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Abstract—Exploration is a key problem in reinforcement learn-
ing. Recently bonus-based methods have achieved considerable
successes in environments where exploration is difficult such as
Montezuma’s Revenge, which assign additional bonuses (e.g.,
intrinsic rewards) to guide the agent to rarely visited states.
Since the bonus is calculated according to the novelty of the next
state after performing an action, we call such methods as the
next-state bonus methods. However, the next-state bonus methods
force the agent to pay overmuch attention in exploring known
states and ignore finding unknown states since the exploration
is driven by the next state already visited, which may slow the
pace of finding reward in some environments. In this paper,
we focus on improving the effectiveness of finding unknown
states and propose action balance exploration, which balances
the frequency of selecting each action at a given state and can be
treated as an extension of upper confidence bound (UCB) to deep
reinforcement learning. Moreover, we propose action balance
RND that combines the next-state bonus methods (e.g., random
network distillation exploration, RND) and our action balance
exploration to take advantage of both sides. The experiments
on the grid world and Atari games demonstrate action balance
exploration has a better capability in finding unknown states and
can improve the performance of RND in some hard exploration
environments respectively.

Index Terms—deep reinforcement learning; exploration bonus;
action balance, UCB

I. INTRODUCTION

Reinforcement learning methods are aimed at learning poli-
cies that maximize the cumulative reward. The state-of-the-art
RL algorithms such as DQN [1], PPO [2] work well in dense-
reward environments but tend to fail when the environment has
sparse rewards, e.g. Montezuma’s Revenge. This is because
with the immediate rewards of most state-action pairs being
zero, there is little useful information for updating policy.
Reward shaping [3] is one solution that introduces human
expertise and converts the original sparse problem to a dense
one. However, this method is not universal, and transforming
human knowledge into numeric rewards is usually complicated
in real tasks.

Recently bonus based exploration methods have achieved
great success in video games [4], [5]. They use the next states
obtained by performing some actions to generate intrinsic
rewards (bonuses) and combine it with the external rewards
to make the environment rewards dense. Since the bonus is
calculated by the next state, we call them next-state bonus
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Fig. 1: The example of an agent dominated by the next-
state bonus method. The circle represents agent and the star
represents treasure. Green indicates the visited area, the more
time visited, the darker colored. a) Agent stands in the middle
of the corridor at the start of each episode. b) Agent steps left
by chance at first and continuously going left in the future
(shallow green). c) The left area being explored exhaustedly
(deep green). d) Agent decides to go right by chance and
finally find the treasure.

methods for short in the following sections. However, the
next-state bonus force the agent to pay overmuch attention
in exploring known states, but ignore finding unknown states
since it takes effect by influencing the external rewards (details
are described in Section III-A).

An illustration of the drawback in the next-state bonus
methods is shown in Figure 1. Specifically, the action selection
is completely based on the next-state bonus and no other
exploration strategies that exist, including ε − greedy and
sampling actions from policy distribution. As shown in Figure
1a, two areas connected by a narrow corridor and a treasure is
placed in the right area. An agent is born in the middle of the
corridor and decides which area to explore at the beginning of
each episode. At the very first step, since there is no transition
information for the agent to calculate an additional bonus,
which based on the next state, and the additional rewards of
all states are equal to zero, it will decide which direction to go
randomly. Assuming the agent chooses to go left by chance
(Figure 1b), now transitions that all belong to the left area can
be collected and additional non-zero bonuses will be assigned
to the next states in the transitions, which makes the action
to go left have a higher reward. At the start of the following
episodes, the agent will continuously go left because of the
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higher reward and ignore the right area. When the left area
is fully explored and all bonuses belong to it decay to zero
(Figure 1c), the agent will face the same situation as the first
step of the initial episode and select a direction randomly. Only
until then, the agent may go right and find the treasure after
many tries (Figure 1d).

This example shows how the agent pay overmuch attention
in exploring known states (the left area) and ignore finding
unknown states (the right area), which slows the pace of
finding the treasure. In order to reduce the adverse effects
that the next-state bonus brings and stop going left all the
time in Figure 1b, one solution is carrying out explorations
when select action in st directly, instead of regarding the bonus
of st+1. For example, using ε− greedy exploration to select
random actions with a certain probability will make it possible
to go right at the start of each episode even if the left action has
a higher reward (bonus) in Figure 1b. However, it is inefficient
to rely entirely on fortunate behaviors.

