
Discovering of Game AIs’ Characters Using a
Neural Network based AI Imitator for AI Clustering

Zhou, Yushan
School of Electronics Engineering and Computer Science

Peking University
Beijing, China

zysls@pku.edu.cn

Li, Wenxin
School of Electronics Engineering and Computer Science

Peking University
Beijing, China

lwx@pku.edu.cn

Abstract—In game AI research, most work aims at building
a more powerful AI but few are reported on explaining AI’s
behavior or revealing the characters of AI. Previous efforts in
training a human-like AI via style learning implies that AI may
behave with human characteristics. However, the early work
treated human playstyle as a whole instead of identifying the
difference among various AIs. In this paper, we focus on finding
out manlike characters of individual AIs, and clustering AIs
according to their characters. We propose a Neural Network
based game AI imitator to imitate AIs’ behavior and find that
some AIs are easier to imitate than others. Based on this
observation we define the term imitability to describe the difficulty
of imitation and cluster the AIs into two categories according
to their imitability. Through statically analyzing, we find that
AIs with lower imitability are generally farseeing with a global
perspective while the other group are nearsighted and narrow-
minded. The AIs hard to imitate also perform better when
fighting with others. Upon the above semantic analysis of the
clustering results, we conclude that the imitability can be used
to identify AIs’ character.

Index Terms—game AI, explainable AI, characters, style learn-
ing, neural network

I. INTRODUCTION

With inspirational development of game AI like AlphaGo
and Suphx, they greatly attract public attention because of
their superhuman performance [1]–[3]. While outperforming
humans significantly, these AI are black boxes, which confuses
us which playing style we should classify it as. What’s worse,
humans always fear the unknown especially those without
emotion resonance. To break the barriers between humans
and AI programs, it’s of significant importance to explore the
character, i.e., playing style, that game AI behaves in game
playing and make the game AI easy, intuitive, and vivid to
understand.

Concretely, exploring game AI’s characters helps discover
various ways of game playing. AIs with distinct search al-
gorithms differs in building search tree, which contributes to
diverse behaviors that can be captured as AIs’ characters. The
calculation process of AI resembles thinking in human, e.g.,
AI who only uses the current information is too short-sighted
to consider the future, and some farseeing one chooses action
with most feedback through searching game tree. Previous
efforts in style learning of AI mostly focused on training a

Fig. 1. A screenshot of Snake on the online multi-agent platform, Botzone.
The grids surrounding the field are walls. The greys are stones, the same as
obstacles in logs. The green connected snake and the red one are controlled
by the players, whose heads are specially marked with two dots. Other grids
are blank.

human-like AI, which implies that AI may behave with human
characters. It also benefits the gameplay video generation
[4]–[6], that customizing spectator-specific gameplay based
on persona research reduces difficulty and saves time in
developing.

In this paper, the term bot is used to refer to an AI program.
An AI imitator is a neural network mimicking AI program’s
decisions. The game we use in this paper is a variant of
traditional game called Snake. As there’s exactly one game
for each match in the Snake game, we use the term match
in places of game. We define the term IMI (imitability) to
quantitatively describe the difficulty of imitation and cluster
the AIs into two categories according to their imitability.

For most game AI, searching on a game tree is a common
technique to find the optimal solution. The size of game
tree is typically vastly larger than the state space of the
problem, and each node in the tree is a reachable state, which

978-1-7281-4533-4/20/$31.00 ©2020 IEEE



means that exhaustive search is almost impossible within time
and space limit when the size of tree is enormous. Some
search techniques are used to narrow down the search to
several branches and find an approximate solution. Common
search algorithms in game AI differ in range and order of
search. Apart from the algorithm structure, another essential
component of the game AI is value function, which evaluates
each state and determines whether the move is good or bad.

