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Abstract—Profiling game players, especially potential churn
and payment prediction, is of paramount importance for online
games to improve the product design and the revenue. However,
current solutions view either churn or payment prediction as
an independent task and most of the previous attempts only
depend on the single data source, i.e., the tabular portrait data.
Based on the data of two real-world online games, we conduct
extensive data analysis. On the one hand, there exists a significant
correlation between the player churn and payment. On the other
hand, heterogeneous multi-source data, including player portrait,
behavior sequence, and social network, can complement each
other for a better understanding of each player. To this end, we
propose a novel Multi-source Data Multi-task Learning approach,
named MSDMT, to capture the multi-source implicit information
and predict the churn and payment of each player simultaneously
in a multi-task learning fashion. Comprehensive experiments on
two real-world datasets validate the effectiveness and rationality
of our proposed method, which yields significant improvements
against other baseline approaches.

Index Terms—player profiling, multi-source data, multi-task
learning, online games

I. INTRODUCTION

The games industry is booming with continued stable rev-
enue more than 151 billion U.S. dollars2, which has emerged
as a promising comprehensive market, more than just an
entertainment business. With the widespread popularity of
game technology, online games gain a very wide audience
and are loved by players of all ages. As a critical component
in online games, player profiling has attracted increasing
attention from both academic and industrial fields [1]–[3]. A
variety of platforms and services centered on player profiling
have been deployed in most online games.

Player profiling aims to understand who the players are
and what they will do, especially whether they will quit, i.e.,
the churn, and how much they will pay, i.e., the payment.
The player churn rate largely determines the life of an online
game while the potential payment can measure the profit of
each game. Combining the churn and payment prediction,
game analysts can project the lifetime value (LTV) of each
player and the total revenue of the whole game. A wide range
of approaches have been developed for either the churn or

∗NetEase Fuxi AI Lab: named after Fu Xi, the legendary creator
in China, and established to enlighten games with artificial intelligence.
(https://fuxi.163.com/en/)

2https://newzoo.com/insights/trend-reports/newzoo-global-games-market-
report-2019-light-version/
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Fig. 1. Illustration of churn and payment prediction based on three hetero-
geneous data sources in online games. The player portrait describes some
players’ attributes. The behavior sequence expresses the event type and time
for each in-game action of players, where different icon represents different
event. And the social network shows the diverse interactions between players.

payment prediction. Generally, the churn prediction is modeled
as a classification task [4]–[7] and the payment prediction
can be viewed as a regression problem [8], [9]. Statistical
predictive methods, e.g., logistic regression [4], tree-based
model [5], often depend on the delicate feature engineering
while neural network models, e.g., Multi-Layer Perceptron
(MLP) [5], Long Short-Term Memory (LSTM) [7], try to
explore the implicit correlation given the large-scale data.

Despite impressive progress, the current solutions can not
fully exploit the correlation between the player churn and pay-
ment as well as the complementary between the heterogeneous
multi-source data. As shown in Fig. 1, various kinds of game-
play and settings in online games provide multiple sources of
heterogeneous data to describe each player: 1) player portrait
generated from statistical analysis of player behavioral data;
2) behavior sequence [10] recorded for every in-game action
of each player; 3) social network formed by relationships
between players. The player portrait and behavior sequence
represent the static and dynamic individual preferences of
the player, respectively. Besides, player behavior is often
influenced by others in relation because groups interact with
each other and share similar event streams, especially at the
regular time, places, or relationships. However, most of the
previous approaches mainly focus on the tabular player portrait
with little consideration of the complementary information
brought by the behavior sequence and social network. For
example, potential patterns in behavior sequences and group
effects of social networks can profile players from different
perspectives and complement each other.
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Moreover, most of the existing methods in the literature try
to predict either the player churn or the player payment as
two independent tasks. Intuitively, the LTV of each player is
basically determined by how long the player will play and
how much the player will pay so that it is very reasonable
to consider the churn and payment simultaneously. Empirical
analysis (see Sec. IV) shows that there exists a significant
correlation between the two tasks, e.g., a player is very
unlikely to pay without the desire to play the game. Current
single-task solutions are unable to capture the correlation
between the player churn and payment for better profiling
players. In all, we lack an effective approach that can handle
both the player churn and payment prediction tasks by fully
utilizing the multi-source heterogeneous data.