Given these points, we propose a new exploration method,
called action balance exploration, that concentrates on finding
unknown states. The main idea is to balance the frequency of
selecting each action and it can be treated as an extension
of upper confidence bound (UCB, [6]) to deep reinforcement
learning. Specifically, in a given state, we record the frequency
of selecting each action by using a random network distillation
module and generate a bonus for each action. Then, the action
bonus vector will be combined with the policy π to directly
raise the probabilities of actions that are not often chosen.
For an agent that uses the next-state bonus methods, the
action balance exploration can avoid it from paying excessive
attention to individual actions and improve the ability to find
unknown states. For example, in the same situation as Figure
1b, the action balance exploration will give a high priority to
go right when standing in the middle of the corridor because
the right action has a lower frequency of selecting than the left
action. Moreover, our action balance exploration method can
be combined with the next-state bonus methods (e.g., random
network distillation exploration, RND) in a convenient way
and take advantage of both sides.

In this paper, we also combine our action balance explo-
ration method with RND and propose a novel exploration
method, action balance RND, which can find unknown states
more efficiently and simultaneously guide agents to visit
unfamiliar states more frequently. We first test the action
balance RND in a grid world that is the complete absence of
rewards. The result shows that the action balance RND outper-
forms RND all through and overcomes the random baseline
with about 2.5 times faster, which means the action balance
exploration improves the capability in finding unknown states
of RND. Also, the action balance RND covers about 15 more
grids, which is about 3% higher in relative increase rate than
RND at last. Second, in the environment of reaching goals, the
action balance RND obtains the lowest trajectory length, which
is about 1.23 times smaller on average than RND. Finally, we
demonstrate that our action balance exploration can improve
the real performance of RND in some hard exploration Atari

games.

II. RELATED WORK

Count-based methods [7], [8] have a long research line,
which use the novelty of states as an intrinsic bonus to guide
exploration. Count-based methods are easy to implement and
efficient in tabular environments, but they are not applicable to
large scale problems once the state space is not enumerable. To
solve this problem, many improvement schemes are proposed.
TRPO-AE-hash [9] uses SimHash [10] to hash the state space.
Although it can decrease the state space to some extent,
it relies on the design of the hash algorithm. DDQN-PC
[11], A3C+ [11], DQN-PixelCNN [12], and φ-EB [13] adopt
density models [14] to measure the visited time of states.

ICM [5] and RND [4] use the prediction error of super-
vised learning to measure state novelty since novel states
are expected to have higher prediction errors due to the
lesser training. [15] solves the ’noisy-TV’ problem of ICM by
introducing into a memory buffer. [16] employs an additional
memory buffer which saves the episodic states to calculate
intrinsic rewards. [17] theoretically analyzes the feasibility of
using the number of (s, a) pair occurs to estimate the upper
confidence interval on the mean reward of the pair, which
can be used to guide the exploration. Although many different
methods for calculating intrinsic bonus [18], [19] exist, the
bonus usually takes effect by influencing the external reward
from the environment. In contrast, UCB1 [6] records the
frequency of selecting each action and gives high priorities
to the actions that are not often selected, which is widely
used in the tree-based search [20], [21], but not suitable
for innumerable state. DQN-UCB [22] proves the validity of
using UCB to perform exploration in Q-learning. Go-Explore
[23] used a search-based algorithm to solve hard exploration
problems.

Entropy-based exploration methods use a different way to
maintain a diversity policy. [24] calculates the entropy of
policy and adds it to the loss function as a regularization. This
is easy to implement but only has a limit effect. Because it
uses no extra information. [25] provided a way to find a policy
that maximizes the entropy in state space. The method works
well in tabular setting environments, but hard to scale up in
large state space. [26] provided a policy optimization strat-
egy (Exploratory Conservative Policy Optimization, ECPO)
that conducts maximum entropy exploration by changing the
gradient estimator at each updating. The changed gradient
makes it not only maximize the expected reward but also try
to search for a policy with large entropy nearby. However, the
computation relies on collected samples.

