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Abstract—Automation testing is an important approach for
bug detection and analysis of software applications, especially
for computer games. This paper proposes an efficient imitation
method to learn game strategy from a small set of manually
recorded game samples, which only takes one hour to complete
training. This work can be divided into four steps. Firstly, we
collect a set of manually recorded data composed of image frames
and user actions. The discriminative region is extracted from
image to eliminate noise. Then, data alignment is applied to solve
the problem of action delay. Due to the large variation of image
samples from different classes, data resampling is performed
to avoid bias. Finally, these samples are fed into a fast and
lightweight network with LSTM structure, which is designed
to boost speed of prediction. Our work discards the dependence
of game internal interface and performs well in real time with
CPU, which has been verified in a variety of commercial games.

Index Terms—imitation learning, game AI, fast and lightweight
network, class balance

I. INTRODUCTION

Reinforcement learning and imitation learning are two
widely-used methods to learn game AI [1]–[4]. For the former,
AI model is required to interact with game environment to
get current state, which is fed into neural network. Then, the
network outputs the corresponding action and gets the reward
from environment. The goal is to maximize the expected
rewards. Comparing with reinforce learning which has no
prior knowledge, imitation learning requires a set of manually
recorded data. The goal of imitation learning is to output action
similar with human behaviors.

There exist a variety of methods focusing on reinforcement
learning [5]–[7]. For instance, Deep Q-Learning (DQN) [6] is
proposed to construct replay memory composed of state, action
and reward, which are fed into a network to predict score for
each action based on input state. The action with maximum
score is chosen as the optimal move. Actor-Critic method
[8] uses actor network to output action and applies critic
network to calculate the advantage of action. Proximal Policy
Optimization (PPO) [9] uses importance sampling method to
add weight for each sample. The advantage of reinforcement
learning is that AI can handle abnormal situations due to
the large-scale exploration. However, it is extremely time
consuming to apply reinforcement learning, which is required
to interact with the environment for large number of times.
This problem gets worse when the back-end API that bypasses
the user interface is not provided, which is common for most
commercial games.

Imitation learning [10] [11] aims to complete a task based
on expert demonstrations. There are mainly three kinds of
methods: behavior clone [12], inverse reinforcement learning
[13] and generative adversarial imitation learning (GAIL) [2].
For behavior clone, the training data is composed of game
image and the corresponding expert action. The image is fed
to deep neural network, which outputs action similar to expert.
Since the trained model is not completely consistent with
the manual strategy, there exists a gap between the sample
distribution of the training and test set. It is easy to make a
wrong decision when game AI enters a scene which has not
appeared in training data. For inverse reinforcement learning,
the reward function is estimated based on expert demon-
strations. Then, game AI is trained based on reinforcement
learning. The principle of reward function is that the expert
demonstrations always get the largest reward compared with
game AI. GAIL introduces generator and discriminator to learn
strategy of expert. The goal of generator is to generate samples
similar to expert demonstrations. While discriminator aims to
distinguish between expert samples and the generated samples,
which evaluates the performance of game AI. It is noted that
both inverse reinforcement learning and GAIL are required
to interact with the environment, which meet similar problem
with reinforcement learning.

This paper proposes an efficient imitation learning method
using game image to learn game strategy for specific task.
Data alignment and class balance are applied to improve
performance of AI in this work. There are mainly four steps
to train model. Firstly, a set of expert demonstrations for
specific task are collected, which are composed of images
and the corresponding actions. Data alignment is employed
to solve action delay, followed by preprocessing to balance
sample number of different classes. Finally, we construct a
deep and lightweight network with LSTM [14]–[18] to extract
discriminant feature from image and output action similar to
expert. During test period, the network outputs probability
for each action based on current game image, we choose
action with maximum probability or randomly select action
based on probability distribution, which is determined by
the type of game. Our work discards dependence on game
interface and takes only one hour to obtain an AI model, which
achieves good performance in real time with CPU. We evaluate
our methods on three popular commercial games imposed of
racing game, cool running game and shootout game. The good
performance indicates the efficiency of the proposed method.

