. in using convolutional neural
nets to perform texture synthesis [11] and image style transfer
[8]. This has been followed by a large body of work both in

978-1-7281-4533-4/20/$31.00 ©2020 IEEE

terms of research aimed at improving and building upon style
transfer methods [53] as well as tools and implementations
enabling users to interact and experiment with these methods
[21], [22], [54]. Isola et al.’s pix2pix [13] model has been
particularly helpful in popularizing creative ML applications.
This model learns image transformation functions between
sets of image pairs and has been used in a wide variety
of interactive tools and demos such as Invisible Cities [25],
Hesse’s Image-to-Image Demo [24] as well as a number of
live interfaces and installations [55]. Moreover, research into
better understanding the inner workings of such ML models
have also resulted in interesting artistic applications such as
DeepDream [56], and interactive tools such as GAN Paint [23].
Along these lines, the software suite RunwayML [57] enables
users to work with pretrained generative models for a number
of artistic tasks, demonstrating how such applications can help
democratize creative ML to non-practitioners. Instrumental to
the rise of creative ML in visual art has been the increase
in popularity and the rapid growth in scale, complexity and
expressivity of Generative Adversarial Networks (GANs) [5]
with models such as CycleGAN [14], SNGAN [58] and
particularly BigGAN [59] and StyleGAN [60] being leveraged
by artists such as Mario Klingemann, Helena Sarin, Robbie
Barrat, Anna Ridler and Memo Akten, to name a few, to
produce artworks and help usher in a new era of AI Art [61].

The domain of music has also seen much ML-based re-
search. A wide variety of different ML approaches have been
used for building generative models of music [15] using both
raw audio [62] as well as symbolic representations [63] and
for diverse genres including Bach chorales [16], jazz [17],
pop [18] and metal [19]. Like in visual art, ML research in
music has also seen plenty of recent works use latent variable
models such as GANs [29], [64] and VAEs [65]–[67]. These
approaches all leverage the model’s learned latent space to
enable applications such as learning, blending and transfer of
styles, instrument modeling and conditioning generation on
desired attributes. Moreover, these models serve as the basis
for co-creative, interactive design tools such as Magenta Studio
[27] and MidiMe [68] which operationalize the affordances of
the ML models underneath. OpenAI’s Jukebox [69] is a high-
profile recent example of a creative ML model for music.

Note that for both visual art and music, while the initial ML
techniques enabling generative modeling were foundational,
creative AI/ML did not flourish until the rise of more advanced
latent variable models that enable applications such as blend-
ing, interpolation, style transfer and conditioning along with
tools that operationalize and democratize them. Most current
ML research in games is at the former, foundational stage.
It is with a view to highlight and discuss existing and future
methods to enable the latter that we write this paper.

III. CREATIVE AI IN GAME DESIGN

In this section, we discuss existing co-creative approaches
in games. First however, we would like to draw a distinction
between creative AI and creative ML, two terms that are often
used interchangeably but we differentiate for two reasons: 1)

in most uses of the term creative AI, the underlying method
more specifically uses ML and 2) to focus our scope, we wish
to concentrate on co-creative game design methods and tools
that use ML, separate from the various co-creative game design
tools that use more general AI methods.

While the previously mentioned PCGML works are analo-
gous to ML models for music and art in general, the closest
analogs to the related tools and applications are the numerous
mixed-initiative, co-creative game design tools, most of which
do not employ ML. Co-creative or mixed-initiative systems
[70] refer to those that enable human designers to collaborate
with the generative system. Notable earlier examples of such
systems include Tanagra [32] for generating platformer levels,
Ropossum [71] for generating levels for Cut the Rope [72] and
Sentient Sketchbook [73] for generating strategy maps. More
recent examples include Cicero [74] for designing GVG-AI
games, the Evolutionary Dungeon Designer [75] and Baba
Is Y’All [76] for generating levels for the puzzle game Baba
Is You [77]. A related AI-based co-creative tool is Danesh
[78] which allows users to adjust the parameters of generators
and analyze their expressive range [79]. Finally, though not
a co-creative tool, ANGELINA [80], [81] is an AI system
capable of generating entirely new games using evolutionary
computation. While all of these tools and systems enable the
design and generation of new levels and games, they differ
from the previously discussed counterparts for visual art and
music in that they are not informed by ML models. That is, the
systems do not leverage knowledge learned from an existing
corpus of game data and subsequently are not able to harness
the affordances that for example, a latent variable model
would provide. In this work, we are interested in existing and
potential approaches that could leverage much of the existing
PCGML research to produce GDCML tools and it is this that
we discuss in the next section.

