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Abstract—Real-Time Strategy (RTS) games are an interesting
environment to study challenging AI problems, such as real-time
adversarial planning and opponent modeling. In this paper we
focus on approaches that make use of replay data, which usually
encode domain expert knowledge of gameplay. Some of these
approaches use supervised learning to learn player/agent strategy
models and thus rely on these replays being annotated with
specific strategies or other labels. However, replays do not usually
contain labels for these strategies. The problem we address in this
paper is the automatic discovery of meaningful labeling of replays
in RTS games. We address this problem by learning action and
replay embeddings via recursive neural network models such
as LSTMs. These embedded replays can then be clustered to
discover labelings by using the clusters as the labels. We show that
we can learn embeddings and discover labelings for replays that
are correlated with meaningful information from those replays.

Index Terms—Real-Time Strategy Games, Deep Learning,
Unsupervised Learning

I. INTRODUCTION

Real-Time Strategy (RTS) games such as Starcraft and Age
of Empires are a very successful genre of video games. From
an AI point of view, they provide an interesting research chal-
lenge as they require real-time adversarial planning with partial
observability over vast state and action spaces. For that reason,
they additionally provide a strong testbed for studying real-
time challenging AI problems, such as adversarial planning or
opponent modeling, and AI subfields such as reinforcement
learning [1] and AI planning [2] have used them as testbeds.

Many AI approaches to play RTS games make use of
replay data (sequences of game state / action pairs seen over
the course of a game session) [3]–[5]. These replays are
usually generated from professional gameplay or game-playing
agents and encode domain expert knowledge of gameplay.
Some of these approaches, such as supervised learning ones
for player/agent strategy modeling, rely on replays being
annotated with specific strategies. Examples of this work in-
clude that of Combinatory Categorial Grammar (CCG)-based
planning [6] and plan recognition [7]. However, replays do not
usually contain labels for these strategies. This makes it chal-
lenging to apply supervised learning to replay modeling. This
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problem is further exacerbated by the fact that labeling replays
accurately requires domain-expert knowledge. In particular,
these works assumed that player strategies extracted from
replays were primarily related to the agent, where training
data (i.e. strategies) used the corresponding agent as a proxy
label. Even though these proxy labels are reasonable, they may
not be meaningful.

The problem we address in this paper is thus the automatic
discovery of meaningful labeling of replays in RTS games.
In order to address this problem, we use unsupervised deep
learning techniques to automatically construct embeddings
that “summarize” replays. In particular, our approach applies
word embedding techniques from Word2Vec [8] and sequence
modeling approaches such as LSTMs [9] to learn embeddings
for symbolic actions extracted from replays. We then use
these action embeddings along with state features to train
an LSTM with Attention [10] for encoding replays. These
encoded replays can then be used with off-the-shelf clustering
techniques (such as k-medoids) to discover labelings by using
the clusters as the labels. We demonstrate that we can learn
meaningful embeddings and discover labelings for replays
by assessing the information within clusters using metrics
from information theory, providing a deeper understanding of
these replays. µRTS1 is used as our evaluation domain, as
large collections of replays from past editions of the µRTS
competition are readily available.

This paper is structured as follows. Section II provides back-
ground on µRTS and word embeddings. Section III provides
a description of our approach on learning replay embeddings.
Section IV provides some initial experimental results on
clustering the replay embeddings. Section V provides some
related work and finally, we conclude in Section VI.

II. BACKGROUND

This section describes the µRTS testbed and provides a brief
background on word embeddings.

A. µRTS

µRTS is a minimalistic Real-Time Strategy game designed
to evaluate AI research in an RTS setting [11]. Figure 1

1https://github.com/santiontanon/microrts
978-1-7281-4533-4/20/$31.00 ©2020 IEEE



Fig. 1. Screenshot of µRTS gameplay

shows two scripted agents playing against each other in
µRTS. Compared to complex commercial RTS games such as
StarCraft, µRTS still maintains those properties of RTS games
that make them complex from an AI point of view (i.e. durative
and simultaneous actions, real-time combat, large branching
factors, and full or partial observability). In this paper, µRTS
games are deterministic, and fully observable. µRTS has been
used in previous work to evaluate RTS AI research, [2], [12],
[13] and has also been used in AI competitions2.