III. METHOD

Consider an agent interacting with an environment. At each
time step t, the agent obtained an observation st ∈ O from
the environment and samples an action with a policy π(st).
After taking that action in the environment, the agent receives
a scalar reward rt, the new observation st+1, and a terminal
signal. The goal of the agent is to maximize the expected
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Fig. 2: The overall approach of action balance RND. First,
an action bonus vector is calculated with the input st. Then,
the bonus vector is added to πθ(a|s) to generate a new
policy βθ(a|s). At last, use the action sampling from βθ(a|s)
to interact with the environment and generate the next-state
bonus. Details are described in Section III.

discounted sum of rewards R =
∑
t γ

trt. An environment that
is hard to explore usually means the rewards are sparse (most
of rt are zeros) in each episode, which makes the agent have
little information for updating policy. Although the intrinsic
reward (i.e., next-state bonus) changes the sparse reward to
dense, a limitation still exists (Section III-A).

In this work, we primarily focus on improving the per-
formance of the next-state bonus methods, which may limit
the exploration ability in hard exploration environments. To
accomplish this goal, we propose action balance exploration,
which committed to improving the effectiveness of finding
unknown states. Moreover, it is convenient to combine the
action balance exploration with the next-state bonus methods
to preserve the advantages of both. An illustration of the
overall combination is shown in Figure 2. Since we use RND
exploration [4] as the next-state bonus method, we call the
combined method as action balance RND. Specifically, we
first use the action bonus module to generate the bonus vector
rabs of the current state. Then, we combine the bonus vector
and the old policy πθ(a|s), which is generated by the policy
net, by an element-wise add. This will give us a new policy
βθ(a|s) that takes the frequency of selecting each action into
consideration. After generating action by a ∼ βθ(a|s), we
use it to interact with the environment and turn into the next-
state bonus module, which is an ordinary RND exploration and
will generate a new bonus to modify the environment reward.
Finally, all parameters are updated with the modified samples.

In the following sections, we first analyze the drawback of
the next-state bonus methods. Then, we introduce the details
of action balance exploration step by step.

A. Drawback of the next-state bonus

The main idea of the next-state bonus method is to quantify
the novelty of experienced states and encourage the agent
to revisit novel states more often, which have already met
before. To briefly summarize this exploration process, the

agent first experiences some states by performing actions,
which generates transition tuple (st, at, rt, st+1), where st is
the state of time-step t, at is the action performed at t, and rt is
the reward given by the environment after preforming action
at. Then, to encourage taking action at when facing st, an
intrinsic reward (bonus) rit that quantifies the novelty of st+1

is being calculated by taking st+1 as input, which gives a new
transition (st, at, rt, st+1, r

i
t). At last, the exploration bonus

rit is combined with the environment reward rt (e.g., linear
combination) and affects the action selection in future steps
by gradient-based methods [4], [5], [15], [18]. Specifically, a
novel next state st+1 will give a high exploration bonus and
raise the probability of choosing action at, which will result
in more visits to st+1.

As described above, the exploration process in next-state
bonus methods is driven by the next state st+1 and take
effect by generating additional reward (bonus), which means
the agent must obtain the next state first in order to generate
exploration bonus. Besides, the bonus, which will be combined
with the environment reward, only encourage to perform the
specific action to reach st+1. In the case that an agent is
fully dominated by the next-state bonus during exploration
and does not use any other exploration strategies, including
ε− greedy and sampling action from policy distribution, the
agent will always follow the most novel states, which possess
the highest bonus, that have already visited before. In other
words, the next-state bonus methods force the agent to follow
existing experiences for deep exploration but have little effect
on finding states that never experienced. This exploration
phenomenon may lead the agent to pay overmuch attention
in exploring known states, but ignore finding unknown states,
which is also important for exploration.

B. Random network distillation module

In this section, we introduce a module used in our action
balance exploration method, which is called random network
distillation module. This module is proposed in RND explo-
ration [4] and is used to measure the occurrence frequency of
input which is continuous or not enumerable.