IV. THE CASE FOR CREATIVE ML FOR GAME DESIGN

This paper was motivated by a recent trend of a number of
works that enable a more creative form of PCGML [44] via
applications such as level and game blending, domain transfer
and automated game generation. These in turn were motivated
with wanting to incorporate computational creativity into ML
models, specifically combinational creativity (also referred to
as combinatorial creativity) [82], the branch of creativity fo-
cused on generating new concepts, domains and artifacts from
combinations of existing ones. This view of creativity contends
that innovation rarely happens in a vacuum and that new
ideas usually build on existing ones. Maria Popova describes
this as ‘... the idea [is] that creativity is combinatorial, that
nothing is entirely original, that everything builds on what
came before, and that we create by taking existing pieces of
inspiration, knowledge, skill and insight that we gather over
the course of our lives and recombining them into incredible
new creations’ [83]. Several other sources [84]–[87] also
highlight the prevalence of combinational creativity throughout
history in both the arts and sciences. Such creativity is evident
throughout the history of games as well with new games and

game genres resulting from the recombination of existing ones.
Metroid [88], for example, combines Mario’s platforming with
the lock-and-key style progression of Zelda. Spelunky [89]
similarly melds platformer mechanics with roguelike elements.
We have seen the increasing use of terms such as roguelite,
procvania and soulslike to describe new game genres that
borrow and combine elements from multiple existing genres.
Recent indie game SuperMash [90] lets players explicitly
combine different genres to produce new games to play.
Thus, imbuing ML models with combinational creativity tech-
niques such as conceptual blending [91], amalgamation [92],
compositional adaptation [93] and conceptual expansion [50]
could enable tools to assist in such creative forms of game
design and generation. Conceptual expansion has in fact been
demonstrated to be able to generate entirely new games that
combine the levels and mechanics of existing games [94].

Along these lines, Gow and Corneli [95] were among the
first to propose a framework for blending existing games
together to produce new ones. With a view towards building
ML models capable of doing this, we used LSTMs [48] to
blend models of Mario and Kid Icarus [96] and improved on
that by using VAEs to perform controllable blending using
the VAE latent space [49]. The latter was also inspired by
Volz et al.’s work [39] in training GANs for generating Mario
levels and using the GAN latent space to evolve variations.
Since then, other works have used GANs and VAEs for PCG
[97]–[99]. These approaches share similarities with analogous
approaches discussed previously for visual art and music
in their explicit use of the latent space and its encodings
or at least their potential to do so. This in turn enables
similar affordances within games (i.e. blending, interpolation,
conditioned generation) as they do in other domains and thus
prime these methods for serving as the foundation for co-
creative GDCML tools.

To this end, Schrum et al. [100] recently presented a
latent model-based co-creative game design tool, developing
a system based on their GAN models for Mario and Zelda
that allows users to design and generate levels via interactive
evolution and exploration of the GAN’s latent space. Thus,
this tool has much in common with similar tools for visual
art and music and represents the type of application we
wish to highlight and build on under the GDCML definition.
Another such co-creative ML-based game design tool, though
not based on latent variable models but still influential to our
recommendations in the following sections, is Guzdial et al.’s
Morai Maker [51], a Unity tool for designing Mario levels
using generative models from past PCGML works [36], [38],
[101] as co-creative partners. In addition to these works, recent
PCGML work has also looked at domain transfer methods
such as Snodgrass and Ontañón’s work [45] in learning map-
pings between platformer games and Snodgrass’ [102] newer
work that uses binary space partitioning to generate levels from
a low-resolution sketch representation, an approach that seems
particularly suited to inform co-creative design tools.

Overall, such tools represent promising first steps towards
realizing creative ML for game design in the future, as it

currently exists for visual art and music. For this to happen,
existing tools need to be built upon and enhanced in terms
of scope and affordances. Both Morai Maker and Schrum et
al.’s tool are restricted to a single domain. While effective,
this necessarily limits the possibility space of design. Building
tools that leverage existing PCGML works in blending and
domain transfer described above is necessary for enabling
more creative applications such as style transfer and the design
and discovery of new domains and genres of games. Moreover,
not much attempt has been made to borrow creative ML ideas
from other domains into games. This is a missed opportunity
as creative ML for visual art and music, due to its increased
maturity as a field, offers many approaches and applications
that can be repurposed for games. In the next section, we
discuss example applications, inspired in part by those in
visual art and music and in part by the existing GDCML tools
above, that leverage the affordances of latent models and that
we hope to implement in GDCML tools in the future.

V. APPLICATIONS

In this section, we demonstrate example applications that
we hope to implement and operationalize in future creative
ML tools for game design. For some applications, we pro-
vide example figures generated from techniques and systems
developed in our prior work. For these examples, we trained
variational autoencoders on level data from the Video Game
Level Corpus (VGLC) [103] for the games Super Mario Bros.
and Kid Icarus—both classic NES-era platformers. Models
were trained on 16x16 level segments using PyTorch [104].