B. Word Embeddings

Machine learning algorithms such as LSTMs and Trans-
formers [10] are widely used in Natural Language Processing
to solve a variety of language tasks such as textual entailment
and question-answering. These algorithms do not directly work
on words, but usually on continuous vector representations
of words. A naive vector representation of words is one-hot
vectors, but these vectors do not capture information about
a word such as syntax and semantics. A word embedding
is a d-dimensional vector that both represents a word and
captures such information. Word embeddings can be static,
where the embedding is constant regardless of context, or
contextualized, where the embedding is a function of all words
in a sentence or sequence. There are a multitude of ways to
compute word embeddings, such as ELMo [14] and BERT [15]
(contextualized), or GloVe [16] (static).

Our work focuses on Word2Vec, which is a set of shallow
neural network architectures that learn to transform words to
static word embeddings. In this work, we use Word2Vec on
tokens from symbolic actions instead of words. There are two
architectures in Word2Vec, continuous bag of words and skip
gram, each with their own separate objective functions. In this
work, we focus on Skip Gram with Negative Sampling [8].
Skip Gram aims to predict tokens within a context window

2https://sites.google.com/site/micrortsaicompetition/home

Fig. 2. Replay Encoding Module (REM)

TABLE I
µRTS UNIT ACTION TYPES AND THEIR SYMBOLIC REPRESENTATION

Action Name Parameters Symbolic Representation
Harvest Worker, Direction harvest(worker, direction)
Return Worker, Direction return(worker, direction)
Attack Unit, X-Coordinate, Y-Coordinate attack(unit)

Produce Unit, Direction, Unit Type produce(unit, direction, unit type)
Move Unit, Direction move(unit, direction)

xt−k . . . xt+k given token xt using the following objective:

1

T

T∑
t=1

∑
−k≤j≤k;j 6=0

log(p(xt+j |xt))

where k is the context window size, xt is the current token,
xt+j is the context token, and the probability p(xt+j |xt)
is computed using the softmax function. Negative Sampling
extends the Skip Gram learning objective with noise words
sampled from a noise distribution, where the objective is to
additionally distinguish actual words from these noisy words.
In this work, k = 1 and the number of noisy words is 5.

III. APPROACH

Our approach aims to learn meaningful labelings for RTS
replays by applying clustering analysis on replay embeddings.
Past work has looked at encoding replays from Starcraft using
hand-crafted feature vectors [17], [18]. Here, we assume that
each replay represents a single player strategy and encode RTS
replays from µRTS using recursive neural networks.

Figure 2 provides the architecture for the Replay Encoding
Module (REM). The two main components are the replay
processor and replay encoder. The replay processor takes in
an RTS replay, and constructs an embedding of the state-
action pairs in the replay. The replay encoder then takes this
processed replay and constructs an r-dimensional embedding.

A. Replay Description

When dealing with replays in µRTS, we distinguish two
separate concepts: unit actions and player actions. The first
type, unit actions, are those performed by individual units in
game (workers, military units, etc.). In the default settings of
µRTS there are six different types of units: worker, barracks,
base, heavy, light, and ranged. Moreover, in order to generate
action and replay embeddings using neural networks, we want
to represent these actions as sequences of symbolic tokens.



TABLE II
STATE FEATURES FOR µRTS

Feature Type Feature Indices Description

Player-Specific

0-5 # of Each Unit Type
6-11 Health of Each Unit Type
12 Worker Resources
13 Base Resources

General 14 Height × Width of Map
15 # of non-player resources

Table I defines the set of unit actions types that are used in
this work and the symbolic representation we use for them,
syntactically defined as action name(parameters). The se-
quence of tokens used to represent this symbolic representation
is what we will ultimately use for generating action and
replay embeddings. For example, for the action name Harvest
which requires a worker unit and a direction to harvest,
the symbolic representation is harvest(worker , direction) (as
seen in Table I). We note that some parameters are not in the
symbolic representation of the action, since we ignore them
in this work. For example, the Attack action contains two
numeric parameters (X-Coordinate and Y-Coordinate), but the
symbolic action ignores these coordinates and only uses the
Unit parameter. The idle action is ignored in this work.

