
Recursive Monte Carlo Search for Bridge Card Play
Bruno Bouzy

Nukkai
Paris, France

bbouzy@nukkai.ai

Alexis Rimbaud
Nukkai

Paris, France
arimbaud@nukkai.ai

Véronique Ventos
Nukkai

Paris, France
vventos@nukkai.ai

Abstract—Computer Bridge remains a challenging obstacle for
Artificial Intelligence. For the last twenty years, the state-of-the-
art playing programs have been using a depth-one Monte Carlo
(MC) search approach, associated with an open card solver called
Double Dummy Solver (DDS). When increasing the computing
resources, the MC approach reaches a plateau, and its playing
level cannot be improved. In this work, we study Recursive
MC (RMC) for Bridge card play. We show that, with more
computing resources, this approach performs better than MC.
Rather than using DDS or any domain-dependent simulator, a
level N + 1 RMC consists in using a level N RMC playing
program as simulator, level-zero RMC being MC. This recursion
mechanism can be iterated several times at the cost of increasing
the computing time, each time a recursion level is added. This
work focusses on card play with no trump in duplicate with
either 13 cards per player or 5 cards per player. With 13 cards
per player, level-one RMC is superior to MC with a margin of
0.5 trick per card distribution on average, which is statistically
significant. This is the first time RMC is applied with success to
computer Bridge card play.

Index Terms—Monte Carlo search, imperfect information
games, game of Bridge, card play.

I. INTRODUCTION

After the success of Alpha Zero on complete information
games such as Go, Chess and Shogi [1], and after the success
of Pluribus on the game of Poker with many players [2], card
games with three players or more, such as Skat and Bridge,
remain challenging obstacles for artificial intelligence and the
computer game community. Computer bridge has been an
exciting domain for the last twenty years. The best programs
[3] still use the Monte Carlo (MC) approach [4] with the so-
called Double Dummy Solver (DDS) as simulator [5]. DDS
is a sound and complete solver on open cards. In 1998, Frank
and Basin studied the game of Bridge and identified important
issues of this approach such as non-locality and strategy fusion
[6]. Nowadays, the best programs still use the MC approach
with DDS. Non-locality and strategy fusion remain two issues
in Computer Bridge.

In its simplest formulation, non-locality means that the value
of a given node in the game tree depends not only on the nodes
in the sub-tree below this node, but also on a huge number of
nodes external to this sub-tree [7], which makes tree search
beyond depth two very difficult.

Strategy fusion points out the fact that using a simulator on
open cards such as DDS means that this simulator is allowed
to use different strategies on different states belonging to the

same infoset, where it should not: when playing an incomplete
information game, a player actually plays the same action for
all states belonging to the same infoset.

This paper describes an experimental research on Recursive
Monte Carlo (RMC) for the game of Bridge [8]. As far as
we know, our work is the first one studying RMC on the
game of Bridge. Our RMC approach is intended to make a
first step in two directions: one step toward managing the
non-locality issue, and one step toward removing the strategy
fusion problem, so as to surpass the current state-of-the-art
MC approach. In our work, we compare the results obtained
with RMC to the current MC approach. The results are varied.
In some conditions, RMC outperforms MC in a statistically
significant way. These results are obtained either with DDS
or with the random player as simulator. They are obtained on
duplicate card play without the bidding phase. We assume that
there is no trump. Our results are mainly obtained on regular
conditions Bridge card play, i.e. 13 cards per player, or in a
simplification of Bridge with 5 cards per player.

Our work is based on two previous works addressing im-
perfect information games, and more specifically card games.
Long and colleagues studied the success of Monte Carlo
search in imperfect information games on synthetic trees [7].
Their results conjectured that RMC should work in several
card games, including the game of Bridge. Furtak and Buro
described the success of recursive Monte Carlo search on
synthetic trees and in the game of Skat [8]. In this context,
our work shows the actual success of recursive Monte Carlo
search in Bridge card play.