To address these issues, we propose a novel Multi-source
Data Multi-task Learning approach, named MSDMT3, for
profiling players with both player churn and payment predic-
tion in online games. To be specific, we build three modules
based on player portrait data, behavior sequence data, and
social network data to capture rich implicit information from
three different perspectives. We employ LSTM to model the
dynamic information in the daily aggregated player portrait.
Considering the impact of potential temporal information, we
leverage a hierarchical Convolutional Neural Network-LSTM
(CNN-LSTM) to exploit the short- and long-term players’ be-
havioral preferences from behavior sequence. Combining the
representations of player portrait and behavior sequence, we
can build the individual preferences of each player and obtain
the node feature in the social network graph. Adopting Graph
Convolutional Network (GCN) to mine the group preferences
among players, we also optimize the player churn and payment
prediction tasks by using a multi-task learning framework. The
main contributions are summarized as follows:
• Via extensive empirical observations and analysis, we dis-

cover the significant correlation between the player churn
and payment as well as the difference and complementary
in various heterogeneous data sources.

• Inspired by the key findings, we propose a three-module
framework to handle the multi-source data and make final
predictions in a multi-task learning fashion.

• We conduct comprehensive experiments on two real-
world datasets to verify the effectiveness and the rea-
sonability of our proposed MSDMT.

II. RELATED WORK

A. Profiling Players in Games

Analysis and modeling of the player portrait over the
lifetime of game players is a widely concerned issue. Players
have different needs at different lifetime stages. Therefore,
collecting and managing data on the player lifetime will
help games to understand players better and create better in-
game experiences [11]. To this end, game companies invest
significant resources in profiling players, especially for churn
and payment. In terms of churn prediction, engagement [12],

3Code available here: https://github.com/fuxiAIlab/MSDMT

[13] and retain [14] prediction can also be grouped into the
same problem in the game industry, which aims to discover
players with inactive or churn intention in the early stage,
dig up the reasons and retain them by interventions. Many
methods have been proposed by various researchers to address
churn prediction in games. Most of these works focus more
on extracting salient features from game log data and model
it as a binary classification problem by traditional classifiers
and neural networks, such as supervised learning [5] and semi-
supervised learning [15]. And some researchers have tried to
solve it by survival analysis in [6], [12]. Besides, external in-
game information of players has also been fused for better
churn prediction. Kristensen et al. [7] combine sequential and
aggregate data using different neural network architectures for
churn prediction in casual freemium games.

Another important aspect of player value is the in-game
purchasing power. The ability to effectively predict how much
players will pay can help game companies better understand
the changing needs of players, thereby more specifically
increasing the lifetime value of each player. The literatures
related to payment prediction in games can be learned in terms
of player lifetime value [8], [9] and player purchasing [16],
[17]. Another example of payment prediction is the transition
of players between non-paying and premium [18], [19]. At
present, techniques and applications based on complex multi-
source data fusion are lacking in games, and most of the
studies related to game players profiling are still based on
single-source data, without taking full advantage of the rich
information between various data. In addition, most research
only concentrates on either churn or payment prediction,
ignoring the correlation between the two tasks.

B. Multi-source Data Fusion

Recently, many works show the strength of multi-source
data fusion methods on solving prediction problems in various
fields, such as transportation [20], [21], environment [22]–[25],
and operations research [26]–[28], to name a few. To comple-
ment each other and improve the representational ability of
data, multi-source data fusion extracts features from hetero-
geneous data and fuses them at the data-wise or model-wise,
instead of just modeling from single data source. In the field
of transportation, considering the effects of spatial-temporal
data, multi-source data fusion is mainly based on the raw
sensor data of vehicles, roads and pedestrians obtained from
infrastructure sensors or probes, and external data (e.g., meteo-
rological, social media, GPS, and event data), and used to solve
congestion [20] and flow [21] prediction. For environment,
spatial (e.g., road network, POIs, and pollutant distribution)
and temporal (e.g., meteorology, traffic, and human mobility)
data is fused by the deep distributed fusion network [22], semi-
supervised inference model [23] or co-training framework
that consists of two separated classifiers [24] to predict air
quality. Besides, social media data is also taken into account
in [25]. As for operations research, multi-source data fusion
is applied in bike sharing systems [26], dispatching demands
prediction [27] and price prediction [28] by fusing the implicit



TABLE I
DETAILED DESCRIPTION OF THE DATASETS.

