
Monte Carlo Tree Search Strategies in 2-Player
Iterated Prisoner Dilemma Games

Garrison W. Greenwood
Dept. of Electrical & Computer Engineering

Portland State University
Portland, OR 97207–0751 USA

Email: greenwd@pdx.edu

Daniel Ashlock
Dept. of Mathematics and Statistics

University of Guelph
Guelph, Ontario, Canada

Email: dashlock@uoguelph.ca

Abstract—This study compares a player using Monte Carlo

Tree Search (MCTS) against a variety of well-known Prisoner’s

Dilemma strategies in 2-player tournaments. The MCTS player

has a simple structure and a reasonable computation budget.

Nevertheless, it is highly competitive against all tested strategies.

As the MCTS player constructs its game tree, it updates the

probability of cooperation in response to an opponent’s cooper-

ation or defection. The trajectories of these updatings over the

course of play are found to converge toward optimal counter-

strategies against the particular opponent being played. In some

cases the speed of progress toward an optimal counter strategy

hinders the MCTS player.

I. INTRODUCTION

Social dilemmas are situations where people must choose
between cooperation, which benefits others, and defection
which benefits only the individual. Game theorists attempt
to identify the conditions under which cooperation persists
by constructing and analyzing social dilemma games. The
most widely studied such game is prisoner’s dilemma (PD). In
the 2-player version players simultaneously announce whether
they will cooperate (C) or defect (D) and receive a reward
or payoff depending on their choice and the choice of the
other player. No prior communication is permitted. Defection
is the best strategy regardless of what the other player chooses.
However, if both players cooperate they get a larger payoff
than if they both defect. Therein lies the dilemma. In the
iterated prisoner’s dilemma (IPD) game players interact over
a fixed, but unknown number of rounds. Repeated interactions
help develop more effective strategies—i.e., strategies that
generate wiser C or D decisions—because now an opponent’s
prior behavior can be incorporated into the strategy decision
process.

Axelrod [1] invited game theory experts to participate in an
IPD tournament. The submitted strategies were paired off to
see which performed the best. The best performing strategy, on
average, was the simplest one: TIT-FOR-TAT where a player
initially cooperates and then does whatever the opponent did in
the previous round. TIT-FOR-TAT was once again the winner
in a second tournament [2].

Monte Carlo Tree Search (MCTS) searches for optimal
decisions in a given problem domain. It conducts the search

using random samples in the decision space and then uses
those results to incrementally construct a search tree [3]. It
has a produced impressive results in board games [4], video
games [5] and recently in economic games [6].

In this paper we present the results of a 2-player IPD tour-
nament patterned after the Axelrod tournaments. Our player
used an MCTS strategy and competed another player using
some other popular PD strategy. The MCTS player was highly
competitive, accumulating payoffs (at least) as good as a TFT
player and considerably higher payoffs than players using
other PD strategies.

The paper is organized as follows. In the next section the
details of the IPD tournament are given. The strategies used
by other players are also described. Section III describes the
MCTS player. Tournament results are presented and discussed
in Section IV. Finally future research efforts are identified in
Section V.

II. THE IPD TOURNAMENT

Our tournament was not round robin because the objective
was not to duplicate what Axelrod had already done. Instead,
each tournament competition pitted a player using a MCTS
strategy against another player using one of the popular PD
strategies (described below). Each competition lasted 200
rounds. After each round the two players receive payoffs as
indicated in the payoff matrix

✓ C D

C R,R S, T
D T, S P, P

◆
(1)

where R is the reward for mutual cooperation, T is the
temptation to defect, S is the sucker’s payoff obtained by a
cooperator when the opponent defects, and P is the payoff for
mutual defection. (The first entry is the row player payoff and
the second entry the column player payoff.) One constraint
is T > R > P > S thereby creating the social dilemma.
T > R and P > S make defection more profitable than
cooperation, but R > P means mutual cooperation (the Pareto
optimal solution) pays more than mutual defection (the Nash
Equilibrium). An additional constraint is 2R > T + S. This
inequality prevents alternating between C and D to get a
higher payoff than mutual cooperation. Payoffs were summed

978-1-7281-4533-4/20/$31.00 c�2020 IEEE

over the 500 rounds and the winner was the player with the
highest accumulation.