This paper is organized as follows. The second section
978-1-7281-4533-4/20/$31.00 ©2020 IEEE



Fig. 1. Training framework of the proposed method.

describes details of the proposed method. In the third section,
we introduce our dataset composed of images from three
popular commercial games. The experimental setup and results
are reported in the fourth section, followed by the conclusion
of our work.

II. PROPOSED METHOD

Both inverse reinforcement learning and GAIL are required
to interact with the game environment. while internal interface
to speed up the game is not provided by most commercial
games. Interacting with the game environment is time con-
suming. To train game AI in faster speed, we apply behavior
clone method and add a series of strategies to compensate the
defects of behavior clone. The training process is shown in
Figure 1.

Firstly, we play game for about half an hour and record
image frames and the corresponding actions. The discrimina-
tive regions are extracted to reduce the difficulty of training
model. Then, data alignment is applied to solve the problem
of action delay. Since the number of samples corresponding to
different actions varies greatly during the recording process,
data resampling is performed to ensure that the sample number
of each action exceeds a threshold, which is empirically set.
Finally, the adjusted samples are fed into deep network for
training.

A. Game Recording

We play game in specific scene for nearly half an hour. The
frequency of collecting samples is set as 10 for one second.
The game buttons are set according to the game. For instance,
for QQ speed1, we use left, right and drift. For Cool Running
Every Day (CRED) 2, squat and jump are used. Two examples
are shown in Figure 2, where the corresponding game buttons
are shown in red boxes.

Different buttons can be combined to define one action. For
instance, during the recording of the QQ speed game, if the
player presses the left and the drift buttons at the same time,
this behavior is defined as the left drift. If the right and the
drift buttons are simultaneously pressed, it is defined as the
right-drift. If no game button is pressed, we define it as no-
action.

1https://speedm.qq.com
2https://pao.qq.com

Fig. 2. Example of game button.

Since the region around game character is usually more
important for determining action than other regions, we extract
these regions as the input of network to reduce the difficulty
of training. In QQ speed, CrossFire Mobile (CFM) 3 and other
First-Person Shooter Game (FPS) games, radar map is a very
important region, which has a high degree of relevance to the
performed action. For such games, radar map is used as the
input of deep network. It is noted that the agent is required to
follow the fixed path in CFM for performance testing, which
can be done based on radar. For games without radar maps, we
select a rectangular region that contains the game character.
An example of region extraction is shown in Figure 3. The
region with blue box is used as the input of network.

Fig. 3. Example of region extraction

B. Data Alignment

The game is still running when the action for previous
frame is not provided by AI model, which induces time delay
imposed of image transmission and forward operation of AI
model. As shown in Figure 4, the mobile client intercepts
the game image at time t1. Then, the image is sent to the
deep network, which outputs action probability at time t2.

3https://cfm.qq.com



The action is delayed by t2 − t1, during which the game is
still running. If the AI model is unable to predict the action
of subsequent scenes in advance, it will fail to achieve good
AI results.

Fig. 4. Example of action delay.

To solve the problem of action delay, we align label and im-
age based on time delay and the sampling time. For example,
the delay time is 0.2 seconds and the interval between recorded
adjacent frames is 0.1 second, the action of t-th frame image
needs to be moved ahead two frames, as shown in Figure 5.

Fig. 5. Example of data alignment.

C. Class Balance

There exists a large variation of sample number for different
actions during game recording. For instance, we define five
actions in QQ speed: left, right, left drift, right drift, and
no-action. Among them, the sample number of no-action is
much higher than the number of samples corresponding to
other actions. If these samples are directly applied to train
network, the model may fail to capture feature for class with
few samples. Motivated by this problem, data resampling is
proposed to ensure that the number of samples for each action
exceeds a pre-defined threshold. The sampling times for each
class is computed as follows:

counti = max(

∑C
i Ni × ratiot

Ni
, 1) (1)

Here, counti indicates the sampling times for the i-th class,
Ni is the corresponding sample number, C is the class number,
ratiot is the min ratio to calculate the threshold. The default
value of ratiot is set as 1

C .
In behavior clone, each instance is given the same weight,

which discards the advantage of the chosen action compared
with other actions. To focus on more important action, we
only do specific actions in necessary situation, which increases
importance of these actions. For instance, player only jumps
when there exists obstacle in front during recording. The
sample number for specific action is usually much smaller
than other actions. By performing class balance, the weights

for actions with larger advantage are increased, which helps
model focus on more important actions.