Different search order in algorithms and diverse information
utilized in value function may account for diverse playing style
in game AI. Learning about bots’ search order and pre-defined
weights in value function, i.e., their preferences, is a heuristic
approach to analyze bots’ characters. With the limitation of
time, bots may have strong preferences in their search order,
which is reflected in the generation of the unbalanced game
tree. The pre-defined weights in the evaluation function also
influence the final decision making. However, without access
to their source codes, we can hardly build a clear cognition of
how these bots are organized even if we know the algorithm
structures. For example, the parameters in AlphaGo, Suphx
and Deep Blue remain undisclosed. It is difficult to discover
the AI’s characters in lack of intuitive methods of studying
AI behaviors. Therefore, it’s natural to come up with the
idea of imitating the thinking and calculating process of AI.
More directly, we can train an AI-style bot to clone the AI’s
behaviors in different situations.

In the field of style learning, music and text attract our
attention. Different music pieces have distinct characters. We
can distinguish them by comparing the elements of music
(such as pitch, tonality, and rhythm, etc.) at a low level, and
recognize the style at a high level. It is the same in text, we
can use the low-level characters (like the use of rhetoric) to
summarize the high-level style. We are convinced that behavior
characters of AI in game playing can also be captured to
classify the playing style. Especially, the characters of game
AI discussed in this paper refers to the objective behavior but
not the subjective feelings or emotions. It is not easy for us
to discover whether the bot will be anxious and make random
or aggressive decisions like human players when it is about to
lose. Also, it is difficult for the programmers to create a game
AI to guess the opponent’s thoughts and change its strategy.
However, we can capture the behavioral characters like taking
a flanking tactic to surround the enemy, snatching areas as
more as possible, and taking aggressive/conservative strategy
when both sides encounter. A reasonable assumption is that
bots with a distinctive playing style differ in behavioral char-
acters because of different algorithms and diverse parameters.

Under this assumption, we conducted experiments based
on the Snake game on Botzone, which is a designed to
evaluate implementations of different game AI by automat-
ically scheduling matches for them under the ELO rating
system. Their execution environment has limits in memory
and time, enforcing users to write time-efficient and space-
efficient programs to balance exploration and exploitation.

We selected 22 bots from the ELO rank list according to the
algorithms they used. There are 194 bots in total. We selected

2 NE (Nash Equilibrium) bots, 3 MCTS (Monte Carlo Tree
Search) bots, 4 MC (Monte Carlo) bots, 5 Alpha-Beta bots, 4
DFS (Depth First Search) bots and 4 ES (Expert System) bots
randomly from the list. Especially, the MC bots and the MCTS
bots expand the successors randomly in game tree, while the
others not. None of the bots makes random decisions. We
downloaded the public matches from the platform and focused
only on the selected bots, then we recovered the gameplay
states to produce the datasets used to train an AI imitator
cloning the AI’s decisions.

It is necessary to mention that the Snake on the platform
is adapted into a two-player turn-based game, with a map
ten grids long and eleven grids wide showed in Fig. 1. Ten
stones are placed symmetrically and their coordinates will
be generated randomly before the match begins. The players
make decisions simultaneously, with an action set consisting of
North, East, South, and West, encoded from 0 to 3. Different
from the traditional snake game, snakes grow on certain turns
only. In the beginning, both snakes have a body length of
one grid and grow every turn. After ten turns, the frequency
decreases to once every 3 turns. The player loses once the
snake collides with obstacle or any snake’ body, or the bot
performs an invalid action. The other one will be the winner
in this match. Although the size of action set is 4, the actual
number of valid actions for each state is no more than 3.
The snake can’t head back to bite itself, and its head is
connected to the body. Considering that there is no action
as standing still, i.e., not moving, a natural strategy to win is
surrounding the opponent to make invalid action, e.g., biting
the snake body, the wall, or the stones. In Table I, we show
the Snake’s state-space complexity and game-tree complexity
along with other games summarized in [7]. Especially, Snake
is a simultaneous decision making game, and we calculate
its game-tree complexity by treating its branch factor as the
number of action pair.