Random network distillation module transforms the count-
ing process into a supervised learning task by using two neural
networks: target network and predictor network, which use the
same architecture. The target network is fixed and randomly
initialized, it generates target value by mapping the input to an
embedding representation f : O → Rk. The predictor network
f̂ : O → Rk tries to predict the target value and is trained to
minimize the MSE:

rit = ‖f̂(s; η)− f(s)‖2 (1)

Where f̂ is parameterized by η.
In general, based on the fact that the loss of specific input

will decrease as training times increase [4], the prediction
errors of novel inputs are expected to be higher. This makes the
intrinsic reward rit establish a relationship with the occurrence
frequency of input and has the ability to quantify the novelty
of it.



Algorithm 1: Action balance RND
Input: Initial state s, policy network πθ(a|s), action

bonus module ĝ(s, aE ; θ′), next-state bonus
module f̂(s; η), dimension of action space k.

1 repeat
2 for i=1,...,k do
3 Obtain embedded representation aEi of action

ai by Eq. (3) (opt)
4 Calculate action bonus baiby :

bai = rab(s, ai) = ‖ĝ(s, aEi ; θ′)− g(s, aEi )‖2

5 end
6 Obtain action bonus vector rabs of state s by

concatenating the action bonuses:

rabs = (ba1 , ba2 , ..., bak)

7 Modify the original policy by:

βθ(a|s) = softmax(πθ(a|s) +Normalize(rabs ))

8 Generate action by a ∼ βθ(a|s).
9 Interact with the environment to get the next state

st+1 and external reward r.
10 Generate intrinsic reward rit with st+1 and new

reward r′:

rit = ‖f̂(st+1; η)− f(st+1)‖2
r′ = r + rit

11 Collect samples (s, a, r′, st+1).
12 Generate policy loss lp (PPO is used here) with

(s, a, r′, st+1).
13 Update parameter θ, θ′, η by minimizing the overall

loss:

lt(θ, θ
′, η) = lp + ‖ĝ(s, aE ; θ′)− g(s, aE)‖2 +

‖f̂(st+1; η)− f(st+1)‖2

14 s← st+1

15 until Max iteration or time reached;

C. Action bonus module

The goal of the action balance exploration is to balance
the frequency of selecting each action in each state. Thus, we
need to record the occurrence frequency of the state-action
pair (s, a), instead of only the state s. To accomplish this goal
in a more general way, we use the random network distillation
module to count the frequency of selecting each action. The
bonus of an action a at state s is given by:

rab(s, a) = ‖ĝ(s, aE ; θ′)− g(s, aE)‖2

aE = Embedding(a)
(2)

Where g and ĝ map the input to an embedding vector of Rk
and have the same role as f and f̂ do respectively, aE is
the fixed embedded representation of action a (e.g., one-hot
embedding). This bonus can be used to guide the exploration
in future learning.
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Fig. 3: Illustration of mapping the 1-d action index to a 2-d
array. Given an action with index 1, first, choose the padding
rows. Then pad the selected rows with a specified value (e.g.,
1) to get the 2-d representation of input action. This array
can be regarded as another input channel for convolution
architectures.

Another thing needs to be declared is how we process the
input of the state-action pair. Since g is a neural network, the
most common way is using the combination of s and a as one
input (i.e., using a as additional features for s) and obtaining
the output by one computation. However, the proportion of
action features takes in this combination will directly influence
the output. For example, when a takes a very low proportion
in the combination of (s, a), the action bonus rab(s, a) will
be dominated by s and become irrelevant to a, vice versa. In
an ideal condition, we will obtain the perfect output as we
expect when s and a have an equal proportion in the input
combination, which makes the output is decided by s and a
equally.

Although the commonly used one-hot encoding is more
recognizable than just the index of action, the one-hot vector
may not suitable when the dimension of the state is much
higher than the dimension of the encoded action. Based on this
situation, we propose an encoding method that maps 1-d action
to a 2-d array, which is suitable for 2-d states. Specifically,
given a default m × n zero matrix M ∈ Rm,n, the action is
represented by:

Mi,∗ = c,

∀i ∈ {a× bm
k
c, a× bm

k
c+ 1, ..., (a+ 1)× bm

k
c − 1}

(3)

Where a is the index of action, k is the dimension of action
space and c is the padding value. The rows of M are divided
into bmk c parts and a specific part is padded with c according to
action index a (Figure 3). Since this 2-d array can be regarded
as another input channel for convolution neural networks, we
call it action channel.