The second type of actions are player actions. In µRTS, a
player action is the set of unit actions that a player issues
to all of the units it controls at a given time step. Player
actions are syntactically similar to unit actions. Specifically,
we ordered a set of unit actions lexicographically based on
their unit action name, and set the action name as the
concatenation of the unit actions names, and the parameters
as the aggregation of the parameters from each unit action. We
used this representation as it coincides with the syntax of a
unit action. An example set of unit actions is {attack(light1),
produce(base1, down,worker )}, and the corresponding rep-
resentation we use for a player action would be attack-
produce(light1, base1, down,worker ), where base1, light1
are units, down is a direction, and worker is a unit type.

Given these, we define a replay as a sequence of game
state and player action pairs seen over the course of a game
session R = [(s0, a0), . . . , (sn, an)], where 1 ≤ t ≤ n is a
game frame, st is the current game state and at are player
actions done by a player. In this work, we assume all replays
are extracted from 2-player games. As such, two replays will
be constructed per game, one for each player. Replays can be
generated through gameplay with either humans or agents. We
generate replays using several game-playing agents for µRTS.

B. Replay Processor

We start by defining the replay processor, which takes a
replay R and re-represents it (R′) for consumption by our
neural network architecture. In particular, we encode states
and actions differently. States are encoded using a set of
hand-crafted features, and actions are encoded using an action
processor, which utilizes a combination of Word2Vec and Bi-
LSTMs. The state features are used to provide context for the

1: procedure PLAYERACTIONTOKENIZER(a)
2: Syntax of a: action name(parameters)
3: aname ← player action name of a
4: aparam ← parameters of a
5: T ← list of unit action names extracted from aname

6: for p ∈ aparam do
7: if p is a unit then
8: q ← Unit type of p
9: if p is a unit type then

10: q ← p + “type”
11: if p is a direction then
12: q ← p

13: T ← append(T, q)

14: Return T

Fig. 3. Player Action Tokenizer

Fig. 4. Action Processor

action embeddings (i.e. in what state was the action applied).
Finally, the state and action vectors are concatenated. During
training, the replay processor will convert a dataset DREM of
replays passed into REM into D′REM .

Table II provides the 16 state features, which can be
categorized into player-specific and general features. For the
player-specific features, there are 6 features related to the
number of units for each unit types, 6 related to total health of
units for each unit type, 1 for the number of resources held by
a worker, and 1 for the number of resources held by a base.
For the general features, there is 1 for the map size, and 1 for
the number of non-player resources. Map size is height times
width to keep dimensionality at a power of 2.

The replay processor constructs R′ = [ ~φ1, . . . , ~φn], where
~φt = [ft; ~at] represents the concatenation of ft and ~at (R′ ∈
D′REM during training). Here, ~at ∈ Rz is an embedding of the
action at constructed by the action processor and ft ∈ R16 is
a normalized feature vector of the game state. This processed
replay is then passed into the replay encoder.

C. Action Processor

The purpose of the action processor is to transform each of
the symbolic player actions from each replay (a1 . . . an) into a
z-dimensional embedding. Figure 4 provides a visualization of
the action processor. To construct these embeddings, the action



processor first tokenizes each of the player actions (player
action tokenizer), and then uses this tokenization to construct
the embedding (action encoder).