TABLE I
STATE-SPACE COMPLEXITIES AND GAME-TREE COMPLEXITIES OF

VARIOUS GAMES

Game State-space compl. Game-tree compl.
Checkers 1021 1031

Othello 1028 1058

Chess 1046 10123

Chinese Chess 1048 10150

Snake 1054 10122

Hex 1057 1098

Shogi 1071 10226

Go(19× 19) 10172 10360

In the following section, we present the related work, and
compare their targets and methods with ours. In Section III, we
elaborate a method of clustering the AI programs by evaluating
their imitability using universal AI imitators. In Section IV,
we give the concrete experiment settings and conduct static
analysis on the bots to demonstrate the feasibility of clustering.
We read bots’ programs to give the cluster semantic characters
to get stronger evidence. Finally, in Section V, we summarize



the work, analyzing the advantages as well as shortcomings,
and discuss the future work.

II. RELATED WORK

A. Behavioral Cloning in Imitation Learning

Imitation learning focuses on learning to utilize experts’
demonstrations to complete a certain task. Torabi et al. [8] split
the research in imitation learning into two main categories,
(1) behavioral cloning and (2) inverse reinforcement learning.
The former directly maps the states to the actions in super-
vised learning methods, while the latter involves reinforcement
learning [9]. In our work, we use the behavior cloning methods
to train an AI imitator to exploit characters of bots’ playing
style, and the bots chosen are not all expert-level.

The early work of imitation in game AI mainly concentrated
on how to make the AI behave like a human, or how to produce
human-style non-player characters (NPCs) as opponents or
mates in games [10]–[13]. Ortega et al. [10] compared hard-
coded method and three types of neural networks by mimick-
ing the human players’ gameplay across levels in Super Mario
Bros . Their objective was training a human-like, believable
and enjoyable AI in game playing. Devlin et al. [12] combined
the traditional Monte Carlo Tree Search algorithm with human
gameplay data, adding weights to the rollout decision, making
AI more human-like while maintaining good performance as
before. They made a strong but unrealistic assumption that
there was only one human playstyle in the game, then they
amalgamated the whole gameplay data into one model. In
the extended experiment, they clustered individual players’
behavior and discovered four distinct clusters, but failed to
define the clusters qualitatively. Ishii et al. [5] introduced a
new evaluation function into a variant of MCTS called Puppet-
Master MCTS to let AI behave humanity. Holmgård et al. [11]
modeled player decision making styles based on persona and
clone methods.

Our work is different from theirs on the objective, for we
investigate the imitability of AI programs and try to recognize
the playing style of distinct AI with a semantic description, but
not human-like or human-style learning. We address the imi-
tation learning problem through supervised learning methods,
using neural networks to imitate the AI program’s responses.
Besides, there is seldom clear classification of AI playing
style in previous work, and it is innovative to give a semantic
meaning to the clustering results of the AI programs.

B. Music Style Learning

Music style learning is one of the mainstream in music
information retrieval researches. The similarity between the
work using unsupervised methods and ours is that we both try
to give a semantic description to the clustering results. Because
of the nature of music, the style is influenced by the custom,
the tone, etc., which inspires the researches in discovering
the relationship between the music clusters and genres, and
recognizing the music’s style.

To cluster the music recordings, the similarity (or dis-
tance) must be defined. Tsai and Bao [14] represented music

recordings in the same genre as Gaussian mixture model, and
computed what is the likelihood that a music recording belongs
to the genre. Cilibrasi et al. [15] used the compression program
bzip2 to approximate the distance between music pieces and
distinguished them between various musical genres (classical,
jazz, rock). Kopiez et al. [16] and Cilibrasi et al. [17] both
used the best informative compressors to categorize musical
style and found the cluster method helps authorship detection.
They claimed that the best compression rate of a data sequence
was related to the self-similarity of the sequence and then to
its complexity.

Compared to the methods above, our work differs in the
measurements of similarity but is similar in the evaluation
of specific properties of the objects. Music style learning
calculates entropy on music pieces while we perform the
evaluation of the AI’s imitability based on match log.