A. Game Blending

Game blending refers to combining the levels and/or me-
chanics of two or more existing games to produce an entirely
new game. Thus, it is comparable to style transfer techniques
in visual art and music. Our prior work [49] has demonstrated
the feasibility of using VAEs for blending levels from separate
games, motivated by implementing Gow and Corneli’s VGDL
game blending framework [95] as an ML model able to

Fig. 1. Example level that blends Super Mario Bros. and Kid Icarus.

Fig. 2.Interpolation in Mario. Segments at each end are from the actual game.

perform blending in an automated manner. The basic idea is
that training a latent variable model on levels from multiple
games enables it to learn a latent representation that spans
and encodes levels from all games. Thus levels generated
using this representation necessarily blend the properties of
the original games. An example blended level is shown in
Figure 1. In addition to enabling users to generate such
blended levels and games, tools should also allow blends to be
controllable in terms of the amount of each game desired in the
final blend as well as properties such as difficulty and level
topology. Previous works [39], [49] have demonstrated that
evolving vectors in the latent space using various objective
functions can make generation controllable and find latent
vectors corresponding to playable levels. Thus, GDCML tools
can allow users to select different objective functions and
parameters to optimize to generate desired types of blends.

B. Interpolation

Latent variable models learn encodings of data within a
continuous, latent space. When trained on game levels, such
models thus enable generation of new levels that inhabit the
space between existing levels via interpolation. When these
levels are from different games, it enables blending as shown
above but when the levels are from one specific game, we can
obtain new levels not in that game. Examples of this are given
in Figure 2. Schrum et al.’s [100] GAN-based tool already
implements such functionality by allowing users to interpolate
between two existing levels via a slider and then interact with
the resulting interpolated level. We envision such features to
be incorporated in GDCML tools moving forward.

C. Level Search

This could allow designers to search for new levels given
an input level and an objective. While similar to the aforemen-
tioned latent vector evolution methods, here we specifically re-
fer to queries of the form: generate new level given input level
X, metric Y and comparison condition Z. In other words, this
would enable users to generate levels that are similar/dissimilar
to an input level using a given metric. Examples of this can
be found in our prior work [52].

D. Conditioned Generation

While above methods describe generating desired levels by
searching the latent space via vector evolution, this can also
be done by directly conditioning generation on either an input
segment or a label, i.e. the model generates desired levels
without having to use latent search. For example, a model
can be trained to predict the next segment of a level given the
current segment. Examples of such generations are given in

Fig. 3. Mario levels generated from an initial given segment. The top level
is generated using an initial segment taken from the original Level 1-1. The
bottom level is generated using a custom initial segment.

Figure 3 using an approach from our prior work [105]. Such
a model could be used co-creatively to generate additional
content based on designer input. Alternatively, conditional
VAEs allow generation to be conditioned on labels provided
during training such that the model can generate levels using
these labels. Such techniques could allow users to choose to
generate new levels by selecting from a list of labels.

E. Latent Space Visualization

t-distributed Stochastic Neighbor Embedding or t-SNE
[106] is a dimensionality reduction technique that allows vi-
sualizing datapoints in a high-dimensional space by assigning
them to coordinates in a lower-dimensional space, usually
2D or 3D. Within creative ML, it has been used to cluster
images, paintings and audio clips based on features learned
by trained models [107], [108]. In game design however, the
use of t-SNE has not been as widespread with Zhang et
al.’s [109] use of t-SNE to visualize clusters of videogame
moments being an example of its use in games. Similar to
clustering related game moments, and analogous to clustering
paintings and audio based on features, t-SNE could be used
to visualize clusters of similar levels. Such visualizations,
particularly when made interactive, could allow designers to
explore the learned latent space and interactively search for
desired levels and other content. The t-SNE visualizations
of encodings of level segments from the original games are
shown in Figure 4. These depict clusters of level segments
that share structural properties as seen by the Mario segments
with pipes in the lower middle part and with pyramid like
structures in the lower left part of the Mario visualization.
Similar structure-based groupings can be observed for Kid
Icarus as well. Additionally, the plot for both games depicts
the two games in separate clusters but more usefully, one
may expect that the segments along the edge between the two
clusters may be amenable for blending or combination. Thus,
these visualizations can help designers interactively search
the latent space for blended segments that are learned by
models trained on data from multiple games. Overall, such
plots help visualize the landscape of the latent space learned
by the VAEs. Interactive versions of these visualizations,
such as Taylor Denouden’s interactive visualization of a VAE
trained on MNIST digits [110], could let users explore and
search the latent space to find desired levels. Thus, we wish
to develop such interactive visualizations as components of

Fig. 4. From left to right, t-SNE visualizations for training segments using VAEs trained on only Super Mario Bros., only Kid Icarus, and both.

GDCML tools. Future work could also look into using other
visualization techniques such as UMAP [111] which has been
shown to exhibit certain benefits over t-SNE [112].