Player Action Tokenizer: The player action tokenizer
transforms a replay R into R′ = [(s0, T0), . . . , (sn, Tn)],
where Tt is a list of tokens for player action at constructed
by the algorithm in Figure 3. Specifically, the player action
tokenizer takes as input a player action a and constructs a list
of tokens T as follows. First, the action tokenizer splits the
player action into its action name and parameters. Next, the
player action name is further split into a list of unit action
names, and added to T . Then, the tokenizer extracts each
token from the parameters, adds them to T , and returns T . We
note that some of these parameter tokens are unique objects
in the game (such as worker1) and those not found during
training will not be encodable. The tokenizer addresses this by
replacing these unique objects with their type and replacing
unit types with the unit type + “type.”

For example, suppose we have the player action repre-
sented by the following symbolic representation (see Section
III-A): attack-produce(down, base1, light1,worker ). The al-
gorithm in Figure 3 will first split the action into aname =
attack-produce and aparam = 〈light1, base1, down,worker〉.
Next, the algorithm splits aname into attack and produce, and
adds them to T (T = [attack,produce]). Next, each parame-
ter is traversed and converted into tokens. In this example,
we add light , base, down , and workertype to T yielding
T = [attack,produce, light , base, down,workertype].

Action Encoder: The list of tokens Tt for player action
at is viewed as a sequence of words in a sentence. Thus,
a single Bidirectional LSTM (Bi-LSTM) is used for action
encoding, where a z-dimensional embedding is constructed by
averaging the final cell states cf,m ∈ Rz and cb,m ∈ Rz , where
m = |Tt|. These final cell states can be viewed as containing
a “summary” of the player actions from the two directions of
traversal (forward for cf,m, backward for cb,m).

To use Tt for encoding a player action, the action en-
coder converts each token in Tt into a d-dimensional em-
bedding. This is done using the Skip Gram with Neg-
ative Sampling (SGNS) [8] architecture from Word2Vec.
Word2Vec is trained using a list of sequences of tokens
[T1, . . . , Tk, . . . , T|DREM |], where each sequence Tk is con-
structed from Rk = [(s0, T0), . . . , (sn, Tn)] (1 ≤ k ≤
|DREM |). For each Rk, T0 . . . Tn are extracted and a special
end token END referring to the end of the sequence is added
to each token list. Next, the tokens in T0 . . . Tn are aggregated
into an ordered list of tokens Tk, which represent all tokens
found in Rk. Finally, an END token is added to the tail of Tk.

Given the trained Word2Vec network, an action embedding
is constructed by first embedding each token qj ∈ Tt using
Word2Vec. This results in a sequence of token embeddings
E = [~q1, . . . , ~qm], where ~qj ∈ Rd. E is then passed into the
Bi-LSTM to construct a z-dimensional action embedding. We
note that during training, a d-dimensional embedding of the
END token is added to the tail of E: [~q1, . . . , ~qm, ~END ].

The action encoder is trained to predict the next token

Fig. 5. Replay Encoder Neural Network Architecture

embedding ~qj+1 given ~q1 . . . ~qj . In particular, we train the
model to minimize the loss of the cosine similarity between
the predicted embedding ~qj+1

′ and the next embedding ~qj+1.
To do this, we use an additional linear layer above the Bi-
LSTM. This linear layer is passed over the hidden states from
the Bi-LSTM, where each hidden state is a concatenation of
the hidden states from each LSTM ht = [hf,t;hb,t]. This linear
layer transforms the hidden state ht ∈ R2z into Rd. Finally, a
z-dimensional action embedding is constructed by averaging
the final cell states cf,m ∈ Rz and cb,m ∈ Rz , where m = |Tt|.

D. Replay Encoder

Similar to the action encoder, the replay encoder encodes
whole replays into r-dimensional vectors. A key challenge
with replays is their length, where a single replay can be 3000
or more state, action pairs. As such, a single Bi-LSTM will not
be sufficient for constructing replay embeddings. Therefore,
we augment the Bi-LSTM with two attention layers and an
additional Bi-LSTM that constructs the final replay embed-
ding. Figure 5 provides the replay encoder, which consists of
2 Bi-LSTMs (Bi-LSTM1 and Bi-LSTM2) and 2 Self-Attention
layers (Attention1 and Attention2).

