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Abstract—This paper introduces the Feature Space Search
algorithm (FESS) that projects a single-agent application search
space onto an abstract space that is defined by features of the
domain. FESS works in this smaller space by directing the search
from the projected initial state towards the projected final state.
A state transition in the feature space maps to one or (usually)
many moves in the domain space. Each of these transitions leads
to a change in one or more features, with the FESS algorithm
favoring transitions that make progress towards the projected
final state. Each feature can be thought of as being a heuristic,
and FESS is providing multi-objective guidance from the feature
space to the search in the application domain.

FESS is demonstrated using the challenging single-agent prob-
lem of Sokoban. For over twenty years, numerous approaches
have been used to try solving the 90 problems in the standard
benchmark test suite. FESS, using a set of domain-specific
features, is the first program that solves all 90 problems. Further,
although the experimental standard is to allocate 10 minutes
of solving time per problem (900 minutes), the FESS approach
solves the entire test set in less than 4 minutes.

Index Terms—heuristic search, single-agent search, path plan-
ning, Sokoban

I. INTRODUCTION

Several decades of research into single-agent search have
produced impressive results on a number of illustrative
(sliding-tile, Rubik’s Cube) and real-world (path-finding, job-
shop scheduling, robotics) applications. The A* algorithm and
variants on it have received the most research attention [1].
However, A* has limitations (memory) and variants to address
this also pay a price (time). Exponential growth in the search
tree is a limiting factor.

A* implementations use a single heuristic value to guide
the search. For many applications, this is sufficient. However,
as is well known, these algorithms can get stuck in plateaus
– regions in the search space where the heuristic is incapable
of differentiating between nearby states [2]. These plateaus
can have a dramatic impact on performance. An appropriate
approach to minimize this problem is the use of multiple
heuristics. If they are well chosen, ideally orthogonal to each
other, then the weakness of a heuristic in a search region may
be offset by the strength of another in the same region. Single-
agent search algorithms can incorporate multiple heuristics
by maximizing or combining their values. What if the search

considered the impact of multiple heuristics separately, trying
to improve the value of all of them?

This paper introduces the Feature Space Search algorithm
(FESS) that projects a single-agent search application onto an
abstract space that is defined by features of the application
domain. Each feature maps to a numerical assessment and
can be thought of as being a heuristic. However, instead of
combining feature values into a single evaluation, features are
viewed as a multi-dimensional search space. FESS provides
multi-objective guidance to the search in the application do-
main (e.g., [3]). The start and goal states are projected onto
the feature space. Within the feature space, a transition usually
reflects many moves in the domain space. The FESS algorithm
rewards states that have progressed in the feature space by
biasing their further exploration in the domain space.

While high-level transitions happen in the feature space, a
search tree in the original domain space is maintained. In the
traditional A* approach, the search is guided by the f = g+h
estimate of the solution cost from each node (g=cost from start
to current state; h=estimated cost from current to goal state)
[4]. In contrast, in FESS each move has a weight (priority)
that reflects how promising it is to lead to a solution (with
no regard to the solution cost). The feature space informs the
assignment of weights to moves, being biased towards moves
that (eventually) lead to progress in the feature space.

The single-agent domain of Sokoban is used to demon-
strate FESS. Most Sokoban implementations use single-agent
search with a sophisticated Manhattan distance heuristic and
a plethora of enhancements (e.g., [5]). On the standard 90-
problem XSokoban test suite benchmark [6], no program has
been able to solve the entire set within the 10-minute time
allocation per problem (900 minutes) – despite almost 25
years of research on this problem. The FESS-based Sokoban
solver discussed in this paper is the first program to solve all
90 problems. Further, this is accomplished using less then 4
minutes of computing time in total.

The major research contributions of this paper include:
• The FESS algorithm for doing a multi-objective search

in an abstracted domain space.
• FESS addresses the problems posed by long solutions and

by directed moves that may cause dead ends.
• New features (heuristics) for the Sokoban puzzle domain.
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Fig. 1. Feature Space.

• The first program to solve all 90 problems in the standard
Sokoban benchmark test suite.

II. FESS

For clarity, we differentiate between the feature space (FS;
abstract space; with cells and transitions from cell-to-cell) and
the application domain space (DS; actual space; with states and
moves from state-to-state).