VI. PROPOSED SYSTEM

We intend to implement a system that enables the above
applications, focusing on 2D-side scrolling platformers from
the NES era. In this section, we discuss its proposed features
and functionalities in more detail.

A. Platform and Interface

The existing tools we draw the most inspiration from are
Magenta Studio [27], Google’s co-creative music tool based
on their MusicVAE model [65]; RunwayML [57], a recently
released application that lets users run pretrained creative ML
models for performing a variety of artistic tasks; and the pre-
viously described Morai Maker [51]. Similar to how Magenta
Studio is a suite of plugins for Ableton Live, a popular digital
audio workstation, we envision our tool to consist of a suite
of modules for popular game development engines, with each
module corresponding to one of the applications mentioned
previously. Additionally, like how RunwayML streamlines the
use of existing models for artistic applications, we intend to
do the same for game design applications.

B. Modules

Our proposed system would consist of two sets of ML
models—single domain, i.e. trained on a single game, and
multi-domain, i.e. trained on multiple games taken together.
Thus, modules pertaining to game blending would apply only
for the multi-domain models while all other modules would
be applicable for both. For single-domain models, users would
select which game they want to work with while for multi-
domain, they would select which subset of all possible games
to work with. We currently envision the following modules
corresponding to the previously discussed applications:
• Generate - Generate a level of user-defined length starting

from a random segment. The system would pick a random

vector in the latent space and forward it through the VAE’s
decoder until the desired size is reached.

• Continue - Generate a level of user-defined length starting
from a segment selected or defined by the user. Here the
user supplies the segment (or selects it from a group of
existing ones). This is encoded into a latent space vector
and then generation proceeds as in Generate.

• Interpolate - The user defines or selects two segments,
both are encoded into latent space and interpolation is done
between the resulting vectors to generate new segments.

• Search - This would be associated with a number of
metrics and search criteria. The user defines/selects an
input segment, metric and criterion which the module then
uses to return a new segment based on the search results.

• Condition - This would use a set of conditional VAEs each
trained using separate sets of labels such as those based
on level elements and level structures. In the multi-domain
case, labels could correspond to separate games.

• Visualize - A latent space visualizer which would allow
the user to interactively explore the latent space to find
segments and content to their liking.

Note that the first 3 modules above are analogous to the
similarly named plugins in Magenta Studio that respectively
sample random bars from MusicVAE, extend a given music
sequence using an LSTM model and interpolate between pairs
of sequences using MusicVAE.

In addition to the above, for the multi-domain case, we
presently plan on two blending modules:
• Blend Canvas - This is partly inspired by Beat Blender

[113], which allows users to interactively define and blend
drum beats. We envision this module to be a similar inter-
active palette that lets users specify which subset of games
to blend together. This would then form the single domain
which can then use all of the above modules. Multi-domain
models can be built either by combining single-domain
models or by training a model on all available games and
then extracting attribute vectors corresponding to specific
games by averaging that game’s latent vectors. Extracted
vectors could then be combined to form the desired subset,

for e.g. VectorMario + VectorKidIcarus - VectorMegaMan.
• Blend Progression - A second blending module would

allow users to select desired games to blend and then
specify the blend proportions as the level progresses. For
example, users could choose to blend Mario and Icarus
and then specify that the first x% of the level should be
a% Mario and b% Icarus, the next y% should be c% Mario
and d% Icarus and so on. Such a module would necessitate
solving interesting challenges related to generating specific
blend proportions, ensuring playability, and level layout.

Tools similar to Beat Blender such as Melody Mixer [114]
and Latent Loops [115] could also inspire modules, partic-
ularly focusing on mechanics and gameplay. This would be
similar to Hoyt et al.’s [116] path-based enhancements to the
Morai Maker. Compared to levels, there has been less PCGML
work on mechanics with Guzdial and Riedl’s [101] learning
of game rules from video being among the few.

C. ML Models and Data

We intend to use different variants of VAEs trained on level
data from the VGLC for all our models. These would include
VAEs trained to reconstruct input segments like our prior work
in [49] as well as VAEs trained to generate the next segment
given the current segment like our prior work in [105]. Further,
we wish to explore conditional VAEs [117] to enable some of
the desired functionality described previously.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we focused on existing and potential ap-
plications for game design via creative ML (GDCML). We
discussed how creative ML approaches in visual art and
music can inform similar approaches in games, highlighted
applications that can be enabled by the affordances of creative
PCGML models and gave a brief description of a proposed
system. Apart from implementing this system, there are a
number of interesting avenues to consider for future work.

A. Latent Space Disentanglement

We discussed methods of enabling controllable generation
via latent vector evolution and training conditional models.
Increased controllability can also be achieved by learning
disentangled representations, i.e. different dimensions of the
latent space encoding different attributes. Future work could
thus look at leveraging such disentanglement approaches
[118].