More specifically, the replay encoder works as follows.
First, the input [ ~φ1, . . . , ~φn] (~φt ∈ Rz+16) from a processed
replay R constructed by the replay processor described in Sec-
tion III-B is passed into a Bi-LSTM (Bi-LSTM1 in Figure 5),
which results in a sequence of hidden states h1 . . . ht . . . hn,
where ht = [hf,t;hb,t] is a concatenation of the two LSTM
hidden states at time t. As such, each ht ∈ R2r. Next, this
sequence is passed into two self-attention networks. The atten-
tion layers output two Rn×r matrices, and when concatenated
together, yield a Rn×2r matrix. This is then passed into a
linear feed-forward layer (Linear1 in Figure 5), yielding a
sequence of n vectors of size r. Note that each of these
vectors correspond to the state-action embedding pairs ~φt.
These n vectors are then passed into a second Bi-LSTM (Bi-
LSTM2 in Figure 5), where a r-dimensional replay embedding
is constructed by averaging the final cell states cf,m ∈ Rr and
cb,m ∈ Rr from Bi-LSTM2.



Given R ∈ D′REM , we train the replay encoder to min-
imize the loss in predicting the next state-action embedding
~φt+1 ∈ R given ~φ1 . . . ~φt using the cosine similarity as the loss
function. As such, the training input for the replay encoder is
[~φ1, . . . ~φn, ~φEND ], where ~φEND = [fn; ~END ] represents the
end of the replay. Training the replay encoder is similar to that
of the action encoder, where an additional linear layer is used
above Bi-LSTM2. Specifically, a linear layer is passed over
the hidden states from the Bi-LSTM, transforming the hidden
state ht ∈ R2r into Rz+16.

IV. EXPERIMENTS

The objective of our experiments is to demonstrate that
the embeddings learned by REM can be used to discover
meaningful labelings from replays for the RTS game µRTS.
To this end, we present results using three separate datasets
of µRTS game replays, where the players were different AI
agents. We generate labelings for each of the three datasets and
then compare those labelings against a collection of known
features such as which agent was playing, and in which map
they were playing, among others, in order to try to understand
what is it that the generated labels represent.

A. Experiment Setup

We use off-the-shelf clustering algorithms to discover labels.
Particularly, we use k-medoids clustering, defined as follows:
• Number of cluster: varied
• Initial Medoids: Randomly chosen with a seed
• Maximum number of iterations for clustering: 10000
• Distance metric: Squared Euclidean distance

We also employ several additional publicly-available libraries.
Specifically, we use the gensim library [19] for Skip Gram
with Negative Sampling with the configuration described in
Section II-B (5 noise words, context window of 1, and
embedding size of 16). We also use the Bi-LSTM, Attention,
and linear layer from Tensorflow 2.1.0.

Both the action and replay encoders use the cosine similarity
loss function with Adam [20] as the optimizer (learning rate
α = 0.001, β1 = 0.9, β2 = 0.999). Additionally, both are
trained using a batch size of 32 and construct vectors of size
32. We trained the action encoder for 1 epoch and the replay
encoder for 20 epochs. The replay encoder input length is
restricted to 512 due to memory constraints.

We use a series of µRTS replay datasets for these experi-
ments. We note that all replays are generated from 2-player,
fully-observable games. Our neural networks are trained on
Training Dataset, and evaluated and used to generate labels
for Datasets 1, 2 and 3, described below:

Training Dataset: The training dataset comes from the
CoG 2019 µRTS competition replay data3. The competition
consisted of three tracks (standard, non-deterministic, and
partially-observable), where each track involved a 5-iteration
round robin tournament played on 8 open maps plus 4 hidden

3https://sites.google.com/site/micrortsaicompetition/competition-
results/2019-cog-results

TABLE III
µRTS MAPS FOR Dataset 3

Map Name Map Size Max # of Game Iterations
(4)Fortress.scxA 128× 128 12000

GardenOfWar64x64 64× 64 8000
melee14x12Mixed18 14× 12 4000

barricades24x24 24× 24 5000
basesWorkers16x16noResources 16× 16 4000

itsNotSafe 15× 14 4000
letMeOut 16× 8 4000

chambers32x32 32× 32 6000

maps. In this work, we use replay data from the 12 agents in
the standard track and the 8 open maps. We use the first three
iteration for training REM, which contains 6336 replays.