D. Training Deep Network

Fig. 6. The structure of two modules.

Fig. 7. Lightweight network structure.

In order to reduce the computational complexity, the ex-
tracted region is resized to 150×150 pixels. Since there exists
a large variation of appearance, illumination and angle in the



Fig. 8. LSTM network structure. Here, the block with different color represents a type of layer. We concatenate feature from the second last fully-connected
layer of the lightweight network based on t-2, t-1 and t-th frames.

game, it is difficult to extract discriminative features through
a simple deep network. We design a lightweight residual
network that can perform about 80 frames per second using
CPU. By combining with the previous features, the network
can prevent gradient vanishing and boost training speed. The
network is mainly composed of two modules, which are shown
in Figure 6. The proposed lightweight network is built by
repeating the modules. The structure of the network is shown
in Figure 7, where ×2 means to repeat the module twice.
During training period, the cross-entropy loss [14] is applied
as the objective function of the model.

To extract the temporal feature of the game, a network
based on LSTM [19] is proposed. The input feature is set as
the concatenated feature from the second last fully-connected
layer of the lightweight network based on 5 continuous frames.
The output dimension of the LSTM is set as 100, followed
by a fully connected layer to predict probability of different
actions. The network structure is shown in Figure 8. After 20
epochs of training, an optimized deep network with LSTM
can be obtained.

During test period, we first extract important region from
current game image. Then, the image region is fed to the light-
weight network to obtain deep feature. Finally, the LSTM
network outputs probability of each action based on the
concatenated features from 5 continuous frames. To improve
performance of game AI, we sum up several tricks listed as
follows:

• It is recommended to set rules when manually recording
games. For example, FPS games are played according
to a fixed path. In QQ speed, players should avoid
unnecessary action. This reduces the difficulty of training,
which helps network converge quickly.

• Game AI should add reset strategy. Once the AI enters
a scene that has not appeared during the recording or AI
is stuck for a long time, reset method should be applied.

In the QQ speed, the reset operation is to click the reset
button, which can return AI to the center of the track. In
FPS game, a set of the predefined actions are executed
to get rid of the stuck situation.

III. DATASET CONSTRUCTION

This work has been evaluated in three commercial games:
QQ speed, CRED and CFM. For each game, we record game
for around half an hour to get samples composed of image
and action. In QQ speed, we define five actions: left, left drift,
right, right drift and no action. After resampling data to make
sample number of each class higher than threshold, there are
1064 images for left, 1686 images for left drift, 1362 images
for right, 1910 images for right drift and 7047 images for no-
action. To decrease the difficulty of learning model, the radar
map is extracted from image to train network. The examples
of QQ speed are shown in Figure 9. Each row shows the
examples of radar maps for one action.

For CRED, we define three actions: jump, squat and no
action. After resampling, there are 1812 images for jump,
1776 images for squat, 4855 images for no-action. The region
around game character is extracted to decrease noise of
background. The examples are shown in Figure 10. It shows
that game image is more complex than radar map.

For CFM, we record game using the fixed path for around
half an hour. The example of recording is shown in Figure 11.

The moving angle is divided into 8 parts and the press action
on shooting button is recorded. Similar to QQ speed, the radar
map is applied as the input of network. There are 4841 images
related to moving, 959 images for shooting and 2374 images
for no-action. The examples for CFM are shown in Figure 12.

For each game, we randomly pick 80% samples from
database as training and the rest samples are applied for
testing.



Fig. 9. Examples for QQ speed.

Fig. 10. Examples for CRED.