C. Cluster-based Text Sentiment Analysis

Text Sentiment Analysis is widely used in public opinion
collections. Feng et al. [18] extracted blogs on common
emotions with fine-grained sentiment clustering, extending the
coarse level with a classification of “positive”, “negative”
and “natural”. Eyben et al. [19] clustered the combination of
the text and speech to improving expressiveness for speech
synthesis systems.

Similar to music, text reflects the creators’ characters (strict
or lively) and stimulates emotions in the audience through
rhetoric (like parallelism, irony, etc.). The text style is more
like a sentiment classification like “happy”, “sad”, etc. Dif-
ferent from that, the playing style of game AI we discuss
in this paper is not related to the emotions but the behavioral
characters when making decisions, e.g., taking a flanking tactic
to surround the opponent’s snake body, or changing its strategy
to a conservative one when two snakes’ heads encounter.

III. PROPOSED METHOD

In this section, we elaborate the method of clustering the
bots on their imitability measured by the performance of the
neural-network-based AI imitators. To cluster the bots into
different styles, there are several questions to be addressed:
(1) the form of data on which we prepare to cluster, (2) the
linguistic meanings that the clustering results can be explained,
and (3) the clustering approach and the evaluation of the
clustering results.

To answer the first question, we did not cluster on the
matches data directly, but on the performance of the imitators.
Considering the need for quantitative evaluation of imitability
in clustering, we defined the term IMI (imitability) to denote
the performance of the networks which reflects the degree of
imitation, particularly the validation accuracy.

The second and the third question both need the verification
proof on the clustering results. The clustering of music style
by genres inspires us that the algorithms and the information
utilized in the value function probably correlate strongly with
the clustering results. We conducted static analysis on the bots’
code, then we tabulated the search depth and the information



used in the value function (see Table II). The search depth and
the value function will not be the input to the networks, but
we will use them to analyze bots’ characters.

A. Data Collection and Preprocess

We selected various bots using different algorithms from
the ELO rank list of Snake game on the online multi-agent
platform, Botzone. The platform uses an ELO system to rate
the relative ability of AI programs. We downloaded the public
matches from the platform and focused only on the selected
bots, then we recovered the gameplay states to produce the
datasets used to train an AI imitator cloning the AI’s decisions.

We used Nb to represent the number of bots, and ranked
them by ELO score with sequence number from 1 to Nb. For
each bot, we replayed the match from logs to generate state-
action pairs, which resulted in Nb datasets. A sample of match
log is shown below. Finally, we sampled pairs randomly in
each bot’s dataset, to keep the sizes of Nb dataset the same.

1{
2 i d : O b j e c t I d , / / match ID
3 i n i t d a t a : {
4 wid th : Number , / / map ’ s wid th
5 h e i g h t : Number , / / map ’ s h e i g h t
6 0 : { x : Number , y : Number } , / /

p l a y e r 0 ’ s c o o r d i n a t e
7 1 : { x : Number , y : Number } , / /

p l a y e r 1 ’ s c o o r d i n a t e
8 o b s t a c l e : [
9 { x : Number , y : Number } ,

10 { x : Number , y : Number } ,
11 . . .
12 ] / / o b s t a c l e s ’ c o o r d i n a t e s
13 } ,
14 p l a y e r s : [
15 { i d : O b j e c t I d } ,
16 { i d : O b j e c t I d }
17 ] , / / p l a y e r s ’ ID
18 l o g : [
19 {
20 o u t p u t : {
21 c o n t e n t : {
22 0 : { . . . } , / / i n i t d a t a above

s e n t t o p l a y e r 0
23 1 : { . . . } / / i n i t d a t a above

s e n t t o p l a y e r 1
24 } ,
25 d i s p l a y : { . . . } / / map i n f o r m a t i o n

t o d i s p l a y
26 }
27 t ime : Number / / m i l l i s e c o n d
28 } , / / Judge ’ s o u t p u t
29 {
30 0 : {
31 t ime : Number , / / m i l l i s e c o n d
32 r e s p o n s e : {