In our tournament we used the same payoff matrix values
as Axelrod. That is,

✓ C D

C 3, 3 0, 5
D 5, 0 1, 1

◆
(2)

The MCTS player competed against a player using the
following PD strategies:

• Always cooperate (ALL-C) Cooperate every round.
• Always defect (ALL-D) Defect every round.
• TIT-FOR-TAT (TFT) Cooperate on first round. Then

copy what opponent did in previous round.
• TIT-FOR-TWO-TAT (TF2T) Cooperate on first round.

Defect only when opponent defects two times.
• Generous TIT-FOR-TAT (GTFT) Same as TFT except

cooperates with probability � if opponent defects.
• Pavlov (PAV) Cooperate on first round. On sucessive

rounds it cooperates if the players made the same play,
both cooperated or both defected.

• Fortress 3 (FORT3) Cooperates indefinitely with a co-
operator but only after the opponent makes 2 defections.
If opponent ever defects, 2 defections are needed before
it cooperates again. Figure 1 shows a finite state machine
implementation. The starting state is numbered 1.

• sugar-CDC (S-CDC) Plays ALL-D unless opponent
“discovers” the password CDC—i.e., opponent chooses
C,D,C in three successive rounds. Thereafter plays
TF2T.

• sugar-DDD (S-DDD) Same as S-CDC except password
is DDD.

Fig. 1. A finite state machine for the FORT3 strategy. Transition arrows
indicate opponent previous play. States are labelled ID/R where ID is the
state ID and R is the player’s response. State 1 is the initial state.

III. THE MCTS PLAYER

In this section an overview of MCTS and regret is given.
This will be followed by a description of the MCTS player
used in this study.

A. MCTS overview
The MCTS algorithm iteratively constructs a game tree

indicating possible moves (strategy choices) in a game [3]. The
root node shows the current game state and the K children of
this note represent possible next moves. The root node and
its children constitute a multi-arm bandit problem. After the
iterative search is finished the best child of the root node is
the next move.

Each MCTS iteration, shown in Figure 2, executes four
steps: selection, expansion, rollout and backpropagation. The
selection policy starts at the root node and traverses the game
tree until an expandable node is found. The expansion step
expands the node. A rollout (simulation) is then conducted
from this new leaf node. The rollout outcome is then back-
propagated up the tree updating the statistics at all nodes in a
path back to the root node. This process is repeated until the
computation budget is exhausted. The best child of the root
node then specifies the next move.

Fig. 2. The four basic steps of a MCTS. These steps are repeated until the
computational budget is exhausted. The action associated with the best child
of the root node is then chosen as the next strategy choice or move in the
game.

The four MCTS steps are grouped into two main policies: a
Tree Policy that performs selection and expansion to generate
a new leaf node and a Default Policy that does the rollout.
Algorithm 1 shows all of the steps in a MCTS. v0 is the root
node of the game tree and TreePolicy traverses the game tree
producing a new leaf node vl 1. The DefaultPolicy does the
rollout which results in a value 4. Backup uses this value
to update vl and all nodes in the path back to the root node.
This process is repeated for numerous iterations, each iteration
adding a new leaf node. After the computational budget is
exhausted, F(BestChild) picks child of the root node with the
highest mean value. The best child node indicates the next
move in the game (explained in Section III-C).

B. MAB & Regret
Slot machines are not built to lose money. Hence, they

are sometimes referred to as a one-arm bandit. It the multi-
arm bandit (MAB) problem there are K slot machines. Each
machine i has an expected payoff ⇠i which, for convenience,
is assumed to be on the unit interval. The objective is to pick a

1In this context a “leaf node” represents a nonterminal state that can be
expanded during the simulation phase.

Algorithm 1 MCTS
function MONTECARLOTREESEARCH(s0)

create root node v0 for current game state s0
while computation budget not exhausted do

vl TreePolicy(v0)
4 DefaultPolicy(s(vl))
Backup(vl,4)

end while

return F(BestChild(v0))
end function

machine at each round that hopefully will provide the highest
payoff. The problem arises because the player doesn’t know
the payoff distributions of each machine so the optimal choice
is not obvious.