IV. EXPERIMENT

Our work is evaluated based on tensorflow and keras [20].
The learning rate is set to 0.001 and the model is trained based
on Adam optimizer. During test period, the important region is
extracted from current image of game. Then, the lightweight
network is applied to obtain deep feature of the region. The
feature from the second last fully-connected layer is used to
represent image. To utilize temporal feature, we concatenate
features from 5 continuous frames, which are fed to network
with LSTM to output probability of each action.

In our experiment, we firstly show the classification accu-
racy of different network. Then, the game performance of our
method and recent state-of-art reinforcement-based methods
are compared to verify the efficiency of the proposed method.

A. Evaluation on Classification Accuracy

Our work is firstly evaluated in three datasets to test
accuracy of behavior clone, which can be treated as a specific
task of supervised learning. The proposed network is compared
with VGG16 [21], which is fine-tuned using the pre-trained

Fig. 11. Examples of recording for CFM.

Fig. 12. Examples of CFM.

model based on imageNet [22]. The results are shown in
Table I. It shows that the proposed methods obtain higher
accuracy compared with VGG16. The reason is perhaps that
the appearance of game image is significantly different from
the real image. VGG16 learns the limited feature from the
pre-trained model. When the recorded samples are employed
to train VGG16 model with a large amount of parameters, it
is easy to make model overfit.

TABLE I
CLASSIFICATION ACCURACY IN THREE DATASETS

VGG16 [21] lightweight network LSTM model
QQ speed 70.3% 72.5% 73.6%

CRED 84.6% 89.9% 91.7%
CFM 66.4% 67.3% 67.9%

The experiments show that the classification accuracy for



QQ speed is 72.5% based on the proposed lightweight model.
When network with LSTM is applied, the classification ac-
curacy is improved by 1.1%. For CRED, the accuracy is
89.9% and 91.7% for lightweight network and LSTM network
respectively. For CFM, the corresponding classification accu-
racy is 67.3% and 67.9%. This dataset is more difficult for
classification due to the low action advantage in CFM, which
means that multiple game strategies are suitable in the same
situation.

B. Evaluation on Game Performance

To investigate the efficiency of the proposed light-weight
network, we build a baseline network composed of 8 convo-
lution layers and 2 fully-connected layers. The structure of
baseline is shown in Figure 13. We evaluate this network
in CRED. The accuracy of baseline is 86.1%, which is
3.8% lower than our proposed network. The average distance
using baseline is 461, which is 97 less than the light-weight
network. The reason is perhaps that our work extracts more
discriminative feature due to the deep structure.

Fig. 13. Network structure of baseline.

We continue to analyze the performance in game environ-
ment for different AI model. For QQ speed and CRED, AI
performs the action with maximum probability to get higher
score. The frequency of action is set as 10 actions per second
for these games. For CFM, the action is executed randomly
based on probability distribution from AI model to explore
game and avoid stuck. Since high frequency of action is not
required in CFM, we set it as 2 actions per second.

To illustrate the advantage of imitation learning for com-
mercial game without game interface, our work is compared

with recent state-of-art reinforcement learning methods. Since
we control character to follow the pre-designed path in CFM,
it is hard to define the corresponding reward function for
reinforcement method. We apply the classical DQN [6] and
PPO algorithm [9] to train AI model based on radar map and
game image for QQ speed and CRED respectively.

The network structure for DQN is shown in Figure 14. We
take the gray images of 4 consecutive frames as the input of
model. Then, value scores for all actions are calculated based
on three convolution layers and two fully-connected layers.
The network is constructed based on work [6], which trains
model to play Atari games. While compared with commercial
games, the game interface of Atari game is provided to boost
training speed. Meanwhile, the state space of most Atari games
is much smaller, which benefits fast reinforcement training.

Fig. 14. Network structure for DQN.

For PPO algorithm, the radar map is fed into the pre-
trained alexNet [16] to extract feature, followed by Actor
and critic module to get the probability for each action and
the corresponding advantage score. The action is randomly
performed based on probability distribution and the network
is optimized by getting larger expected reward. The structure
of PPO algorithm is shown in Figure 15.

Fig. 15. Network structure for PPO.