Dataset 1: The next dataset consists of the last two iterations
of the standard track of the CoG 2019 µRTS competition
replay data, and contains 4224 replays.

Dataset 2: The second testing replay dataset contains 1936
replays and consists of a single iteration round-robin tourna-
ment with 11 built-in game-playing agents playing on the 8
open maps of the CoG 2019 µRTS competition. The built-in
scripted agents were POLightRush, POHeavyRush, PORange-
dRush, POWorkerRush, EconomyMilitaryRush, EconomyRush,
HeavyDefense, LightDefense, RangedDefense, WorkerDefense,
WorkerRushPlusPlus, and each agent played against each other
as both player 1 and player 2. We only required a single
iteration tournament as most of these agents are deterministic.
Additionally, we note that POLightRush and POWorkerRush
were also used in the CoG 2019 µRTS competition.

Dataset 3: The final replay dataset contains 1296 replays
and is an adaptation of the second one. In particular, use the
same built-in agents except POLightRush and POWorkerRush,
and 8 new maps not found in the first and second dataset. As
such, all agents and maps in this dataset are not in the training
dataset. Table III provides information on these 8 new maps.
We note that (4)Fortress.scxA is the largest map of all three
datasets and several of the maps in Table III are not perfect
squares. This is important as 7 of the 8 maps in the training
dataset are perfect squares. As such, we expect replays in this
dataset to be more challenging to encode. All other maps in
Table III are from the hidden maps of the 2019 and 2018
tournament. Agents played on these maps until one won or
the maximum number of game iterations elapsed.

We next provide a description of the metrics we use to
evaluate the resulting labelings. The first metric, silhouette
value, is used to evaluate the quality of the generated clusters.
Intuitively, the silhouette value for a given data point measures
the similarity of points in its own cluster and those in other
clusters. This similarity is computed using a distance metric (in
our work, this is euclidean distance), and ranges from [−1, 1],
where −1 means the data point is in the wrong cluster and 1
means the data point is close to its own cluster and far from
others. We compute the mean and median silhouette values
using the silhouette values from each data point.

The second metric, Variation of Information (VI) [21], is
used to evaluate the relationship between the information



(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Fig. 6. Number of Clusters vs Silhouette Value for Datasets 1, 2 and 3

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Fig. 7. Variation of Information for Dataset 1, 2, and 3 (Lower=Better)

(a) Cluster Visualization (b) Visualization of Distribution of Map and Agents

Fig. 8. Visualization of Clustering and Distribution of Map and Agents for Dataset 1

(a) Cluster Visualization (b) Visualization of Distribution of Map and Agents

Fig. 9. Visualization of Clustering and Distribution of Map and Agents for Dataset 3

contained in the replay embeddings and clusters. VI measures
the distance between two partitions of a dataset. In this work,
the first partition is the clusterings and the second partition
is different pieces of information extracted from the replays,
including agents, agent opponents, map, and map size. Here,

the smaller the distance, the more closely related the clusters
are to a particular piece of information. More formally, this
is computed as follows V I(X,C) = H(X,C) − I(X,C),
where X and C are discrete random variables representing
information and the clusters, H(X,C) is the joint entropy,



and I(X,C) is mutual information.