Let I(n) be the slot machine to play in round n 2
{1, 2, · · · , T} according to some policy P . Policy P also
recommends J(n) as the best machine to play after the T
rounds are completed. P is optimal if it accumulates the
highest possible payoff. This goal can also be expressed as
minimizing the cumulative regret

CRn =
nX

t=1

(⇠⇤ � ⇠I(t)) where ⇠⇤
def
= max

1iK
⇠i (3)

Regret in round t is the disappointment in not choosing the
machine that would produce the highest payoff. Cumulative
regret CRn is the total regret accumulated over n rounds.

Conversely, simple regret

SRn = ⇠⇤ � ⇠J(n) (4)

only indicates the disappointment for not recommending the
best machine to play.

MCTS tries to pick the best child of the root node in the
game tree. This will be a player’s next best move. The root
node and it’s K children constitute a K-arm bandit problem.
During each MCTS iteration a root node child must be chosen
to begin the expansion step. Many researchers use the upper
confidence bound for trees (UCT) policy [7]. This policy picks
child j using the following formula:

j = Argmax
i

0

@Xi + c

s
ln(n)

ni

1

A (5)

where n represents how many times the parent node was
visited and ni the number of times child i was visited. Xi

is the mean value of node i (assumed to have support [0,1]).
The first term in the Eq. (5) argument is an exploitation term
whereas the second term is an exploration term. c is a user-
defined constant designed to balance the search process. UCT
expands a game tree by trying to minimize cumulative regret.
✏-greedy is another selection policy but it bounds simple

regret. This policy picks the child having the highest X with
probability 1� ✏ and a random arm otherwise.

Studies have shown minimizing simple regret when choos-
ing a child of the game tree root node but minimizing
cumulative regret when choosing child nodes elsewhere tends
to produce better MCTS results [6], [8].

C. MCTS player description
For convenience let A be the MCTS player and B his

opponent playing one of the strategies listed in Section II. A

has two parameters p and q. A chooses C or D in the current
round depending on what B played in the previous round. p is
the probability of choosing C if B cooperated while q is the
probability of choosing C if B defected. In each round MCTS
only expands the p or q game tree, whichever is appropriate;
the other parameter is not changed. In what follows only the
p game tree is discussed, but the same mechanism is used for
the q game tree.

Prior to choosing C or D MCTS searches for a suitable p
value. s0 is the current game state—i.e., s0 = p. All game tree
nodes have three children, each indicating how the p value is
altered. The modifications to p are listed in the table below

TABLE I
PLAYER ACTIONS

child node action

v1 p+ "
v2 p� "
v3 no change

" is randomly chosen to be between 2–5% of the p value
in the parent node. Thus, p can be slight increased, slightly
decreased, or left unchanged.

During the rollout A uses the current p or q value in the
expanded node as appropriate and B uses the PD strategy
under consideration. The payoffs are accumulated using the
payoff matrix given in Eq. (2) and then averaged. The value
backpropagated has support [0,1]. Specifically,

� =
Avg � S

T � S

where T and S are taken from Eq. (1).

IV. RESULTS & DISCUSSION

The MCTS player uses two parameters p and q. p is the
probability of cooperating in the current round given the PD
player cooperated in the previous round. q has a similar role
if the PD player defected in the previous round. Each round
a game tree is only generated for the relevant probability
while the other probability is left unchanged. During game
tree expansion the children of the root node used an ✏-greedy
selection policy whereas a UCT selection policy was used
elsewhere. The MCTS player was initialized with p = q = 0.5
and always cooperates in the first round. Despite a small
rollout size of 50 and 60 algorithm iterations per round, in all
cases the MCTS player quickly learned good p and q values.

MCTS is a stochastic process so independent runs will
produce slightly different results. Nevertheless, numerous tests

were conducted for each PD strategy and all outcomes were
qualitatively the same—i.e., in no instance was the long-term
behavior different. Typical runs are shown in Figures 3–11.
Table II shows the accumulated payoffs from the these runs.

TABLE II
ACCUMULATED PAYOFFS AFTER 200 ROUNDS

PD Strategy MCTS Player PD Player

All-C 2418 123
All-D 472 612
TFT 1479 1479
GTFT 1512 1377
TF2T 1636 1151
PAV 1383 518
FORT3 1034 584
S-CDC 1661 1126
S-DDD 1608 1103

All-D is the optimal strategy against ALL-C. As shown in
Figure 3, MCTS rapidly decreased the p value. Since the PD
player never defected, q didn’t have to change. Consequently,
there was no need to generate its game tree. ALL-D is
also optimal against ALL-D. Figure 4 shows now q rapidly
decreased and it is unnecessary to generate the p game tree.