33 d i r e c t i o n : Number / / p l a y e r 0 ’ s
a c t i o n

34 }
35 } ,
36 1 : {
37 t ime : Number , / / m i l l i s e c o n d
38 r e s p o n s e : {
39 d i r e c t i o n : Number
40 }
41 }
42 } , / / bo t s ’ a c t i o n s f o r t h e f i r s t

t u r n
43 {
44 o u t p u t : { . . . } ,
45 t ime : Number
46 } , / / Judge ’ s o u t p u t
47 {
48 0 : { . . . } ,
49 1 : { . . . }
50 } , / / bo t s ’ a c t i o n s f o r t h e second

t u r n
51 . . .
52 ] ,
53 s c o r e s : [
54 Number , / / p l a y e r 0 ’ s s c o r e
55 Number / / p l a y e r 1 ’ s s c o r e
56 ]
57}

B. Data Preprocess and Analysis

The gameplay state is presented as a zero-one triple-
dimensional array with a shape of (10, 11, 4). The map is 10
grids high and 11 grids wide, and the number of channels is
4. The four channels represent: (1) our snake’s head, (2) our
snake’s body (including the head), (3) the opponent snake’s
body (including the head), and (4) the stones (see Fig. 2). The
mask is a 1 × 4 vector where the element at the index i is 1
if the action i is valid, 0 otherwise. We multiplied the output
before softmax with a mask to make sure that the action does
not violate the rules.

The count of valid actions varies from 0 to 3. The samples
with 0 or 1 valid action should be deleted from the datasets,
as these states are trivial. Finally, we removed the duplicated
states to avoid overlapping occurring in training set and
validation set.

C. Evaluation by Imitation and Clustering

We designed networks with different structures as the im-
itator. Then we used k-fold cross-validation to evaluate the
performance of the neural networks. More concretely, we
shuffled the dataset randomly, then splitted the dataset into
k groups. For each unique group, we took it as validation
set and the rest as training set. Finally, we summarized the
performance, the mean validation accuracy, to evaluate the
imitability of the bot.



Fig. 2. Data formulation. We regulated the state of the situation as a zero-
one triple-dimensional array with a shape of (10,11,4), and the four channels
mean: (1) our snake’s head, (2) our snake’s body, (3) the opponent snake’s
body, and (4) the stones. The mask of action can be calculated according to
the static situation.

The number of networks is Nn. The j − th network
evaluates the imitability of i − th bot as a score IMIji .
For the i − th dataset, we could get Nn evaluation scores
IMI1i , IMI2i , · · · , IMINn

i from the networks. Reduction like
max, min or mean makes the object easier to cluster.

Similar to the idea in [16] and [17], we considered that the
best performance of neural-network-based imitators is related
to the self-similarity of the matches data. We used j∗ to refer
to the best network with the largest mean value.

j∗ = arg
Nn
max
j=1

1

Nb
×

Nb∑
i=1

IMIji (1)

We use the median in {IMIj
∗

i }
Nb
i=1 to classify the bots into

two categories. The bots with higher IMI is easier to imitate.
The objective of classification is to give a semantic meaning
to the bots with distinct behaviors, which is measured by the
imitators. In this paper, we concentrated on the semantic-level
analysis on the cluster results and explore the feasibility of
using the method to cluster the bots with different playing
styles.

D. Semantic-level Analysis

During the imitation process, the input only contains the
state of situation without information of the algorithm or value
function. To demonstrate whether the clustering results have a
semantic meaning, we conducted static analysis on the selected
bots’ code. Then we described the information utilized in the
value function, the search depth as well as search optimization
to explain what and why the bot behaves a certain playing
character in game playing.

IV. EXPERIMENTS

A. Datasets

We collected 22 bots from the ELO rank list on the platform
(Nb = 22). Simple descriptions of algorithms used in these

bots are summarized in Table II. Public match logs1 from May
2015 to January 2020 were used for our data.

The logs we downloaded from the platform have uniform
JSON format, which includes the initial state and the bots’ ac-
tions for each turn. We replayed the matches to generate state-
action pairs as datasets. The gameplay state is presented as a
zero-one triple-dimensional array with a shape of (10,11,4)
(see Fig. 2). The deduplication of repeated data and the
removal of states with zero or one valid action were done
in the process.