D. Applying action bonus on exploration

Given a state s, we can obtain the frequency of selecting
each action by using rab(s, a). Then, we concatenate the bonus
of each action to obtain the bonus vector of state s:

rabs = (ba1 , ba2 , ..., bak)

= (rab(s, a1), r
ab(s, a2), ..., r

ab(s, ak))
(4)



Before using the bonus vector rabs to influence the ex-
ploration, normalization is performed. On the one hand,
normalization raises the difference between each element in
rabs , whose values are small, by scaling them according to a
baseline, which means more straightforward to encourage or
restrain on each action. On the other hand, this modification is
harmless since it does not either change the relative relation of
elements in rabs nor disturb the outputs of other inputs. Then,
this modified bonus vector will directly add to the original
policy πθ(a|s):

βθ(a|s) = softmax(πθ(a|s) +Normalize(rabs )) (5)

At this point, we obtain a new policy βθ(a|s) which considers
the frequency of selecting each action and the behavior action
will be sampled from policy a ∼ βθ(a|s).

Note that, since the bonus vector rabs is calculated before
actually take one action, we can use all actions as input to
calculate the bonus vector rabs . Besides, the behavior policy
βθ(a|s) is slightly different from the target policy πθ(a|s).
Theoretically, it makes the action balance RND become an
off-policy method and needs correction. We find the method
works well without any correction in our experiments.

E. Next-state bonus and parameters update

After obtaining the action to be performed from βθ(a|s)
in Section III-D, the following process is just the same as
an ordinary RND exploration [4]. We first interact with the
environment by action a to get the next state st+1. Then,
the intrinsic reward rit of st+1 is calculated by Eq. (1) and
a modified reward r′ is calculated by linear combination:
r′ = r + rit, which gives a new transition (s, a, r′, st+1).
Finally, the overall loss is calculated by:

lt(θ, θ
′, η) = lp + ‖ĝ(s, aE ; θ′)− g(s, aE)‖2

+ ‖f̂(st+1; η)− f(st+1)‖2
(6)

Where the first item is the policy loss of specifying algorithm
(e.g., PPO), the second and third are the prediction errors
of the action bonus module and the next-state bonus module
respectively. The pseudocode of the action balance RND is
presented in Algorithm 1.

IV. EXPERIMENTS

The primary purpose of our experiments is to demonstrate
that the action balance exploration has a better performance
in finding unknown states and can speed up the exploration
process of the next-state bonus methods in some environ-
ments. Thus, we compare three exploration methods: random,
RND exploration (one implementation of the next-state bonus
method), and our action balance RND (the combination of our
action balance exploration and the next-state bonus RND).
We first compare the ability to find unknown states in a
grid world that is the complete absence of rewards. Second,
we compare the exploratory behaviors of different methods
including the action balance exploration, which removes the
next-state bonus (RND) from the action balance RND and
the agent is completely guided by the action bonuses. Third,
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Fig. 4: Comparison of finding unknown states in a no-ends grid
world with multiple episodes. The axes show the cumulative
values.

to demonstrate how much the differences in finding unknown
states will influence actual tasks, we construct another environ-
ment of reaching goals in grid word. Specifically, to make the
experiment results more accurate, we use a fixed-function to
calculate the intrinsic reward of each grid in RND exploration
since the state is enumerable, instead of a neural network.

Finally, we test our method on six hard exploration video
games of Atari. In this experiment, an ordinary RND that using
a neural network to generate intrinsic reward is applied. The
code is published here1.

A. Comparison of finding unknown states

In this experiment, we use a simple grid world with four
actions: up, down, left, right. Especially, no rewards exist in
any of the grids and also no goals. What the agent could do is
just walk around and explore the environment until reaching
its max episode length. These settings make the grid world
similar to a hard exploration environment and eliminate all the
factors that may influence the exploration strategy. Based on
these conditions, we can compare the differences in behaviors
between exploration methods on it. Moreover, we use state
coverage rate Rs = Nvisited/Nall to quantify the performance
of exploration, where Nvisited is the number of unique states
that have been visited and Nall is the number of total unique
states. A better strategy is expected to have a higher state
coverage rate during the exploration process.