Dataset Player Portrait Behavior Sequence Social Network Samples Statistics
#Feature Level #Behavior Avg. Seg. Len. Graph Graph Type #Node #Edge #Total #Churn #Payment

ACT 79 day 326 272.79
chat directed weighted 32843 340414

32843 6859 7878friend directed unweighted 32843 281969
team undirected weighted 32843 2390068

CCG 39 day 229 179.42 guild undirected unweighted 28380 1538106 28380 7897 5484

features extracted from various data sources. Multi-source data
fusion has shown superiority in various scenarios while rare
efforts like this are cast into profiling players. In this paper, we
also adopt the multi-source data to model each player instead
of the single-source data.

III. DATASET

For experimental work reported in this paper, we use two
real-world datasets with different game types from NetEase
Games4, including action game (ACT) and collectible card
game (CCG). We briefly show the basic statistics of the two
datasets in Table I.
• ACT. The ACT dataset describes the attributes, actions,

and interactions of players from one mobile action game,
named Butterfly Sword 5,where players can freely experi-
ence its challenging Player versus Environment (PvE) and
Player versus Player (PvP) gameplay. We conduct player
portrait features from several aspects: basic attributes,
social relationships, behavioral habits, and consumption
preferences. And we built player relationships through
chat, friend and team behavior between players.

• CCG. The CCG dataset collects the activities and behav-
iors of players from one mobile collectible card game,
named Love is Justice 6. During the game, players can
interact with Non-Player-Controlled Characters (NPCs)
through animated tasks to simulate love relationships.
Because of the simple single-player gameplay, we only
consider the basic attributes, behavioral habits, and con-
sumption preferences as the player portrait features. And
we built player relationships through guild in the game.

Both ACT and CCG datasets contain three data sources,
i.e., player portrait, behavior sequence, and social network, in
which the player portrait is aggregated daily and the behavior
sequence is segmented by day from 8 a.m. to 8 a.m. the next
day (considering the daily routine of most normal players).
For each game, we select players who have logged in from
November 29, 2019 to December 1, 2019 as target players. The
label window which determines the churn label and payment
label in the dataset is from December 2, 2019 to December
8, 2019. We define the player churn if a player is inactive for
7 days and the payment label of a player as the total amount
paid by the player for 7 days. For player portrait and behavior
sequence, we collect the data from November 25, 2019 to

4https://game.163.com/
5https://leihuo.163.com/en/games.html?g=game-7#sy
6https://leihuo.163.com/en/games.html?g=game-2#nsh
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Fig. 2. Heatmaps of activity level and payment level for players. Colors
represent the number of players for the corresponding level.

December 1, 2019. As for the social network, we mainly focus
on the social relationships between players in the last 180 days,
from June 1, 2019 to December 1, 2019.

IV. ANALYSIS
We point out the relationship between the two tasks of churn

and payment first. According to the definitions, we use the total
online time and the total recharge amount in the label window
to represent the activity level (i.e., churn level) and payment
level of the player, respectively. We visualize the distribution
of players per activity level and payment level by heatmap
in Fig. 2. The results demonstrate that churn and payment do
interact and complement each other. First, churn and payment
are mutually exclusive because the intersection of the two sets
is empty. Then players who do not pay distribute randomly
at different levels of activity with no specific pattern (a large
number of players gather here), while paying players are more
concentrated in high activity levels, which shows that players
who are willing to pay will be more active in the future than
those who are not. Thus, we can eventually divide the target
players into three groups, i.e., churn players, retain & non-
paying players, and retain & paying players. Then we conduct
data analysis from the following aspects:



Fig. 3. Histograms of (from left to right) role level, total recharge, online time and online revenue for players, where players with different groups shown in
different colors. The top part shows the data from the ACT, and the bottom part shows the data from the CCG.