B. Datasets

A major challenge in PCGML is the lack of large datasets
especially compared to other creative domains. Much of the
advancements in these fields is due to the ability to train
increasingly complex ML models on massive, publicly avail-
able datasets. While the VGLC has been a useful resource for
PCGML work, it is tiny compared to traditional ML datasets.
Moreover, most games only contain a handful of levels, thus
necessitating models to be trained on segments of levels rather
than the levels themselves to account for data scarcity. Hence,

future work could look at assembling larger datasets for games
and for game content not restricted to levels. A step in this
direction is the Video Game Affordances Corpus [119], which
attempts to gather data about the affordances and interactions
enabled by game levels. Sites such as the Video Game Atlas
[120] could also serve as a source for building game datasets.

C. Blending Genres

Most blending and domain transfer work in PCGML has
focused on games of one genre, particularly platformers and
even for our proposed system, we intend to focus on platform-
ers. However, it would be interesting to blend games from
different genres. What would a combination of Mario and
Zelda look and play like, for example? The previously men-
tioned SuperMash attempts to do this by treating one genre as
primary and the other as secondary, and draws elements from
the latter to incorporate into the former. Can we build systems
that can help design such games? This likely requires new
forms of game representation that can simultaneously encode
information about different genres. For example, platformers
are amenable to text-based representations while dungeons
are better represented using graphs. Are there representations
that offer the best of both these worlds? Investigating such
questions could help bring GDCML approaches closer to their
counterparts in music and visual art.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference
on computer vision and pattern recognition, 2009, pp. 248–255.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,”
in Advances in Neural Information Processing Systems, 2014.

[6] D. P. Kingma and M. Welling, “Auto-encoding Variational Bayes,” in
The 2nd International Conference on Learning Representations (ICLR),
2013.

[7] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-
agation and approximate inference in deep generative models,” arXiv
preprint arXiv:1401.4082, 2014.

[8] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of style,”
arXiv preprint arXiv:1508.06576, 2015.

[9] X. Huang and S. Belongie, “Arbitrary style transfer in real-time
with adaptive instance normalization,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 1501–1510.

[10] G. Ghiasi, H. Lee, M. Kudlur, V. Dumoulin, and J. Shlens, “Exploring
the structure of a real-time, arbitrary neural artistic stylization network,”
arXiv preprint arXiv:1705.06830, 2017.

[11] L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using
convolutional neural networks,” in Advances in neural information
processing systems, 2015, pp. 262–270.

[12] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky, “Texture
networks: Feed-forward synthesis of textures and stylized images,”
in Proceedings of the 33rd International Conference on International
Conference on Machine Learning, 2016.

[13] P. Isola, J.-Y. Zhu, T. Zhou, and A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[14] J.-Y. Zhu, T. Park, P. Isola, and A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017.

[15] J.-P. Briot, G. Hadjeres, and F.-D. Pachet, “Deep learning techniques for
music generation–a survey,” arXiv preprint arXiv:1709.01620, 2017.

[16] G. Hadjeres, F. Pachet, and F. Nielsen, “DeepBach: A steerable model
for Bach chorales generation,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70, 2017, pp. 1362–1371.

[17] N. Trieu and R. M. Keller, “JazzGAN: Improvising with generative
adversarial networks,” in Proc. of the 6th International Workshop on
Musical Metacreation (MUME), 2018.

[18] H. Chu, R. Urtasun, and S. Fidler, “Song from PI: A musically plausible
network for pop music generation,” arXiv preprint arXiv:1611.03477,
2016.

[19] Z. Zukowski and C. Carr, “Generating black metal and math rock: Be-
yond Bach, Beethoven, and Beatles,” arXiv preprint arXiv:1811.06639,
2018.

[20] R. Pieters and S. Winiger, “Creative AI: On the democratisation and
escalation of creativity,” https://medium.com/@creativeai/creativeai-
9d4b2346faf3, 2016.

[21] D. Ulyanov, “Fast neural doodle,”
https://github.com/DmitryUlyanov/fast-neural-doodle, 2016.

[22] A. J. Champandard, “Semantic style transfer and turning two-bit
doodles into fine artworks,” arXiv preprint arXiv:1603.01768, 2016.

[23] D. Bau, J.-Y. Zhu, H. Strobelt, B. Zhou, J. B. Tenenbaum, W. T. Free-
man, and A. Torralba, “Gan dissection: Visualizing and understanding
generative adversarial networks,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2019.

[24] C. Hesse, “Image-to-image demo: Interactive image translation with
pix2pix-tensorflow,” https://affinelayer.com/pixsrv/index.html, 2017.

[25] OpenDotLab, “Invisible cities,” https://opendot.github.io/ml4a-
invisible-cities/, 2016.