Consider using A* to solve a sliding tile puzzle problem
using the Manhattan distance heuristic. A move consists of
sliding a tile in one of four possible directions. Each move
will result in the heuristic (estimate of the number of moves
to completion) being adjusted up or down by one. This solving
method is characterized by the use of a single heuristic, and
single moves in the domain space. Manhattan distance can be
viewed as a one-dimensional feature space.

Now consider a domain where multiple heuristics, or fea-
tures, are used to guide the search. Figure 1 shows an example
of a FS. There are two features with the start state having
feature values (0,0) and the goal (6,3). This example illustrates
the ideal case where each transition played in the FS brings
the problem closer to the goal state in one of the dimensions.
A change in feature value could be the result of a single move
in the original DS (e.g., as with Manhattan distance), but it
may map to many moves. For example, when solving Rubik’s
cube, a feature could be the number of solved faces of the
cube. Transitioning from a state with, say, 0 solved faces to
one with 1 solved face is a single transition in the feature
space, but likely requires many moves in the original DS.

Traditional single-agent search algorithms combine multiple
heuristics into a single value (usually the maximum or a
linear combination). Instead features are treated as a multi-
dimensional search space. Consequently, FESS does not need
an evaluation function (how good the state is) or a heuristic
function (how far it is from the goal). The start and goal states
of an application are projected onto the FS. The objective
of a search is to progress from the projected start to the
projected goal cell. In Figure 1 transitioning from cell (4,1) to
cell (4,2) should be encouraged, while from cell (4,1) to cell
(4,0) discouraged. Note that for difficult problem instances,
a straight line to the goal may not possible; diversion to a
“poorer” cell might be necessary to find a solution.

Initialize:
Set feature space to empty (FS)
Set the start state as the root of the search tree (DS)
Assign a weight of zero to the root state (DS)
Add feature values to the root state (DS)
Project root state onto a cell in feature space (FS)
Assign weights to all moves from the root state (DS+FS)

Search:
while no solution has been found

Pick the next cell in feature space (FS)
Find all search-tree states that project onto this cell (DS)
Identify all un-expanded moves from these states (DS)
Choose move with least accumulated weight (DS)
Add the resulting state to the search tree (DS)
Added state’s weight = parent’s weight + move weight (DS)
Add feature values to the added state (DS)
Project added state onto a cell in feature space (FS)
Assign weights to all moves from the added state (DS+FS)

Fig. 2. FESS Algorithm.

The feature space has N features, with each feature taking
on one of Vi values. Thus the FS might contain as many
as

∏N
i=1 Vi cells. Transitioning from one cell to the next

(good or bad) may require a sequence of moves in the DS.
FESS rewards DS states that have progressed in the FS by
focusing the search on their continued exploration. The FS is
not searched, but it provides a high-level roadmap for making
progress in the DS.

More precisely, the FESS algorithm maintains both a tra-
ditional search tree in the DS and an abstracted projection in
the FS. Each state in the tree maps to one cell in the feature
space, and the cells in the FS are linked to all of their source
nodes in the tree. The tree is initialized with the start state as
the root. As new states are considered, they are added to the
tree, along with their projected FS values.

FESS works by using the feature space as multi-objective
guidance. A cell is selected from the FS, and all nodes in
the search tree that project to it are considered for possible
expansion. FESS focuses on states in the DS that are likely to
make progress in the abstract space. By doing so, it combines
the guidance of the abstract space with the actual moves being
made in the DS. Intuitively, moves that do not (eventually) lead
to a substantive change (i.e., progress in the FS) will gradually
lose the algorithm’s attention, while those that make progress
are rewarded. This is done by giving moves accumulating
weight. Figure 2 presents the FESS algorithm.

A. Search Tree

The algorithm uses a tree data structure that reflects states
explored in the domain space. Each node contains the state,
feature values for that state, a list of all possible moves from
that state, and weight information for the node and all moves
leading from the node. The search explores new parts of the
tree by expanding a state. One of the moves from the state is
selected and applied, and the resulting state is added to the
tree as a new leaf node (if not already in the tree). For this



Fig. 3. The DS/FS Relationship Using 3 FS Cells (each shown with a different
color).

new node, the feature values, list of new possible moves, and
weights are computed and stored.