Specifically, the size of the gridworld is set to 40×40 and we
use the coordinates [x, y] of the agent as state representation.
The start point is fixed at P0(0, 0) and the max episode length
is 200. In order to trace the exploration process in the long
term, we run 100 episodes for each method and record the state
visited rates every 10 steps during this process. The results are
shown in Figure 4, which are averaged by 100 runs.

Comparison of state coverage rate. Figure 4a shows the
state coverage rate along with the cumulative step number.
The action balance RND covers about 15 more grids than

1https://github.com/NeteaseFuxiRL/action-balance-exploration
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RND at last. In order to show the relations more clearly, we
calculate the relative increase rate to random (shown in Figure
4b). Specifically, it is calculated by (x− random)/random,
where x is RND (i.e., state visited rate of RND) or action
balance RND. As shown in Figure 4b, the action balance RND
overcomes the random baseline with about 2.5 times faster and
outperforms RND all through, which is about 3 percent higher
in the end. The results demonstrate that the action balance
RND has a better ability in finding unknown states than RND,
which owe to the usage of action balance exploration.

Analyses of exploratory behaviors. Another result worth
to say is random performs better than RND and action balance

RND in the initial phase (Figure 4b). This is due to the
difficulty of reaching a grid increase when the random agent
tries to get far from the start point. In the beginning, since
most of the grids near the start point are not ever being visited,
the state coverage rate rises rapidly even when using random
selection. As time goes by, it becomes harder and harder for a
random agent to find unknown states since most of the grids
near the start point have already been visited and it is difficult
to get farther for the random agent.3

In contrast to RND, instead of finding unknown states,
the agent tends to do deep exploration in known states,
which leads to a lower coverage rate in the initial phase.
However, RND makes it possible for the agent to directly
go to states far from the start point and begin exploration
there. Since it is much wider away from the start point, the
agent has more opportunity to see unknown states in there,
which results in a higher visited rate in the latter phase. After
introducing the action balance exploration into RND (i.e.,
action balance RND), the speed of finding unknown states has
been accelerated a lot and the final visited rate is increased too.

Figure 5 is the heat maps of the exploration process, which
shows the exploration tendency. A random agent tends to
hover around start point and generate disorder trajectories. The
action balance exploration, which is completely guided by the
action bonuses, appears more serried around the start point
since the agent tends to choose low-frequency actions. As
for RND (i.e., next-state bonus), although the agent succeeds
in exploring a wider range, but due to the lack of strategy
on finding unknown states, the agent unremittingly explores
individual regions and earns nearly the same performance as
random selection. As for action balance RND, the agent not
only explores wider (via RND) but also more even in each
direction (via the action balance exploration) than the others.
More results can be found in this video2.
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Fig. 8: Mean episodic return as a function of parameter updates.

TABLE I: Trajectory lengths when first reach the endpoint.

end (x, y): random RND action balance RND

(0, 20) 10583.86 10304.23 8118.19
(20, 0) 11142.43 11062.97 8360.99
(10, 20) 12772.29 13434.67 9248.96
(16, 16) 18755.5 12339.32 11364.08
(20, 10) 13464.31 11197.49 10384.51
average 13343.678 11667.736 9495.346

TABLE II: Final episodic return.

RND Action
balance RND

Action balance
RND + channel

Montezuma’s Revenge 3812 3762 4864
Gravitar 1349 1177 1434
Pitfall! 0 0 -1
Private Eye 59 30 57
Solaris 1122 1051 1150
Venture 1506 1564 1491

B. Influence in the task of reaching goals.

This is another toy experiment that aims to show how much
the differences in finding new states will influence actual tasks.
We follow the fundamental settings described in section IV-A,
except there is a goal in the environment. As we only care
about the exploration efficiency, we let the game finish as
soon as the agent first reaches the endpoint and record the
length of this trajectory for comparison. The trajectory length
is expected to be smaller for a better exploration method.