TABLE II
BOTS WITH DIFFERENT ALGORITHMS.

BID Rank Algo SD Prune Timelimit
1 1 MCTS inf Yes Yes
2 2 NE ID Yes No
3 3 MCTS inf Yes Yes
4 6 Alpha-Beta ID Yes No
5 9 NE ID Yes No
6 13 MCTS ID Yes No
7 15 Alpha-Beta ID Yes No
8 17 Alpha-Beta ID Yes No
9 19 Alpha-Beta 11 Yes No
10 20 MC inf Yes Yes
11 31 DFS 8 Yes No
12 32 DFS 8 Yes No
13 34 Alpha-Beta 10 Yes No
14 49 DFS inf Yes No
15 54 MC inf No Yes
16 56 MC inf No Yes
17 77 ES N/A No No
18 87 ES 1 No No
19 89 DFS inf Yes No
20 91 MC 1 No No
21 149 ES 1 No No
22 156 ES 1 No No
aBID is the serial number of bots. Rank is the bot’s rank in the
ELO raking list. Algo is the algorithm the bot uses. SD means
the search depth, and the ID means iterative deepening. Prune
indicates whether the bot uses pruning. Timelimit indicates
whether the bot balances the search time in different actions.
The algorithms in the column of Algo are (1) MCTS, Monte
Carlo Tree Search, (2) NE, Nash Equilibrium algorithms, (3)
Alpha-Beta, AlphaBeta pruning with Minimax algorithm, (4)
DFS, depth first search, (5) MC, Monte Carlo, (6) ES, Expert
System.

Every bot’s matches were dealt as a dataset respectively.
For each dataset, we randomly sampled matches to remove
the influence from significant difference in dataset size. We
tested on 4 AIs to choose the best number of matches per
dataset. 1000 is the best among other values (see Fig. 3).
Particularly, we calculated the baseline accuracy as ((N2/2)+
(N3/3))/(N2 +N3), where the N2 and N3 are the counts of
states with two and three valid actions respectively. We have
analyzed that there are at most 3 valid actions in Section one.
The states with zero valid action means that the player will lose
in the following turn, and those with one valid action could be
predicted all the time using the game rules. So we don’t take
the states with zero or one valid action into consideration. The
results range from 40.0% to 47.3%.

1https://extra.botzone.org.cn/matchpacks/



Fig. 3. Validation accuracies of AIs with different numbers of matches as
datasets.

B. Networks

We designed 5 networks by two main structures of neural
networks (Nn = 5), MLP and CNN, to imitate AI’s decisions.
NN1 and NN2 are MLP, and the others are CNN. We used
MLP-1, MLP-2, CONV-1 to CONV-3 to refer those networks
in the following. MLP-1 is a two-layer fully connected with
128 hidden units, and MLP-2 is three-layer with 80 and 256
hidden units in the adjacent layers. The sizes of convolutional
kernel used in CONV-1 to CONV-3 are 2× 2 and 3× 3, and
the max stride is 2. The number of parameters of the networks
are shown in Table III.

TABLE III
THE NUMBER OF PARAMETERS OF THE NETWORKS

Network Parameters
MLP-1 56964
MLP-2 57044

CONV-1 58052
CONV-2 61724
CONV-3 59452

The network takes a 4-channel input (see Fig. 2), and
the output is a 4-element vector. Optimization is by Adam
[20] using mini-batches of 32 samples in 300 epochs. Batch-
normalization is used in both MLP and CNN networks. All
the models are regularised using weight decay, starting with a
learning rate of 0.02 and are trained on a GPU cluster for 80
to 100 hours in total. Before feeding the output to the softmax
layer, we multiplied the output value with the mask of action
to remove the invalid actions.