B. Experiment Results

Figures 6a, 6b and 6c provide the silhouette values from
k-medoids clustering for varying number of clusters (3 to
20) for Datasets 1, 2 and 3. Overall, we see that the sil-
houette value decreases as the number of clusters increases.
A silhouette value of 0 implies that clusters are overlapping.
However, we see that the silhouette values are higher than
0.25, which implies that k-medoids was able to separate the
replay embeddings. Further, we notice that Dataset 3’s curve
is not a smooth decline like Datasets 1 and 2. This is a result
of clusters with higher than uniform number of points having
higher silhouette score than other clusters. This caused some
number of clusters to have higher silhouette scores. These
graphs can be used to determine a natural number of clusters
for k-medoids. Specifically, the best number of clusters is
the minimum set of clusters where adding additional clusters
will not improve the clustering (i.e. no need for additional
partitioning of the data). This would thus be the elbow point
of the graph. The natural number of clusters is 6 for Datasets
1 and 2, and 8 for Dataset 3.

Next, we look at the information learned by the embeddings.
Figures 7a, 7b and 7c provide the variation of information
(VI) for Datasets 1, 2, and 3 on types of information extracted
from the replays, including agents, agent opponents, map, and
map size. Here, lower VI is better as it corresponds to types
of information being closely related to the clusters. Overall,
we see that VI increases with the number of clusters. This
makes sense as more clusters would result in different clusters
having similar information (e.g. multiple clusters containing
the map (4)Fortress.scxA), thereby making it difficult to relate
a type of information to a cluster. We also see that the clusters
correspond more to map or map size than agents or their
opponents. This implies that, despite their specific behavior,
agents play based on the size and structure of a map (or at
least that this has a larger influence in the replay embeddings).
We also see that the agent itself has a larger influence in the
labeling than the opponent, which is expected.

Figures 8a and 8b provide a visualization of clustering
and distribution of agent (left bar) and map (right bar) in
each cluster for Dataset 1. Each colored bar represents some
fraction of the cluster. For example, in cluster 5 of Fig-
ure 8b, approximately half of the cluster corresponded to the
(4)BloodBath.scmB map (right bar, light-blue). Here, we use
UMAP [22] to reduce the dimensionality of the embeddings
for cluster visualization. We see that cluster 0 (red) is an
entire island of points and the remaining clusters separate a
large island of points. Specifically, cluster 0 corresponds to
all agents playing on the map FourBasesWorkers8x8 accord-
ing to Figure 8b. This clustering makes sense as the map
doesn’t allow for many elaborate strategies except to rush
the opponent due to its size and structure. We also see that
cluster 2 (green) separates cluster 3 (light-blue). Cluster 3
is correlated with agents playing on the maps BWDistantRe-
sources32x32, DoubleGame24x24, TwoBasesBarracks16x16,

basesWorkers16x16A, and basesWorkers8x8A. We believe that
the larger set of points refers to TwoBasesBarracks16x16,
basesWorkers16x16A, and basesWorkers8x8A while the other
points refer to the remaining maps. This makes sense as
the maps in the former set mostly differ in size or entities
on the map. Specifically, the difference between TwoBases-
Barracks16x16 and basesWorkers16x16A is that there is an
additional base and two barracks for each player in the former.

Figures 9b and 9b provides a visualization of clustering and
distribution of agent and map in each cluster for Dataset 3.
Here, we see that cluster 1 and 5 represent playing on larger
maps with a worker-type strategy while clusters 4 and 6 refer
to non-worker type strategies. We define a worker type strategy
as one that only requires worker units to execute. Non-worker
type strategies require constructing barracks and offensive
units such as ranged, light or heavy. Thus, it makes sense that
worker-type strategies have their own clusters separate from
agents that construct offensive units.

These results indicate that both the replay embeddings and
clusters contain meaningful information about the replays.
In particular, the replay embeddings encode a lot of map
information and some agent information. This is illustrated in
the visualizations of agent and map distributions in Figures 8b
and 9b. We also note that the replay embeddings capture
similar information irregardless of the agents and maps used
for generating replays (as can be seen with the results in
Dataset 3, which use a completely disjoint set of maps).
This demonstrates that our approach is robust and should be
applicable to replays with unseen agents and maps.