The search uses a transposition table to avoid analyzing
identical states more than once [7]. It also flags a node that
has no valid moves – a dead end. If all of a node’s children are
dead ends, then the node becomes a dead end too (and this can
be propagated upwards). The search ignores dead-end nodes.

B. Processing Feature Space Cells

FESS works by going cyclically over all non-empty cells
in the FS. For each such cell, the algorithm examines all
search tree states that project onto this cell. Now the algorithm
considers the possible moves from these states, but only moves
that were not already expanded. Among all these moves, the
algorithm picks the one with the least accumulated weight.
The selected move is applied, and the resulting state is added
to the tree. The new state is now projected onto the FS.

Cyclically going through the cells in the FS is unusual. This
is not a requirement of the algorithm; just an observation that
this balances the exploration and exploitation aspects of the
search. When newly populated cells are visited, the algorithm
exploits its most promising options. When “older” cells are
considered, the algorithm explores for alternative routes in the
FS. In principle, any selection algorithm will work as long as
all cells get coverage.

Figure 3 presents a simple example of FESS iterations. In
the DS, the start state and three nodes have been added to the
tree. The FS has three cells, and the connection between FS
states and DS states is shown by color. A FESS scan starts
by choosing cell A. This cell has only one matching state in
DS (7). The least weight move is expanded (3), resulting in
a new state with accumulated weight of 7 + 3 = 10. Now
FESS continues to cell B. Here there are two states in the
DS (0 and 5), and the possible weights of the un-expanded
states are 0 + 19 = 19 and 5 + 25 = 30. A new node with
the minimum accumulated weight of 19 is added below the
root. Finally, the scan continues to cell C. In this example,
cell C is closer to the projected final state in the FS. FESS
expands the node in the DS (17), giving rise to a new node
with an accumulated weight of 25 (minimum of 17 + 8 = 25
and 17+11 = 28). Note that the expanded node (weight= 17)
is not close to the root and does not have a small weight. Still,

the FESS algorithm chooses it because it looks attractive in
the FS. This example illustrates how progress in the feature
space translates to move decisions in the domain space.

In the example, the pass through cells A, B, and C resulted
in adding three new nodes to the tree. Each new node maps
to a cell in the FS: A, B, C, or a new feature combination
that has not yet occurred in the search. The FESS algorithm
continues by cycling through the cells again and again until a
solution has been found.

C. Weights

Some moves in the DS have a greater chance of changing
the projected cell in the FS. The simplest example is a move
that directly corresponds to a cell transition, preferably in the
direction suggested by the FS. Other cases can be moves
that improve the chance of a later transition, for example
by increasing the number of possible moves. If these useful
moves are tested early on, then progress in the FS can be
rapid. To implement this, the FESS algorithm assigns weights
to moves. Moves with small weights get prioritized by the
search, resulting in the early populating of empty cells (leading
to their exploration).

Identifying promising moves and assigning weights to them
is domain specific. Using weights properly can have a dramatic
effect on the search efficiency.

D. Completeness

FESS does not prune any move, unless it has been proven
to lead to a dead end. Given a finite search space, FESS is
guaranteed to eventually find a solution if it exists.

E. Comparison to Other Algorithms

Conceptually, FESS can be considered a combination of a)
a strategic plan (improving features) which takes place in the
FS, and b) a tactical search on the state moves that takes place
in the DS. It was originally motivated by the problem of long
solution lengths and dead ends. For FESS, it does not matter
how long the solution is. As empty FS cells become populated,
the algorithm ensures they are considered by its repeated scan
of the FS. Compare this to breadth-first search, where plans
needing a large number of transitions cannot practically be
found.

The search may consider a state that a deep analysis might
prove leads to a dead end. Even though such states can advance
in the feature space, they will eventually stall. Lack of success
in making progress results in them gaining weight when they
are selected for expansion. Sooner or later, this allows states
with lower weights to be selected from the cell.

FESS can be seen as a mixture of several search algorithms.
By changing the focus between the cells, FESS can search
deeper quickly when progress is being made, much like depth-
first search. When progress in the FS is slow, FESS repeatedly
revisits cells, trying to expand in the FS to other nearby cells.
This systematic search is similar to best-first search. Within a
specific cell, FESS prioritizes moves by their weights (best-
first). Then it acts like Dijkstra’s algorithm, looking in the



DS for the shortest paths from the cell’s entry point to states
exiting the cell.