[26] L. Karacan, Z. Akata, A. Erdem, and E. Erdem, “Manipulating at-
tributes of natural scenes via hallucination,” ACM Transactions on
Graphics (TOG), vol. 39, no. 1, 2019.

[27] A. Roberts, J. Engel, Y. Mann, J. Gillick, C. Kayacik, S. Nørly,
M. Dinculescu, C. Radebaugh, C. Hawthorne, and D. Eck, “Magenta
studio: Augmenting creativity with deep learning in ableton live,” in
Proceedings of the International Workshop on Musical Metacreation
(MUME), 2019.

[28] C. Donahue, I. Simon, and S. Dieleman, “Piano genie,” in Proceedings
of the 24th International Conference on Intelligent User Interfaces,
2019, pp. 160–164.

[29] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and
A. Roberts, “Gansynth: Adversarial neural audio synthesis,” arXiv
preprint arXiv:1902.08710, 2019.

[30] N. Shaker, J. Togelius, and M. Nelson, Procedural Content Generation
in Games. Springer International Publishing, 2016.

[31] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[32] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: Reactive planning
and constraint solving for mixed-initiative level design,” IEEE Trans-
actions on Computational Intelligence and AI in Games, vol. 3, no. 3,
pp. 201–215, 2011.

[33] A. Smith and M. Mateas, “Answer set programming for procedural
content generation,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 3, no. 3, pp. 187–200, 2011.

[34] L. Johnson, G. N. Yannakakis, and J. Togelius, “Cellular automata for
real-time generation of infinite cave levels,” in Proceedings of the 2010
Workshop on Procedural Content Generation in Games, 2010, pp. 1–4.

[35] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K.
Hoover, A. Isaksen, A. Nealen, and J. Togelius, “Procedural content
generation via machine learning (PCGML),” IEEE Transactions on
Games, vol. 10, no. 3, pp. 257–270, 2018.

[36] A. Summerville and M. Mateas, “Super Mario as a string: Platformer
level generation via LSTMs,” in Proceedings of the 1st International
Joint Conference on DiGRA and FDG, 2016.

[37] M. Guzdial and M. Riedl, “Game level generation from gameplay
videos,” in Twelfth Artificial Intelligence and Interactive Digital En-
tertainment Conference, 2016.

[38] S. Snodgrass and S. Ontañón, “Experiments in map generation using
Markov Chains,” in Proceedings of the 9th International Conference
on the Foundations of Digital Games, 2014.

[39] V. Volz, J. Schrum, J. Liu, S. Lucas, A. Smith, and S. Risi, “Evolving
Mario levels in the latent space of a deep convolutional generative
adversarial network,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2018.

[40] R. Jain, A. Isaksen, C. Holmgård, and J. Togelius, “Autoencoders for
level generation, repair and recognition,” in Proceedings of the ICCC
Workshop on Computational Creativity and Games, 2016.

[41] Nintendo, “Super Mario Bros.” Game [NES], 1985.
[42] ——, “The Legend of Zelda,” Game [NES], 1986.
[43] id Software, “Doom,” Game [PC], 1993.
[44] M. J. Guzdial and M. O. Riedl, “Combinatorial creativity for procedural

content generation via machine learning,” in Workshops at the Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[45] S. Snodgrass and S. Ontañón, “An approach to domain transfer in
procedural content generation of two-dimensional videogame levels,” in
Proceedings of the Twelfth AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE-17), 2017.

[46] S. Snodgrass and A. Sarkar, “Multi-domain level generation and
blending with sketches via example-driven BSP and variational autoen-
coders,” in Proceedings of the 15th Conference on the Foundations of
Digital Games, 2020.

[47] M. Guzdial and M. Riedl, “Learning to blend computer game levels,” in
Proceedings of the Seventh International Conference on Computational
Creativity, 2016.

[48] A. Sarkar and S. Cooper, “Blending levels from different games using
LSTMs,” in Proceedings of the AIIDE Workshop on Experimental AI
in Games, 2018.

[49] A. Sarkar, Z. Yang, and S. Cooper, “Controllable level blending
between games using variational autoencoders,” in Proceedings of the
AIIDE Workshop on Experimental AI in Games, 2019.

[50] M. Guzdial and M. Riedl, “Automated game design via conceptual
expansion,” in Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference, 2018.

[51] M. Guzdial, N. Liao, and M. Riedl, “Co-creative level design via
machine learning,” arXiv preprint arXiv:1809.09420, 2018.

[52] A. Sarkar, “Game design using creative AI,” in NeurIPS Workshop on
Machine Learning for Creativity and Design, 2019.

[53] Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song, “Neural style
transfer: A review,” IEEE transactions on visualization and computer
graphics, 2019.

[54] J. Johnson, “neural-style,” https://github.com/jcjohnson/neural-style,
2015.