V. RELATED WORK

Learning action embeddings using deep learning is not a
new idea. For example, Tennenholtz and Mannor [23] present
Act2Vec, an approach that uses contextual information (action
histories) to learn action embedding. Specifically, the action
being converted and the action context are provided as input
to Word2Vec (specifically, Skip Gram Model with Negative
Sampling). These learned action embeddings are then applied
in the context of RL. Our work also learns action embeddings
using Word2Vec, but uses those embeddings for replay encod-
ing. Chandak et al. [24] presents a supervised technique for
learning action embeddings in the context of Reinforcement
Learning (RL). Specifically, they simultaneously learn a policy
for getting an action embedding, and a mapping function from
embedding space to discrete actions.

Additionally, RTS games in general have been used as
testbeds for problems such as reinforcement learning [1], [25],
planning [2], [26], and plan recognition [27]. There has also
been some prior work on labeling replays and applying them
to strategy prediction. Weber [17] modeled opening strategies
from Starcraft using hand-crafted feature vectors and used a set
of rules to label these openings. Synnaeve and Bessiere [18]
similarly uses hand-crafted feature vectors for various Starcraft
openings and determined labels for them using clustering.
Our work discovers labelings through clustering and encodes
replays using deep learning.



Finally, our work is also related to the general area of player
modeling, which aims to describe properties of players such
as strategies or knowledge (see Machado et al. [28] for an
overview of the area). Many works [29]–[31] apply machine
learning over gameplay features extracted from logs to learn
these player models. Our approach instead learns features from
replays to then subsequently find labelings for replays.

VI. CONCLUSION

The problem we addressed in this paper is the automatic
discovery of meaningful labeling of replays for the RTS
game µRTS. Our contribution is the Replay Encoding Module
(REM), which applies unsupervised deep learning techniques
to automatically construct embeddings that “summarizes” a
replay. Encoded replays are then used with k-medoids to
discover labelings for the replays using the clusters as the
labels. Our experiments demonstrate that we can learn mean-
ingful labelings and embeddings that capture map and agent
information from the replays.

For future work, we are interested in studying other deep
learning architectures such as Transformers for replay encod-
ing. We are also interested in relaxing the assumption that each
replay corresponds to a single strategy as it is possible that
agents many execute multiple, possible interleaved strategies
within a replay. Finally, we also want to look at ways to
manipulate the type of information in the embeddings and
how to apply these learned labelings for playing µRTS.
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[11] S. Ontañón, “The combinatorial multi-armed bandit problem and its
application to real-time strategy games,” in Proc. of the 9th AAAI Con-
ference on Artificial Intelligence and Interactive Digital Entertainment,
2013, pp. 58–64.

[12] A. Shleyfman, A. Komenda, and C. Domshlak, “On combinatorial
actions and CMABs with linear side information,” in Frontiers in
Artificial Intelligence and Applications, vol. 263. IOS Press, 2014,
pp. 825–830.

[13] J. R. Marino, R. O. Moraes, C. Toledo, and L. H. Lelis, “Evolving action
abstractions for real-time planning in extensive-form games,” in Proc.
of the 2018 AAAI Conference on Artificial Intelligence, 2018.

[14] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in Proc. of
2018 North American Chapter of the Association for Computational
Linguistics, 2018.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[16] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proc. of 2014 Conference on Empirical
Methods in Natural Language Processing. Citeseer, 2014.

[17] B. G. Weber and M. Mateas, “A data mining approach to strategy
prediction,” in 2009 IEEE Symposium on Computational Intelligence
and Games. IEEE, 2009, pp. 140–147.

[18] G. Synnaeve and P. Bessiere, “A Bayesian Model For Opening Predic-
tion in RTS Games With Application To Starcraft,” in Proc. of 2011
IEEE Conference on Computational Intelligence and Games. IEEE,
2011, pp. 281–288.

[19] R. Rehrurek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proc. of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. Valletta, Malta: ELRA, may 2010,
pp. 45–50.

[20] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
Proc. of the 3rd International Conference on Learning Representations,
2015. [Online]. Available: http://arxiv.org/abs/1412.6980
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