Part of the novelty of FESS is that it uses multiple features
(heuristics) concurrently. A*, for example, uses a single heuris-
tic value [4]. Even when multiple heuristics are available,
they are projected into a single value (usually by taking the
maximum). This loses information. The reality for many (hard)
problems is that different heuristics may work well in different
parts of the search space. For a given problem to be solved,
there might be parts of the search where feature-1 is important,
but then one needs feature-2 to make progress, and only then
can feature-3 direct the search to the goal. FESS considers all
features at all nodes.

Multiple heuristics have been used in many contexts. For ex-
ample, the Multiple Heuristic Greedy Best-first Search (MHG-
BFS) approach evaluates every node using multiple heuristics,
updating a priority queue (OPEN list) for each heuristic [8]. In
contrast, the Independent Multi-Heuristic A* (IMHA*) algo-
rithm conducts multiple independent searches simultaneously,
each using a different heuristic [9]. Both of these approaches
(and other similar ones) are fundamentally A*-based using a
fine-grained heuristic, while trying to produce optimal or near-
optimal results (see [10] for a good overview). In contrast,
FESS does not use A*, has a single queue, is guided by coarse-
valued heuristic, and is not concerned about optimality.

FESS is not without its drawbacks. The algorithm can spend
time in trying different axes for advancement; this is inherent
in the algorithm. It also spends time revisiting cells (as do
some single-agent search algorithms). For easy application
problems, a greedy search using a simple evaluation function
often finds the solution faster. The algorithm usually produces
a non-optimal-length solution. In general FESS is about ad-
vancing quickly in the feature space rather than optimizing the
solution length. For difficult application problems, finding any
solution is usually the primary goal.

III. SOKOBAN

The FESS algorithm is demonstrated using the well-studied
domain of Sokoban. The puzzle was invented in 1981 by
Hiroyuki Imabayashi. It is a motion planning problem that
has been shown to be NP-hard [11]. A search on Google Play
returns over 100 implementations of the puzzle. A dedicated
group of creative problem designers continually publish new
levels to be solved, and a large and enthusiastic community
embraces the challenge. The puzzle is used in schools to
help develop logic and problem-solving skills [12]. In the
research community, Sokoban is an application used for the
International Planning Competitions [13].

Figure 4 shows a sample problem (level #1 in the 90-
problem XSokoban set [6]). The player can move in four
directions, constrained by the walls and obstacles. A problem
consists of the player pushing all the boxes (round objects in
the Figure) from their start location to the destination locations
(red squares). The player, standing next to a box, can push it
one square ahead to an empty location.

Fig. 4. XSokoban #1.

Solution lengths are commonly several hundred moves long
– even longer – and the branching factor can be in the hundreds
of moves. This makes it impractical for brute-force search
approaches. Further, the push constraint (no pulls) means that
the player may move from a solvable state to an unsolvable
one (deadlock).

A. Literature

Research using Sokoban up to 2011 is surveyed in [14]. An
early attempt to build an automated solver was the ROLLING
STONE program [5]. Using a sophisticated Manhattan distance
heuristic, it was able to solve 59 of the 90 problems. The
TALKING STONES solver does not use a heuristic function
[15]. Instead, it considers the solution as a sequence of simpler
sub-problems. The program computes the order in which boxes
should be packed on targets. Then, each step tries to pack a
box according to this plan. The program uses a single feature
– the number of packed boxes – in deciding its search strategy.
When improving this feature is difficult, the progress of the
solver is slow. It can solve 54 levels.

Abstraction is used in the program of Botea et al. [16]. The
board is considered as a graph of rooms linked by tunnels.
For each room, all possible box configurations are computed.
Configurations that can interchange with one another define
an abstract equivalence class. A search is performed to find a
solution using this abstract representation, ignoring the specific
box positions on the board. As rooms become bigger, the
number of possible configurations grows exponentially. Their
approach worked for 10 levels.

In 2017, DeepMind presented their attempts to solve
Sokoban problems using deep learning [17]. Recent work has
tried using deep reinforcement learning and Monte Carlo Tree
Search [18], [19]. Despite these significant efforts, humans are
still better at the game. To date, no algorithm has been able
to solve all 90 problems within the standard 10 minutes of
computing time per problem.