[55] ml4a, “Pix2pix,” https://ml4a.github.io/guides/Pix2Pix/, 2016.
[56] A. Mordvintsev, C. Olah, and M. Tyka, “Inceptionism: Going deeper

into neural networks,” https://ai.googleblog.com/2015/06/inceptionism-
going-deeper-into-neural.html, 2015.

[57] “Runwayml,” https://runwayml.com/, 2018.
[58] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention

generative adversarial networks,” arXiv preprint arXiv:1805.08318,
2018.

[59] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN
training for high fidelity natural image synthesis,” arXiv preprint
arXiv:1809.11096, 2018.

[60] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
4401–4410.

[61] A. Hertzmann, “Aesthetics of neural network art,” arXiv preprint
arXiv:1903.05696, 2019.

[62] A. V. D. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet:
A generative model for raw audio,” arXiv preprint arXiv:1609.03499,
2016.

[63] L.-C. Yang, S.-Y. Chou, and Y.-H. Yang, “MidiNet: A convolutional
generative adversarial network for symbolic-domain music generation,”
arXiv preprint arXiv:1703.10847, 2017.

[64] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang, “Musegan:
Multi-track sequential generative adversarial networks for symbolic
music generation and accompaniment,” in Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

[65] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck, “A
hierarchical latent vector model for learning long term structure in
music,” in International Conference on Machine Learning, 2018.

[66] J. Engel, M. Hoffman, and A. Roberts, “Latent constraints: Learning
to generate conditionally from unconditional generative models,” arXiv
preprint arXiv:1711.05772, 2017.

[67] A. Roberts, J. Engel, S. Oore, and D. Eck, “Learning latent repre-
sentations of music to generate interactive musical palettes.” in IUI
Workshops, 2018.

[68] M. Dinculescu, J. Engel, and A. Roberts, “Midime: Personalizing a
musicvae model with user data,” in NeurIPS Workshop on Machine
Learning for Creativity and Design, 2019.

[69] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and
I. Sutskever, “Jukebox: A generative model for music,” arXiv preprint
arXiv:2005.00341, 2020.

[70] G. Yannakakis, A. Liapis, and C. Alexopoulos, “Mixed-initiative co-
creativity,” in Foundations of Digital Games Conference, 2014.

[71] N. Shaker, M. Shaker, and J. Togelius, “Ropossum: An authoring
tool for designing, optimizing and solving Cut the Rope levels,” in
Proceedings of the Ninth Artificial Intelligence and Interactive Digital
Entertainment Conference, 2013.

[72] ZeptoLab, “Cut the Rope,” Game, 2010.
[73] A. Liapis, G. Yannakakis, and J. Togelius, “Sentient Sketchbook:

Computer-aided game level authoring,” in Proceedings of the 8th
International Conference on the Foundations of Digital Games, 2013.

[74] T. Machado, D. Gopstein, A. Nealen, O. Nov, and J. Togelius, “AI-
assisted game debugging with Cicero,” in 2018 IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2018, pp. 1–8.

[75] A. Alvarez, S. Dahlskog, J. Font, and J. Togelius, “Interactive con-
strained MAP-Elites analysis and evaluation of the expressiveness of
the feature dimensions,” arXiv preprint arXiv:2003.03377, 2020.

[76] M. Charity, A. Khalifa, and J. Togelius, “Baba is y’all: Collaborative
mixed-initiative level design,” arXiv preprint arXiv:2003.14294, 2020.

[77] Hempuli, “Baba Is You,” Game, 2019.
[78] M. Cook, J. Gow, and S. Colton, “Danesh: Helping bridge the gap

between procedural generators and their output,” in 7th Workshop on
Procedural Content Generation. Goldsmiths, University of London,
2016.

[79] G. Smith, “Understanding Procedural Content Generation: A design-
centric analysis of the role of PCG in games,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 2014.

[80] M. Cook, S. Colton, and J. Gow, “The ANGELINA videogame design
system—part I,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 9, no. 2, pp. 192–203, 2016.

[81] ——, “The ANGELINA videogame design system—part II,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 9,
no. 3, pp. 254–266, 2016.

[82] M. A. Boden, The Creative Mind: Myths and Mechanisms. Psychology
Press, 2004.

[83] M. Popova, “Networked knowledge and combinatorial creativ-
ity,” https://www.brainpickings.org/2011/08/01/networked-knowledge-
combinatorial-creativity/, 2011.

[84] ——, “How Einstein thought: Why combinatory play is the secret ge-
nius,” https://www.brainpickings.org/2013/08/14/how-einstein-thought-
combinatorial-creativity/, 2013.

[85] K. Ferguson, “Creativity is a remix,”
https://www.youtube.com/watch?v=zd-dqUuvLk4, 2012.

[86] A. Kleon, “Steal like an artist,”
https://www.youtube.com/watch?v=oww7oB9rjgw, 2012.

[87] K. Kowalski, “The art of new ideas: Combinatorial creativity and why
everything is a remix,” https://www.sloww.co/combinatorial-creativity/,
2019.