C. Cluster

We used 5-fold (k) cross-validation to evaluate the perfor-
mance of the neural networks. For each network, we got 22
(Nb) evaluation scores of the datasets, and then we calculate
the mean score. The best network with the highest mean
score was chosen. Clustering was based on the best network’s
evaluation scores to find distinct playing styles in bots. The
median dichotomizes the bots into two classes evenly, and a

semantic meaning will be attached to the classes. To verify
the reliability, we analyzed the codes of the selected bots
and classify them by the algorithms and some implementation
details, like the search depth.

D. Static Analysis of AI programs

We gave simple statistics of static analysis on the bots’
codes in Table II. Three kinds of differences in bots raised
our attention. First, the search depth determines whether the
bot is farseeing or short-viewed. Second, some bots prune the
game tree to accelerate the searching speed, and justify the
time cost in expansion dynamically which helps search deeper
to see further. Those short-viewed bots don’t adopt the pruning
method. Third, the bots that take an exhaustive search don’t
limit time in searching part of branches, which makes them
farsighted but also leads to the less exploration on the other
branches.

Because of the Monte Carlo method’s principle, the MC
bots and the MCTS bots use random action selection. The
common steps in MC and MCTS algorithm are selection,
expansion, and rollout/simulation, while the latter has one
more step called backpropagation and keeps records at each
node on the game tree: (1) the number of wins, (2) the
number of simulations, (3) the total number of simulations run
by the parent node [21]. The MC bots use uniform random
action selection at each node. On the contrast, the MCTS bots
select action by a probability that is proportional to the value
of corresponding child node, which is calculated by UCB
using the records [22]. The difference leads to the diversity
in the game trees, like depth, width, scale, and balance, etc.
The MCTS bots do well in balance the depth and width,
which makes the bots far-seeing. Although the MC bots also
concentrate on the width, they could’t know a complete subtree
which means that it makes a bias estimation of the actions.
The MC bots perform worse than the MCTS bots.

The NE (Nash Equilibrium) bots evaluate each action and
select the most promising one through finding a Nash Equi-
librium in the payoff matrix [23]. The payoff matrix is a
table in which the bot’s valid actions are listed in rows and
the opponent’s in columns (or vice versa). The cells in the
matrix record a pair of rewards to the rivals under the choice
of the actions pair, and the rewards are evaluated using the
dynamic information of the blank connected girds after several
steps. The Nash Equilibrium is such a steady state that no one
can change his action to be better when the other remains.
Instead of selecting action randomly as MC bots and MCTS
bots, the NE bots expand the node which is reached by the
best action in the Nash Equilibrium solution. If the payoff
matrix can precisely describe the situation, the NE bots will
make the perfect choice. It’s worth noting that the NE bots
adopt pure strategy but not the mixed strategies, and they
don’t make choices randomly. However, the bots can’t fill the
payoff matrix in the beginning but update the matrix by the
backpropagation of the result calculated in evaluation function
from the leaf node to the parent node. It makes the NE bots
close to the MCTS bots.



The search depth of Alpha-Beta bots is related to the
search order. A good bot sorts the nodes to be expanded
and can search deeper. The DFS bots have fixed search
order and behave the narrow-minded characters, for they don’t
explore more to find a better solution. The DFS bots’ overall
performance is worse than Alpha-Beta bots’.

The bots with Expert Systems behave both short-sighted and
narrow-minded.

Generally speaking, the NE bots and the MCTS bots are
far-seeing and have a perspective of the general situation.
The bots with Expert Systems behave both short-sighted and
narrow-minded. The MC bots are far-sighted but have a bias
estimation of the future. The Alpha-Beta bots are far-seeing
and comprehensive if they with the nodes well sorted. The
DFS bots are narrow-minded.

E. Results

The average accuracy curves of the five networks on the 22
datasets are shown in Fig. 4 and Fig. 5.

Fig. 4. The accuracy curves of five networks on train set after 300 epochs.
The bottom curve is the baseline as random choosing.

Comparing the curves in the right subfigure, we found that
CONV-2, the four-layer convolutional neural network (CNN)
performs better than the other networks.