A. Difference in Player Portrait

Fig. 3 shows the distribution histograms of players corre-
sponding to the role level, total recharge, online time, and
online rewards (i.e., game tokens obtained in ACT and amount
of cards rewarded in CCG), which represent the familiarity,
payment potential, game investment, and game revenue of
players, respectively. From the results, we can draw the
following conclusions: 1) Low-level players tend to churn (a
lot of players churn even when they just start games), who may
join the game just for some activity or novelty. For retained
players, high-level players are more willing to pay for a better
in-game experience. 2) The amount of a player’s historical
total recharge represents the player’s potential ability to pay
and long-term attitude towards the game. Players who have
recharged a large amount rarely leave the game, and moreover,
they are most likely to continue to recharge. 3) The players’
investment and revenue ratio in the game also directly affect
the player churn and payment. Players who have spent a lot
of time in the game hope to get a fair return, otherwise they
will gradually lose interest in the game and pay less. And high
revenue drives players to retain and encourages them to pay.

B. Difference in Behavioral Preferences

As shown in Fig. 4, we visualize the behavior sequences of
some typical players in ACT7 to compare the behavioral differ-
ences between groups, which we can not learn from the player
portrait intuitively. The results reveal some interesting findings
as follows: 1) Players always do a lot of continuous operations
to consume their previously stored experience and game tokens
before churn, such as purple corresponding to refining the
equipment, cyan corresponding to forging the weapon, and red
corresponding to upgrading the skill in Fig. 4(a). In addition,
we count the top five behaviors with the highest frequency by
filtering out regular behavior, i.e., settlement rewards, lottery,
reserved experience conversion, daily or main task awards, and

7We get a similar result on CCG and not shown due to the limited space.

(a) Churn players

(b) Retain & high-paying players

(c) Retain & non-paying players and retain & low-paying players

fight draw a lottery use items
upgrade skill refine equipment forge weapon

get task awards change role attribute consume experience

Fig. 4. The visualization shows how behavior sequences differ from different
groups, where different behavior shown in different colors. To further illustrate
the behavioral preferences of the retain & paying player, we visualize the
high-paying players among the retained players separately.

gift redemption, which also shows players tend to empty their
accounts before they decide to leave the game. 2) The top five
most frequent behaviors of retain & high-paying players are
lottery, fight, guild activity, chat, and purchasing. On the one
hand, high-paying players always stay constantly active in the
game and remain keen on multiplayer competitive gameplay,
which is corresponding to the orange stripes parts in Fig. 4(b).
To improve their competitiveness, they also spend a lot of
time forging competitive weapons (corresponding to the cyan
parts). On the other hand, demand for social and purchasing
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Fig. 5. The framework of our proposed MSDMT.

drives players to continue recharging. 3) Behavior sequences
of retained players who do not pay or pay in small amounts
are diverse and irregular with randomness.

(a) Churn (b) Payment

Fig. 6. The visualization of social network based on friend relationship in
ACT. (a) Red represents churn players and green represents retain players.
(b) Green represents non-paying players, while gradation of red indicate the
different payment level players.

C. Difference in Group Preferences

Group preferences lead us to profile players from another
perspective. Players with similar preferences tend to have
relationships and interact with each other, e.g., the top players
always like to take on more difficult tasks together, and players
are more willing to team up with others they know or buy
goods recommended by others they know. We illustrate group
differences with the example of the friend relationship from
ACT in Fig. 6, which shows that churn players will naturally
cluster together to form many small local groups. Players’ in-
game participation is affected by the players around them. If
most of the friends around a player are churn, the player is
also likely to churn soon. While if most of the friends around
a player are active, there is a high probability that the player

will remain active. Similarly, players with different payment
levels also tend to cluster and influence each other.

V. METHODS

In this section, we elaborate on the design of our proposed
MSDMT as shown in Fig. 5. First, we describe a conceptual
definition of the research problem. And then we illustrate the
details of three modules built to process different data sources.
Finally, we conduct a multi-task learning framework to train
and predict both the churn and payment tasks.

A. Problem Definition

Given the three different data sources: 1) player portrait
U = {u(d)vi |vi ∈ V, d ∈ D}; 2) behavior sequence B =
{bvi |vi ∈ V}; 3) social network G = (V, E) with nodes
vi ∈ V and edges (vi, vj) ∈ E , where V is the set of the
players and D denotes the set of day observed the data, our
goal is to predict whether the player will churn (i.e., ŷc) and
how much the player will pay (i.e., ŷp). In practice, we define
the churn prediction task as a binary classification problem
and the payment prediction task as a regression problem.