In this experiment, we select 5 endpoints around the start
position symmetrically to test on and run 100 times for each
endpoint. As shown in Figure 6, random gains the highest
median and third quartile number of trajectory length, RND is
slightly lower than random and action balance RND obtains
the lowest number. Detail results are shown in Table I. The
result shows that the action balance RND is about 1.23 times

2https://youtu.be/A6VDYiJ8phc

smaller on average than RND and beats the other two at each
endpoint, which means the action balance RND can find useful
information faster than RND.

C. Atari

In this section, we test our method on six hard exploration
video games of Atari: Gravitar, Montezuma’s Revenge, Pit-
fall!, Private Eye, Solaris, and Venture. First, we compare
different processing methods on the action bonus vector, which
tries to shape the elements in a bonus vector more distinguish-
able. After that is a comparison of different action embedding
methods, which aims to find an appropriate representation
of action. These two experiments are trying to increase the
performance of action balance exploration in different ways.
Finally, we contrast the reward curves of the learning process.
The mainly hyper-parameters are the same as RND and all the
results are averaged by 5 runs.

Adding action channel. This experiment compares differ-
ent action embedding methods and tries to find an appropriate
representation for Atari games. Specifically, unless particularly
stated, we use one-hot embedding as the default method to
embed actions. Since the input state of Atari games is a 2-
dimensional array, one-hot action can not directly combine to
the input when calculating the action bonus. One solution is
using convolution networks to process the input and generate
a 1-dimensional feature, which will be concatenated to the
one-hot action. We adopt this method in relevant experiments.
However, the feature generated by convolution networks usu-
ally has an overlarge dimension than the one-hot action in
Atari games (thousands to tens in our case), which results in
too large proportion in the combination of state-action and
may cover up the effect of action when calculating the action
bonus of given state.

In order to increase the proportion of action when calcu-
lating the action bonus, we add another action channel to the
input state (described in Section III-C). The dimension of the
action channel is the same as the input state (84×84). We use



0.01 as the padding value of the channel (c = 0.01,m = 84
in eq. (3)). As the result of Montezuma’s Revenge shown in
Figure 7, using an action channel makes the entropy lower
than others, which means the effect of action in calculating
the action bonus is enhanced.

Reward curves during training. Figure 8 shows the mean
episodic return of different games during training. Table II
is the final returns. As we can see, the action balance RND
not only earns the highest final return but also escalates much
faster than RND in Montezuma’s Revenge and Gravitar, and
obtain almost the same results as RND in other games, which
means the action balance exploration does not bring negative
effects to the exploration process at least and may be beneficial
to some environments. Besides, using an additional action
channel makes the results even better than only using one-
hot action in most of the games.

As described in Section IV-A, the action balance explo-
ration makes an agent explore the environment in a more
uniform way. The rewards in Montezuma’s Revenge and Grav-
itar are relatively uniform and dense in state space than the
others, which is beneficial for the action balance exploration.
Specifically, the agent can obtain rewards by touch something
in most rooms of Montezuma’s Revenge. Although one needs
to fire and destroy enemies in Gravitar to obtain rewards,
the enemy is quite a bit in each room and it’s meaningful
to travel around. In contrast, positive rewards appear only in
very low-frequency situations in Private Eye. Pitfall! not only
suffers the lack of positive rewards but also exists negative
rewards all around. Solaris is a little complex to obtain rewards
than others. Venture has similar settings as Gravitar, but it is
more dangerous and cannot get rewards before finding the
treasure in rooms. These game settings let only a few actions
(or strategies) related to the reward, which is not conducive
for the action balance exploration to take an effect.

V. CONCLUSION
In this work we propose an exploration method, we call

action balance exploration, which focuses on finding unknown
states, contrasts to the next-state bonus methods which aim to
explore known states. We also propose a novel exploration
method, action balance RND, which combines our action
balance exploration and RND exploration. The experiments
on grid word and Atari games demonstrate the action balance
exploration has a better capability in finding unknown states
and can improve the real performance of RND in some
hard exploration environments. In the future, we want to try
more complicated methods to combine the action balance
exploration and RND exploration, like adaptation coefficient,
hierarchical exploration.
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