B. Features

Our implementation uses a 4-dimensional feature space.
Packing Feature

This feature counts the number of boxes that have reached
a target. The higher the value, the closer one is to a solution.
However, for many Sokoban problems the order that the boxes



Fig. 5. XSokoban #1 Connectivity.

are moved to their destination squares can be critical. A pre-
search is done using retrograde analysis [20] to determine a
plausible ordering. Hence the actual metric is the number of
boxes moved to targets in that particular order. Many Sokoban
solvers do some form of packing analysis.
Connectivity Feature

Usually, the boxes divide the board into closed regions. The
player can move around freely within a region, but cannot
move to another region without first pushing boxes. Figure 5
shows the four regions for Figure 4. A connectivity of one
means that the player can move anywhere on the board.
Intuitively, it is beneficial to reduce the number of regions,
allowing for more move options. Note that connectivity is
not monotonically decreasing; some levels require a temporary
increase in this heuristic. Connectivity is a new and powerful
heuristic for Sokoban solvers.
Room Connectivity Feature

Room connectivity is related to the connectivity idea.
Sokoban levels are often composed of rooms linked by tunnels.
The room connectivity feature counts how many room links
are obstructed by boxes. Generally speaking, reducing this
feature increases the access to rooms from more than a single
tunnel, and is usually desirable. Room connectivity is a new
feature for Sokoban solvers.
Out of Plan Feature

As packing proceeds, some areas of the board may become
blocked. Figure 6 shows an example from level #74. A
workable packing plan is to fill the targets from right to left.
However, if this plan is executed carelessly (as in the Figure),
some boxes will become unreachable (the three on the right).

The out-of-plan feature counts the number of boxes in soon-
to-be-blocked areas. This number should be minimized. When
it is reduced to zero, packing can continue without that risk.
Out-of-plan analysis is another new feature used by our solver.

C. Example

Level #5 (Figure 7a) illustrates the advantages of having
at least two features. Consider the plan that pushes a nearby
box up and then pushes another box down (Figure 7b).
This improves the connectivity, allowing boxes to be pushed
into the target area (Figure 7c), improving the packed-boxes
feature. After having cleared the area this way, the first pushed

Fig. 6. XSokoban #74 Analysis Showing Out-Of-Plan.

box can be pushed again (improving connectivity), and the
three remaining boxes can be packed.

a) Start

b) Two Pushes (in orange)

c) Cleaning up

Fig. 7. XSokoban #5

D. Macro Moves

A macro move is a sequence of moves in the domain space.
Thus, by definition it has an application-specific component.
Using Sokoban as an example, a macro-move is defined as a
sequence of moves that push the same box, without pushing



any other box in between. Thus the macro-move describes
a push of a box from location (X1,Y1) to location (X2,Y2).
The macro move does not describe the exact order of pushes
and player moves needed for this manoeuvre. At a node,
all possible macro-moves are generated. In this notation, the
solution to Figure 4 (97 pushes; 250 player moves) can be
conceptualized as:

• (H,5)-(G,5), preparing a path to the upper room;
• (H,4)-(H,3), opening the upper room;
• (F,5)-(F,7), opening a path to the left room;
• (F,8)-(R,7), packing a box;
• (C,8)-(R,8), packing a box;
• (F,7)-(R,9), packing a box;
• G,5)-(Q,7), packing a box;
• (F,3)-(Q,8), packing a box;
• (H,3)-(Q,9), packing a box.

The first three macros correspond to improving the connectiv-
ity feature, and the last six address the packing feature.

Now the solution is much shorter (9 macro moves). The
price to pay is a huge increase in the domain-space branching
factor. Theoretically, each box can now be sent not just to four
neighbor squares but to any empty square on the board.

Our move generator produces macro-moves, and they are
treated as the basic move unit in the DS. The rationale is that
macro moves have a greater chance of changing something in
the FS. For example, a box can be packed to a target from
far away, increasing the value of the packed-boxes feature.
The use of macro-moves enables fast progress in the FS. It
also makes it easier to assign weights, as the macros facilitate
changes in the feature values. The downside is that node
expansion is expensive (many macro-moves and their feature
values have to be computed).