B. Player Portrait Module

In most cases, the player portrait is mainly represented
as static features of the players’ individual state information
without external processing. As shown in the left top part of
Fig. 5, considering the data is aggregated by day from the raw
game log in our games, we use the player portrait uvi ∈ U

as a fixed length sequence, i.e., uvi = {u
(1)
vi , u

(2)
vi , · · · , u

(|D|)
vi }

for each vi ∈ V , and adopt LSTM based methods to capture
the implicit temporal information of historical player portrait
sequences as follows:

H = LSTM(U). (1)

Here H is the embedding vector of player portrait module.



C. Behavior Sequence Module

Behavior sequence records the in-game actions of each
player, from which we want to model the potential individual
behavioral patterns as shown in the left bottom part of Fig. 5.
Taking into account the continuity of behavior during in-
game time, we preprocess the raw full sequence bvi ∈ B

to several segments, i.e., bvi = {b(1)vi , b
(2)
vi , · · · , b

(|S|)
vi } for

each vi ∈ V , where |S| means a fixed number of segments
(we often split segments by days in practice). Specifically,
b
(s)
vi = {(t1, e1), (t2, e2), · · · } denotes an event stream in a

segment sequence, where a specific type of event e happened
at time t. We conduct a hierarchical neural network to embed
the behavior sequence. First, we encode the each segment
sequence by one-dimensional convolutional neural network
(Conv1D). Then we stack the output (i.e., join a sequence
of arrays along a new axis) to form a new sequence and feed
it into LSTM as follows:

B̂ = Stack(Conv1D(B(s))), for s ∈ S,
O = LSTM(B̂).

(2)

Here O is the embedding vector of behavior sequence
module, S denotes the set of segments and B̂ represents the
stack output of hidden representation of each segment.

D. Social Network Module

We consider player portrait and behavior sequence together
to capture individual preferences of the players more compre-
hensively, and we also take into account the group preferences
between players. To this end, we leverage GCN [29] to fully
combine the complementary information between the three
heterogeneous data sources as shown in the middle part of
Fig. 5. Given embedding vectors of player portrait H and
behavior sequence O, and graph adjacency matrix A, we
perform an attention based method to obtain weights αH and
αO to concatenate H and O, which will be used as the node
feature with the A together to be fed into GCNs:

A =

{
0 (vi, vj) /∈ E
1 (vi, vj) ∈ E

,

X = Concat(αHH, αOO),

V = GCN(X,A).

(3)

Here V is the final fused embedding vector and X repre-
sents the fused node feature vector.

E. Multi-task Learning

With the constructed above modules, we build the training
and prediction module based on multi-task learning. We con-
sider two different losses for two prediction tasks, i.e., Cross-
entropy Loss for churn task and Mean-Squared Error Loss for
payment task. To be specific, yc, ŷc correspond to the label
and prediction for churn prediction task, and yp, ŷp correspond
to the label and prediction for payment prediction task, we

compute a loss function that jointly evaluates the performance
of all tasks, which can be expressed as follows:

L =
∑
vi∈V

(−αyc log(ŷc)− β(yp − ŷp)2). (4)

Here the loss L is over all the training data and α, β are
hyperparameters that balance the weighting. In practice, it is
non-trivial to keep two losses at the same order of magnitude
during training, thus none of them would dominate in gradient
computation. To this end, the log transformation is used to
address skewed distributions in payment data. And we set the
α to 0.7 and β to 0.3.

VI. EXPERIMENTS

In this section, we introduce the experiments on two real-
world datasets. First, we show the experimental results of MS-
DMT compared against other baseline methods. Besides, we
conduct ablation study to verify the effectiveness of MSDMT.

A. Baselines

For different data sources, we choose several competitive
methods as baselines to show the performance of single data
source in both churn and payment prediction tasks. Consider-
ing player portrait is aggregated by day in our datasets, just
like sequence data, we choose the following baseline methods:

• LSTM: LSTM is a classical architecture specifically
designed for sequence prediction problems with spatial
or temporal inputs. Here we employe LSTM to model
potential dependencies over the player portrait sequence.