Fig. 3. ALL-C

ALL-D was the only PD strategy that outperformed MCTS.
In fact, an ALL-D player will always do better than a MCTS
player. This outcome is not surprising considering how the
MCTS player was designed. p and q are both initialized at 0.5,
putting it at a competitive disadvantage against a PD player
who always defects. Nevertheless, it quickly learned q ! 0
was the appropriate response. p remained unchanged because
an ALL-D player never cooperates.

The behavior against TFT shown in Figure 5 is particularly
interesting. The p value quickly rose to over 98% and there-
after defected in only a few rare instances. Indeed, MCTS
and TFT achieved the same payoff. This is easily explained.

Fig. 4. ALL-D

Suppose the MCTS cooperated for many rounds but defected
in round i. Then the TFT player would defect in round i+1.
With such a high probability of cooperation, it is likely the
MCTS player would cooperate in round i+ 1. Thus, the gain
in round i was lost in round i+ 1. At best the MCTS player
would accumulate a payoff of T more than the TFT player
regardless of the number of rounds. This higher payoff would
only occur if the TFT player cooperated in the last round and
the MCTS player defected. The q value rose to about 0.7 and
then leveled off. This can be attributed to the high p terminal
value. The q game tree was rarely expanded—which means
q was rarely updated—because in nearly all cases the TFT
player was cooperating.

Fig. 5. TFT

GTFT acts like TFT except if the opponent defects, GTFT
will still cooperate with probability � = 1/3. The MCTS
behavior is shown in Figure 7. p rises rapidly but then

defects frequently resulting in more than a 10% higher ac-
cumulated payoff. The MCTS player learned to exploit the
GTFT tendency to still possibly cooperate even if the opponent
defected in the previous round. The q value did vary more than
TFT because defections by the PD player still occurred with
probability 1� �.

Fig. 6. TF2T

In TF2T two consecutive defections are necessary before it
defects. As shown in Figure 6 the MCTS player increases p
and q but instead of approaching 1.0, like in TFT, it levels off
around 0.7. It quickly learns to exploit the greater tolerance
the PD player has for defection. The two sugar strategies,
shown in Figures 8 and 9 switch to TF2T after the password
is discovered. Since initially p and q equal 0.5, C and D
choices appear frequently making it relatively easy to discover
short passwords. Consequently, for both of these strategies the
MCTS player quickly switches to a strategy similar to that
shown in Figure 6.

ALL-D is an optimal strategy against PAV because it causes
the PD player to regularly switch from D to C. Figure 10
shows the MCTS player quickly learns to decrease p and q to
an ALL-D strategy.

Referring to Figure 1 it is easy to see an All-D causes
FORT3 to regularly cooperate. Figure 11 shows a MCTS
player quickly learns to drive p and q to 0.

For some PD strategies, such as ALL-C, an ALL-D strategy
is optimal. The MCTS player only lets p and q asymptotically
approach 0 but never equalling 0. This results from the MCTS
design. The p and q values can decrease in any given round
by at most 5% of the current p or q value. This is analogous
to an individual standing 1 meter from a wall and, at each
step, moving half the distance to the wall. He may get
infinitesimally close to the wall, but regardless of how many
steps are taken, he will never actually touch the wall.

It is common in studies such as described here to investigate
invasion. Invasion occurs when a homogenous population of
N > 2 players using the same strategy sees a small number

Fig. 7. GTFT

Fig. 8. S-CDC. Password detected in iteration 5.

of an alternative strategy introduced. The alternative strategy
successfully invades the population if it grows and eventually
becomes the strategy used by all players. Researchers derive
formulas for fixation probabilities and take-over times. We
did not do this for several reasons. Greenwood [9] previously
pointed out that these derivations often assume weak selection
where payoffs have only a small effect on fitness values. Weak
selection helps simplify the mathematics. The problem is weak
selection values do not carry over to higher selection intensity
values—especially with the higher values observed in human
experiments. Moreover, examples of successful invasion in
human populations is lacking, which means studying fixation
probabilities has dubious value.

A limitation of the current implementation of the MCTS
is that it must have the opposing players strategy available
to perform rollouts. This is analougous to a problem with

Fig. 9. S-DDD. Password detected in iteration 16.