E. Advisors

To address the problem of the large branching factor,
we introduce the concept of advisors. Advisors are domain-
specific heuristics that aim to pick promising moves. The ad-
visors are implemented using the FESS weighting mechanism:
moves that are recommended by advisors are assigned a small
weight, and all other moves are assigned a large weight. This
allows the solver to focus on relevant moves for feature-space
progress despite the large branching factor. Our solver uses
seven advisors. Four of them are directly related to improving
features (packed-boxes, connectivity, room-connectivity, and
out-of-plan), suggesting ways to advance along a specific axis
in the feature space. Two additional advisors identify boxes
that stand in other boxes’ way to targets, and push them away.
The last advisor suggests forcing a way into inaccessible areas.
Although these are Sokoban-specific mechanics, they all aim
to produce new move options; this concept is applicable to
any domain.

In our implementation, each advisor is allowed to suggest at
most one move. After some experimenting, we set the weight
of advisor moves to 0 and the weight of all other moves to
1. Consequently, variations composed solely of advisor moves
are explored before other move sequences.

IV. EXPERIMENTS

Experiments were run using an Intel Xeon W-2135 CPU
running at 3.70GHz with 64 GB of memory (less than 1 GB
of memory was used). Table I gives the results for running
FESS on all 90 XSoboban problems. The table columns are:

• #: XSoboban problem number,
• B: Best known solution length (# pushes),
• L: FESS solution length (# pushes),
• E: Number of FESS nodes expanded, and
• T: Time used (in seconds), including pre-processing.
The FESS-based solution is the first to report solving all

90 problems. The total time to solve the test set is 229
seconds – an average of 2.5 seconds per problem. The program
expands almost 340 nodes per second (E/T), a relatively small
number in the single-agent search literature (e.g., [21]). Node
expansion is expensive, as it includes adding all that node’s
children with their feature values to the search tree.

Problem #29 turns out to be the most difficult to solve,
building a search tree that is at least five times larger than for
the other problems. The solution requires the algorithm to go
through high connectivity and room-connectivity values, while
the final position has lower values. The features are not as
effective as they are for other problems at guiding the search.
Still, #29 is challenging for all solvers; being able to find a
solution here is an accomplishment.

It is difficult to compare Sokoban solvers, given that they
differ in significant ways in terms of their algorithm, heuristics,
and definition of an expanded node. For example, ROLLING
STONE (and others) use a best-first A* or a depth-first iterative
deepening A* search strategy [22], which has different search
properties than FESS. TALKING STONE uses a different form
of abstraction than in this paper, making it hard to compare
search effort. As well it appears that their packing heuris-
tic is not as good as in our implementation. SOKOLUTION
solves 81 problems and might be considered a modern ver-
sion of ROLLING STONE with additional enhancements [23].
TAKAKEN has reported solving 86 (missing #s 29, 50, 66, and
69) but the algorithm has not been published [24].

Table I shows the number of pushes made in the solutions.
For each problem the best known solution length is given
(B [25]) along with the FESS solution length (L). Generally
speaking, FESS tries to find solutions with minimum weight
when shifting between cells in the feature space (using mainly
advisor moves). Getting search directions from an abstract
space and applying them in the domain space guarantees some
degree of non-optimality in the solution length. The average
solution length found by FESS is roughly 18% longer than
the best known result. There are open-source optimizers that
can manipulate a given solution to try to reduce the number of
pushes. We tried one such tool [26] and saw a 7% reduction
in the solution length.

Many Sokoban solvers, SOKOLUTION for example, use
brute-force search (many nodes; low cost per node) and they
perform quite well. In contrast, FESS searches less by making
“intelligent” move selections (few nodes; high cost per node).