TABLE II
PERFORMANCE COMPARISON WITH STATE-OF-ART METHODS

Player Random method DQN [6] PPO [9] VGG16 lightweight network LSTM model
QQ speed (second) 80 ∞ 94 93 96 92 88

CRED (meter) 825 185 560 - 452 558 634

TABLE III
PERFORMANCE COMPARISON (HUMAN NORMALIZED PERFORMANCE)

Lightweight network + data alignment + class balance + LSTM
QQ speed 80.0% 84.7% 86.9% 90.9%

CRED 51.0% 55.6% 67.6% 76.8%

In our experiment, we find that it is difficult for AI to learn
game strategy with drift action using reinforcement learning,
the reason is perhaps that drift action is sensitive to action
delay, which significantly increases the exploration space.
Actions for reinforcement learning for QQ speed are set as
left, right and no action.

To train reinforcement learning for QQ speed, reward is
calculated based on the speed of game character. We collect
a set of image patches for each number and apply template
matching to recognize current speed. For CRED, the distance
moved by the character is used as the reward. Positive reward
is obtained with the increasing of distance. if the character dies
or is stuck, AI model gets a negative feedback. The number
of distance is recognized through template matching.

Model parameters are optimized through a large amount of
interaction between AI and environment. For QQ speed, it
takes 48 and 18 hours to obtain trained model for DQN and
PPO, which means that PPO algorithm learns game strategy
around 3 times faster than DQN. For CRED, the model
is trained based on the whole game image, which is more
complex than the radar map in QQ speed. It takes around one
week to finish training using DQN method. Experiment results
are shown in Table II, which records the average performance
of 10 rounds. Due to action delay and lack of state exploration,
the performance using reinforcement learning is similar to the
results with lightweight network. This indicates the advantage
of imitation learning, which learns game strategy from human
recorded samples and supports off-line training.

The average performance of LSTM network is 4 seconds
faster than lightweight network. It takes about 88 seconds to
finish game, which is 8 more seconds than time cost of player
who records the game. For CRED, we record running distance
in a specific scene for 10 times. The average distance is 185,
558, 634 and 825 meters for random method, lightweight
network, LSTM model and player. For CFM, we record
game based on the fixed path. Using network with LSTM,
AI can follow the recorded path. While the agent performs
much worse with lightweight network, which lacks memory
of previous states. In general, using temporal feature can boost
performance of game AI by using relationship among adjacent
actions.

C. Ablation Study

The importance of data alignment and class balance is also
investigated. We record the human normalized performance
using lightweight network, data alignment, class balance and
LSTM in QQ speed and CRED. Experiment results are shown
in Table III. For QQ speed, using light-weighted network
achieves 80% performance of human, which is calculated
based on time cost of finishing race. Using data alignment
improves around 4% performance compared with only using
lightweight network. The reason is that action delay is partially
solved by data alignment. Using class balance further improves
2.2% and 12.0% for QQ speed and CRED. It shows the
importance of class balance, which avoids the bias to specific
action. By adding LSTM, the human normalised performance
achieves peak value, which shows the efficiency of temporal
feature.

Furthermore, we test the speed of our network using CPU.
It takes 13 milliseconds to output action probability based
on input image, which is resized to 150×150 pixels. This
indicates the efficiency of the proposed lightweight network.

V. CONCLUSION

In this paper, we propose a novel framework for game
AI, which only takes around one hour to get the trained
model. A lightweight network is proposed to extract deep
feature for input image, followed by LSTM structure to utilize
temporal feature. It takes only 13 milliseconds to output action
probability using CPU, which saves time and memory cost.
This work is evaluated in a variety of popular commercial
games. In our experiments, the proposed work is compared
with recent state-of-art reinforcement learning methods. With
the optimized imitation learning, our work achieves higher per-
formance than DQN and PPO methods, which take around two
days to complete training. Good performance in experiments
demonstrates the efficiency of the proposed method.

In future, we can add weight of each sample in imitation
learning, which indicates the advantage of the chosen action
compared with other actions. Based on this method, model
can focus on learning strategy with important samples, which
will boost performance of AI.
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