Fig. 10. PAV

MCTS as used in games: it requires some sort of foreward
model of the opponent to function efficiently. In a tournament
situation, against other players where the only feedback is
permitted is actual plays of the game in the tournament,
this could become problematic. In learning optimal strategies
against known opponents, the MCTS method is effective in
discovering the correct mixed strategy of C and D to use
against an opponent.

V. CONCLUSIONS & FUTURE WORK

In this work we have shown that a MCTS player is highly
competitive in 2-player IPD games against a variety of well-
known strategies. The computational budget is quite reason-
able and the payoffs can be considerably higher. Ashlock, et.
al [10] recently suggested agents with phenotypic plasticity—
i.e., agents encoded as finite state machines but with multiple

Fig. 11. FORT3

execution threads—can be effective IPD players. We have not
compared MCTS players against such players. This will be
the focus of future work.

Starting with the work of Lindgren and Nordhal [11] a
number of researchers have used lookup tables conditioned
on the opponents and their own previous actions. The cur-
rent MCTS implementation is, in fact, can be construed as
refining such a lookup table. The lookup table is memory
depth one, conditioned on the opponents last action. The
MCTS player could be modified to be conditioned on greater
memory depths, something that would increase the number
of probabilities being updated by the algorithm. Too great
a memory depth would quickly saturate the MCTS training
algorithm’s ability to gather information, but conditioning on
the opponents last to actions, or on both players last action,
would give the MCTS algorithm a richer strategy space to
draw upon.

Against the player AllD, the MCTS algorithm moved toward
the optimal counter-strategy of always defecting, but faster
progress would have yielded better scores. This suggests that
adding to the tree moves that not only update the probabilities
p and q but modify the range in which ✏ is chosen would
permit the algorithm to adapt its adaption rate against simple
opponents like AllD. This would clearly help with such simple
opponents, but its value against more complex opponents is an
open question.

It might be interesting to play two MCTS players against
one another, starting with different initial values for p and q.
Since this amounts to characterizing model dynamics, it would
probably not yield useful information on how to effectively
play prisoner’s dilemma. Rather, it could be used to tune
the TreePolicy and DefaultPolicy for speed of adaption and
effectiveness.

REFERENCES

[1] R. Axelrod. Effective choice in the prisoner’s dilemma. J. Conflict
Resolut., 24(1):3–25, 1980.

[2] R. Axelrod. More effective choice in the prisoner’s dilemma. J. Conflict
Resolut., 24(3):379–403, 1980.

[3] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey
of monte carlo tree search methods. IEEE Trans. on Comput. Intell. and
AI in Games, 4(1):1–43, 2012.

[4] M. Winands. Handbook of Digital Games and Entertainment Technolo-
gies, chapter Monte carlo tree search in board games, pages 47–76.
Springer Singapore, 2017.

[5] B. Tong and C. Sung. A monte carlo approach for ghost avoidance in
the Ms. pac man game. In Proc. IEEE Consum. Electron. Soc. Games
Innov. Conf., 2011 DOI: 10.1109/ICEGIC.2010.5716879.

[6] G. Greenwood and D. Ashlock. Monte carlo strategies for exploiting
fairness in N-player ultimatum games. In Proc. 2019 IEEE Conf. on
Games, pages 163–169, 2019.

[7] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In
Proc. 2006 Eur. Conf. Mach. Learn., pages 282–293, Berlin, Germany
2006.

[8] D. Tolpin and S. Shimony. MCTS based on simple regret. In 26th AAAI
Conf. on Artif. Intell., pages 570–576, Toronto, ON, Canada, 2012.

[9] Garrison W. Greenwood. On the Study of Human Cooperation via
Computer Simulation: Why Existing Computer Models Fail to Tell Us
Much of Anything. Morgan & Claypool, 2019.

[10] D. Ashlock, E. Kim, and A. Saunders. Prisoner’s dilemma agents with
phenotypic plasticity. In 2019 IEEE Conf. on Games, pages 1–8, 2019.

[11] K. Lindgren and M. Nordahl. Evolutionary dynamics of spatial games.
In Proc. Int’l Sem. on Complex Sys.: from complex dynamical sys. to
sci. art. reality, pages 292–309. Elsevier North-Holland, Inc., 1994.