• CNN: CNN is also widely used to processing sequence
data, and we use Conv1D to extract features of the player
portrait sequence in our experiments.

For behavior sequence, we compare the performance of
LSTM and CNN to extract features from segmented sequences
and combine them for sequence prediction as follows:

• LSTM: We leverage a hierarchical LSTM to extract the
features of each segmented sequences respectively and
combine them to make sequence prediction.

• CNN-LSTM: The architecture of CNN-LSTM involves
using CNN layers (Conv1D for sequence inputs) for
feature extraction on input data combined with LSTM
to perform sequence prediction on the feature vectors.

In addition, we compare the GCN with different relation-
ships without external node feature (i.e., only use the identity
matrix as the node feature) to demonstrate the effectiveness
of the graph structure. We select the relationship with the
best performance as the input of social network module
in our proposed method for each game. Lastly, MSDMT-
single and MSDMT-multi represent MSDMT without multi-
task learning and with multi-task learning, respectively. We
comprehensively compare the performance of baseline models
on each data sources to verify the effectiveness of multi-source
data fusion and multi-task learning in our proposed method.



TABLE II
PERFORMANCE COMPARISON AMONG DIFFERENT METHODS IN VARIOUS DATA SOURCES.

Data Method
ACT CCG

Churn Task Payment Task Churn Task Payment Task
ACC AUC F1-Score RMSE MAE ACC AUC F1-Score RMSE MAE

Player Portrait LSTM 0.8606 0.9065 0.6526 99.2221 26.5535 0.8806 0.9466 0.7897 32.0225 6.1233
CNN 0.8531 0.8976 0.6136 102.5784 27.6703 0.8855 0.9439 0.7939 33.4217 6.3421

Behavior Sequence LSTM 0.8598 0.9031 0.6482 193.8058 33.4812 0.8698 0.9314 0.7869 163.2042 9.3127
CNN-LSTM 0.8645 0.9078 0.6731 110.2557 30.4499 0.8829 0.9457 0.7923 139.2158 8.5813

Social Network

GCN-chat 0.6544 0.6788 0.3985 596.2772 49.4030 - - - - -
GCN-friend 0.6894 0.7021 0.4344 518.7393 45.6390 - - - - -
GCN-team 0.6737 0.6909 0.3729 521.5121 47.3167 - - - - -
GCN-guild - - - - - 0.7565 0.8034 0.4647 323.2026 13.4812

Multi-source Data MSDMT-single 0.8705 0.9177 0.6747 96.3817 26.5148 0.8944 0.9605 0.8193 29.6693 6.0151
MSDMT-multi 0.8742 0.9245 0.6775 94.3422 26.5679 0.8974 0.9642 0.8204 29.1409 5.8625

TABLE III
ABLATION EVALUATION OF DIFFERENT MODULES PROPOSED IN OUR METHOD.

Module
ACT CCG

Churn Task Payment Task Churn Task Payment Task
ACC AUC F1-Score RMSE MAE ACC AUC F1-Score RMSE MAE

Player Portrait 0.8623 0.9092 0.6462 96.1658 27.0679 0.8889 0.9459 0.8051 31.8503 6.3747
Behavior Sequence 0.8601 0.9055 0.6639 145.5441 31.4512 0.8761 0.9462 0.8006 124.2308 8.1399

Social Network 0.6812 0.6992 0.4310 510.1241 44.9654 0.7681 0.8129 0.4771 312.7412 13.0112
Player Portrait + Behavior Sequence 0.8689 0.9142 0.6642 96.4213 26.0144 0.8927 0.9565 0.8263 31.2109 6.1625

Player Portrait + Social Network 0.8611 0.9127 0.6572 97.1214 26.8745 0.8901 0.9517 0.7973 32.7901 6.7523
Behavior Sequence + Social Network 0.8645 0.9085 0.6631 143.0174 32.1247 0.8847 0.9481 0.8133 114.1254 7.8415

MSDMT 0.8742 0.9245 0.6775 94.3422 26.5679 0.8974 0.9642 0.8204 29.1409 5.8625

B. Experimental Settings

We use three widely binary classification evaluation metrics,
i.e., Accuracy (ACC), Area Under Curve (AUC), and F1-Score
as evaluation metrics on the churn task. And we use Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE)
metrics to evaluate the different methods on the payment task.
For each game, we split 80% of the dataset into a training
set and the remaining 20% into a test set. All experiments
are repeated 5 times and the average results are reported. For
experimental results, the standard error is below 0.001 (AUC),
0.5 (RMSE) and not shown due to the limited space.