Using the validation accuracies of CONV-2, and get the
median as 0.60, on which we cluster the bots into two classes.
The first class contains the bots with id 1, 2, 3, 4, 5, 6, 7, 10,
13, 15, 16, and the second 8, 9, 11, 12, 14, 17, 18, 19, 20, 21,
22. We can see that the MCTS bots and the NE bots fall into
the first class, while the DFS bots and the ES bots fall into
the second class. The Alpha-Beta bots and MC bots fall into
both classes.

The results reveal that the search preference, as well as
information the bots utilizes, is relevant to the imitability. As
mentioned in the static analysis of the codes, the unbalanced
game tree will lead to bot’s preference behavior in the actual
match. The MCTS, MC, and NE bots utilize the information of

Fig. 5. The accuracy curve of five networks on validation set. The IMI is
defined in Section 3 to denote the performance of the networks which reflects
the degree of imitation. The bottom curve is the baseline as random choosing.
The bot’s imitability is measured by the accuracy on the validation set.

the grids state in the following, which reinforces their ability of
grasping the general situation. The MCTS and the MC bots
also tend to build a balanced game tree, while the Alpha-
Beta bots and the DFS bots are affected by the search order.
The difference makes the latter two kinds of bots spend too
much time in searching the first available action and they fail
to explore the other directions, which is narrow-minded as
humans. The ES bots copy the thinking of the programmers.
However, the human experience doesn’t work on this game,
for the state complexity is too large to build a decision tree
with good strategies.

The bots with lower IMI in the first class behave the cir-
cumspect and farseeing characters. They are harder to imitate
but perform better when competing with others than the bots
with higher IMI . Algorithms that the first-class bots use are
tend to build a balanced game tree and allocate more comput-
ing resources to the most promising nodes and those unvisited.
The evaluation functions utilize dynamic information to endow
the bots a perspective of the general situation. While the bots
of the second class are nearsighted and narrow-minded, for
they search partial branches of the game tree according to their
preferences and only use the static evaluation of the current
state.

We get the results through modelling the making-decision
as a one-step process, which may lead to the bad imitation
results of these far-seeing bots.

V. CONCLUSION AND FUTURE WORK

We propose a novel method to cluster the AI programs
by evaluating their imitability using NN-based imitators. We
discover that the search preferences and information utilize
in evaluation function are relevant to the AI’s imitability. It
means that imitability can be used to identify AIs’ characters.
An unbalanced game tree may account for the AI’s behavior



characters with preferences in the actual match. The AI who
is difficult to imitate tends to build a balanced game tree
and utilizes the information as far as possible, and it behaves
farseeing characters. The easy-to-mimic AI is short seeing
for they have preferences on certain regions/directions and
evaluates the situation within few steps. The cluster method
helps us conjecture how the AI builds its game tree and the
information it uses in the evaluation function without prior
knowledge of the AI, and we will give a semantic meaning to
the cluster results.

Apart from the game Snake, we also did experiments on
Gomoku and Reversi. The results were similar except the
ES bots. We suspected that the humans did well in solving
Gomoku and Reversi as many josekis were found. However,
few researches were done on strategies of Snake, which forced
the coders to search better action instead of using human
experience.

There are still some aspects in need of further investigation
in this paper. As claimed in [17] that the best compression rate
is related to self-similarity property of sequence, we are going
to experiment more network structures (like RNN, ResNet,
etc.) to find the optimal prediction accuracy. It is necessary to
do the comparative experiments on the bots with all combi-
nations of algorithms and evaluation functions. Experiments
on more games should be considered. We have conducted
the imitation experiment on a bot that uses stochastic strategy
but found that it was hard to imitate. It’s easy to understand
that we can’t predict the next move of a clueless human,
and it’s impossible to imitate a completely making-random-
decision bot. In addition to the clustering results with a
semantic meaning of being farseeing and narrow-minded, there
are many human-like playing styles to find. Further research
will focus on revealing more fine-grained classification of AI
programs’ characters to make AI easy, intuitive, and vivid to
understand.
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