# B L E T # B L E T # B L E T # B L E T
1 97 103 12 0 26 195 243 141 1 51 118 130 22 0 76 204 368 874 2
2 131 153 15 0 27 363 373 81 0 52 421 525 4947 13 77 368 388 1089 2
3 134 150 14 0 28 308 316 39 0 53 186 250 16 0 78 136 146 10 1
4 355 365 24 1 29 164 236 25819 50 54 187 267 21 0 79 174 188 76 0
5 143 147 47 0 30 465 507 240 0 55 120 202 1383 7 80 231 249 39 0
6 110 110 16 0 31 250 342 332 2 56 203 243 24 0 81 173 227 23 0
7 88 168 122 0 32 139 171 1474 4 57 225 283 29 0 82 143 173 21 0
8 230 282 43 0 33 174 230 207 0 58 199 229 28 1 83 194 234 24 0
9 237 245 35 0 34 168 232 4563 8 59 230 270 144 0 84 155 183 29 1

10 512 568 298 3 35 378 414 119 1 60 152 172 17 0 85 329 367 292 1
11 241 303 592 2 36 521 565 4096 11 61 263 301 217 1 86 134 152 17 0
12 212 256 22 2 37 284 434 41 0 62 245 259 22 1 87 233 271 399 1
13 238 262 30 0 38 81 123 134 0 63 431 463 82 0 88 390 440 284 1
14 239 269 24 1 39 672 738 358 1 64 385 399 22 0 89 379 509 2773 14
15 122 252 915 3 40 324 360 4991 12 65 211 227 49 0 90 460 558 581 3
16 186 310 1423 2 41 237 269 1342 7 66 325 459 46 8
17 213 221 26 0 42 218 416 56 1 67 401 441 467 2
18 124 162 1049 3 43 146 160 115 0 68 341 363 753 2
19 302 346 142 1 44 179 201 656 1 69 433 539 41 4
20 462 528 45 0 45 300 348 63 1 70 333 369 28 0
21 147 173 51 0 46 247 297 115 0 71 308 340 104 2
22 324 466 178 2 47 209 225 121 0 72 296 366 94 0
23 448 466 3787 11 48 200 218 861 3 73 441 469 55 1
24 544 600 379 2 49 124 188 376 1 74 212 268 2888 9
25 386 426 1041 5 50 370 460 2580 9 75 295 359 320 1

23605 28043 77600 229

TABLE I
XSOKOBAN #1 - #90 (SOLUTION LENGTH, NODES EXPANDED, AND RUNNING TIME).

Which one is better and under what circumstances is an
interesting research question.

The FESS results raise two obvious questions: how much
of the performance is due to better heuristics, and how
does FESS compare to A*-based solutions. To fully answer
these questions, one should implement a solver program that
combines the new heuristics with a well-understood search
algorithm, such as MHGBFS [8] or IMHA* [9]. However,
this goes beyond the scope of this paper. That the FESS-
based implementation solves all 90 problems – and does so
much faster than other A*-based programs – is strong evidence
of the FESS algorithm’s ability to effectively utilize multiple
features.

As a sanity check, an experiment was conducted to compare
FESS to A*. In this experiment, only the packing feature was
used, and FESS was replaced with Weighted A* (WA*) [27].
The program was able to solve 65 problems, compared to 70
problems when using FESS. Unfortunately, this comparison
provides few insights. On the one hand, WA* is forced to find
a bounded non-optimal solution; FESS has no such constraint.
On the other hand, FESS is deprived of its major strength –
using several features to guide the search. Nevertheless, the
result is interesting because it shows that the FESS approach
can be competitive with A* variants, even when a single
feature is being used. Whether this holds for other domains
and under what conditions is a question for future study.

V. CONCLUSIONS AND FUTURE WORK

The FESS algorithm uses multiple features in an abstract
space to provide guidance to the search in the domain space.
Although the algorithm is general, the features are application
specific, and this is where the program designer’s efforts
are concentrated. As in heuristic search in general, a good
choice of features is usually critical to success. FESS does
not combine features in the way used by typical single-agent
search applications. By using multiple features and ensuring
that they all have a say in the move selection process, a FESS
search avoids the plateau problem often seen in single-agent
search/optimization problems.

In the Go-playing program ALPHAGO, a “value network”
(position values) and a “policy network” (move selection) ben-
efited from human input [28]. Loosely speaking, this is analo-
gous to our features and advisors. Subsequently, the program
became ALPHAZERO by eliminating all human knowledge
via machine learning [29]. Ideally, features/advisors should be
automatically discovered. This is the ambitious next step for
Sokoban solver development.

At its heart, FESS is using multiple heuristics to guide
the search. There is nothing inherent in that observation that
restricts it to single-agent-search applications. Future work
will focus on trying the FESS approach with applications that
currently use different search algorithms, such as two-player
games.
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