In MSDMT, the player portrait module is a classical LSTM
layer with 64 hidden units. The CNN-LSTM structure of
behavior sequence module has a CNN layer with 64 filters and
a LSTM layer with 32 hidden units, where the convolutional
kernel is a one-dimension vector and the length of the kernel
is set to 32. We employ two GCN layers with 64 hidden units
in social network module and the dropout rate is set to 0.5.

C. Performance Comparison

Table II shows the comparison results on both two real-
world datasets. From the perspective of data source, social
network achieves higher performance than the random bench-
mark, but performs worse than other single-source data based
methods significantly, which demonstrates the effectiveness of
node feature and graph structure in graph neural network.
Player portrait and behavior sequence benefit from the rich
information of their own and perform better both in two
tasks. Compared with methods base on single-source data,
we propose the effective multi-source data method MSDMT,

which can not only consider the difference in heterogeneous
data, such as tabular, sequence, and graph, but also exploit the
complementary information of multiple data sources. On the
other hand, capturing implicit representations of raw data from
different data sources is very important for multi-source data
fusion. The experimental results show that LSTM and CNN-
LSTM perform better in player portrait and behavior sequence,
respectively, which verify the rationality of different modules
proposed in our method. Furthermore, benefit from multi-
source data and multi-task learning, MSDMT achieves 1.84%,
1.86% (AUC) and 4.92%, 9.00% (RMSE) improvement over
the best single-source data single-task learning based method
on both the churn and payment tasks, respectively. And
MSDMT with multi-task learning performs against MSDMT
without multi-task learning with an increment of 0.74%, 0.39%
(AUC) and a reduction of 2.12%, 1.78% (RMSE).

D. Ablation Study

To further illustrate that the fusion of different data sources
can improve the model performance with multi-task learning,
we study the effect of the interaction between different mod-
ules proposed in our method. Table III shows the performance
of MSDMT and its variants. First, we can see that single-
source data is not very effective, especially for social network
without external node features. In most cases, the experimental
results demonstrate the significant effectiveness of interactions
between different data sources. Player Portrait + Behavior
Sequence achieves a higher AUC (an increment of 0.05, 0.01)
and a lower RMSE (a reduction of 1.05, 0.64) over the
best single-source data based method on both the churn and



payment tasks, respectively. Furthermore, the graph structure
in social network does play an important role both in churn
and payment prediction. By fusing the social network, the
performance of the variant models is improved. Lastly, the
performance is best when all data sources are fused. The more
data sources are combined, the more diverse the information is
contained, and the more performance model improves. Com-
pared with the method based on single-source data, MSDMT
yields 1.68%, 1.90% (AUC) and 1.90%, 8.51% (RMSE) im-
provement. And MSDMT also performs best against methods
fused by two data sources with 1.13%, 0.81% (AUC) and
2.16%, 6.63% (RMSE) improvement.

VII. CONCLUSION

In this paper, a novel approach named Multi-source Data
Multi-task Learning (MSDMT) is proposed to profile players
in online games. We conduct extensive empirical observations
and analysis on the data of two real-world online games.
The results establish a significant correlation between the
player churn and payment, and also verify the difference
and complementary in various heterogeneous data sources.
Inspired by the key findings, MSDMT builds three different
modules based on heterogeneous data sources such as player
portrait, behavior sequence, and social network, to capture and
fuse the rich implicit information. Moreover, MSDMT makes
the churn and payment prediction simultaneously in a multi-
task learning fashion. Comprehensive experiments on two real-
world datasets show the superiority of MSDMT on both churn
and payment prediction. For future work, we plan to further
investigate and improve the multi-source data fusion method of
MSDMT for better performance. In addition, we also consider
expanding our work to more applications in online games.
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