[88] Nintendo, “Metroid,” Game [NES], 1986.
[89] Mossmouth, “Spelunky,” Game [PC], 2008.
[90] DigitalContinue, “SuperMash,” Game, 2019.
[91] G. Fauconnier and M. Turner, “Conceptual integration networks,”

Cognitive Science, vol. 22, no. 2, pp. 133–187, 1998.
[92] S. Ontañón and E. Plaza, “Amalgams: A formal approach for com-

bining multiple case solutions,” in International Conference on Case-
Based Reasoning, 2010.

[93] W. Wilke and R. Bergmann, “Techniques and knowledge used for
adaptation during case-based problem solving,” in Proceedings of
the International Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems, 1998.

[94] M. Guzdial and M. Riedl, “Conceptual game expansion,” arXiv preprint
arXiv:2002.09636, 2020.

[95] J. Gow and J. Corneli, “Towards generating novel games using con-
ceptual blending,” in Proceedings of the Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference, 2015.

[96] Nintendo, “Kid Icarus,” Game [NES], 1986.
[97] J. Gutierrez and J. Schrum, “Generative adversarial network rooms in

generative graph grammar dungeons for the legend of zelda,” arXiv
preprint arXiv:2001.05065v1, 2020.

[98] S. Thakkar, C. Cao, L. Wang, T. J. Choi, and J. Togelius, “Autoencoder
and evolutionary algorithm for level generation in lode runner,” in IEEE
Conference on Games, 2019.

[99] E. Giacomello, P. L. Lanzi, and D. Loiacono, “Doom level generation
using generative adversarial networks,” in IEEE Games, 2018.

[100] J. Schrum, J. Gutierrez, V. Volz, J. Liu, S. Lucas, and S. Risi,
“Interactive evolution and exploration within latent level-design space
of generative adversarial networks,” arXiv preprint arXiv:2004.00151,
2020.

[101] M. Guzdial, B. Li, and M. Riedl, “Game engine learning from video,”
in Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, 2017.

[102] S. Snodgrass, “Levels from sketches with example-driven binary space
partition,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, vol. 15, no. 1, 2019, pp.
73–79.

[103] A. Summerville, S. Snodgrass, M. Mateas, and S. Ontañón, “The
VGLC: The Video Game Level Corpus,” Proceedings of the 7th
Workshop on Procedural Content Generation, 2016.

[104] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differenti-
ation in PyTorch,” in NIPS Autodiff Workshop, 2017.

[105] A. Sarkar and S. Cooper, “Sequential segment-based level generation
and blending using variational autoencoders,” in Proceedings of the
11th Workshop on Procedural Content Generation in Games, 2020.

[106] L. V. D. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[107] P. Hamel and D. Eck, “Learning features from music audio with deep
belief networks,” in 11th International Society for Music Information
Retrieval Conference, 2010.

[108] C. Carr and Z. Zukowski, “Curating generative raw audio music with
D.O.M.E.” in Joint Proceedings of the ACM IUI 2019 Workshops,
2019.

[109] X. Zhang, Z. Zhan, M. Holtz, and A. Smith, “Crawling, indexing and
retrieving moments in videogames,” in Proceedings of the Foundations
of Digital Games, 2018.

[110] T. Denouden, “VAE latent space explorer,” https://denouden.dev/VAE-
Latent-Space-Explorer/, 2018.

[111] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold
approximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.

[112] E. Becht, C. Dutertre, I. W. H. Kwok, L. Ng, F. Ginhoux, and
E. Newell, “Evaluation of UMAP as an alternative to t-SNE for single
cell data,” in bioRxiv, 298430, 2018.

[113] K. Phillips, T. Blankensmith, and A. Roberts, “Beat blender,”
https://experiments.withgoogle.com/ai/beat-blender/view/, 2018.

[114] T. Blankensmith, “Melody mixer,”
https://experiments.withgoogle.com/ai/melody-mixer/view/, 2018.

[115] “Latent loops,” https://teampieshop.github.io/latent-loops/, 2018.
[116] A. Hoyt, M. Guzdial, Y. Kumar, G. Smith, and M. O. Riedl,

“Integrating automated play in level co-creation,” arXiv preprint
arXiv:1911.09219, 2019.

[117] K. Sohn, H. Lee, and X. Yan, “Learning structured output representa-
tion using deep conditional generative models,” in Advances in neural
information processing systems, 2015, pp. 3483–3491.

[118] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-VAE: Learning basic visual
concepts with a constrained variational framework,” Proceedings of
the International Conference on Learning Representations, 2017.

[119] G. R. Bentley and J. C. Osborn, “The videogame affordances corpus,”
in 2019 Experimental AI in Games Workshop, 2019.

[120] “The video game atlas,” https://vgmaps.com.