The paper is structured as follows. Section II presents
Bridge card play. Section III presents the related work on MC
on Computer Bridge and on card games. Section IV describes
our RMC approach. Section V describes the experiments and
our results. Section VI discusses the results. Section VII sums
up the current study.

II. BRIDGE CARD PLAY

This section explains the card play in the game of Bridge
and the card play used in our work. It skips over details not
concerning card play directly, i.e. mainly the bidding phase
previous to card play. Complete set of rules can be found at
[9].

Bridge is a zero-sum game between two pairs of players
(4 players in total): South and North in the same pair against
West and East in the other one. The name of the player reflects

978-1-7281-4533-4/20/$31.00 ©2020 IEEE

its position around a table. Bridge is played with a deck of
52 cards. A card has a suit and a rank. There are 4 suits (or
colors): Spades (♠), Hearts (♥), Diamonds (♦) and Clubs (♣),
and 13 ranks (or heights): 2, 3, 4, etc, up to Ten, Jack, Queen,
King and Ace, ordered in increasing strength. For example, 4♦
is the four of diamonds. Bridge is a trick-taking card game.
The deck is shuffled and dealt with 13 cards per player. A
player sees his own cards and not the others’ cards. In a first
phase, the bidding phase, the players make different bids or
pass and the declaring pair that makes the last bid (followed by
3 passes) decide to fulfill the final contract, i.e. they commit to
win a certain number of tricks during the second phase. In the
second phase, the card play, the pair who won the contract tries
to win at least the number of tricks specified by the contract.

The contract specifies a trump (or No Trump (NT)), a
number of tricks, and a declarer. The trump corresponds to
a suit: Spades, Hearts, Diamonds and Clubs. The trump will
be the dominant suit during card play. The number of tricks
to win the contract equals the rank of the contract plus 6.

For example, bidding 3 of diamonds means you commit to
win 3+6=9 tricks with diamonds as trumps. The declarer is the
player from the declaring side who made the first bid in the suit
of the final contract. His partner is called the dummy. Dummy
will display his cards on the table after the first card (the lead)
played by the defending side. Dummy does not participate in
card play as the declarer plays his cards and dummy’s.

In our work, we neglect the contract and the bidding phase.
We assume that there is no trump and no rank. We assume that
South is the declarer, North is the dummy, and the West-East
pair is the defence.

At the beginning of card play, each player sees his own
cards and not the cards of the other players. Card play starts
with the player seating on the left of the declarer (West in
our work) playing the first card. Then the cards of the dummy
are revealed. Then South plays with the cards of the dummy
(North). Then East plays, then South plays. When each player
has played one card, the strongest card wins the trick.

The suit of the first card of the trick sets the suit requested
for the next cards of the trick. The following players are
required to follow this suit if possible. Otherwise, they can
play any other cards, including a card with a suit corresponding
to the trump. The winner of a trick is the one who plays the
highest card in the trump suit (if the contract defined a trump
suit, or if there is one such card in the trick), otherwise it is
the one who plays the highest card in the suit of the trick.

In our work, since we have no trump, the rule is simple: the
highest card in the suit of the trick wins the trick. The player
who won the current trick is on lead for the next trick. The
players play in a clockwise way.

Card play is over when all the cards have been played. With
a deck of 52 cards (respectively 20 cards), there are 13 tricks
to win (respectively 5 tricks to win).

At the end of a card play with a contract, the declarer-
dummy pair wins if the number of tricks won is greater than
the number of tricks specified in the contract.

(card, double) MonteCarlo(position A, player P,
simulator S, int NCD);

begin
position B1 = A ;
generate SCD a set of card distributions of
size NCD;

for each legal card C in the hand of P do
A = B1 ;
value(C) = 0 ;
play C on A;
position B2 = A ;
for each CD in the SCD do

A = B2 ;
deal CD with open cards on A;
S playout A;
value(C) + = S . value(C) ;

end
value(C) / = NCD;

end
Cmax = argmax value(C) ;
return (Cmax, value(Cmax)) ;

end
Algorithm 1: The Monte Carlo procedure for card play.

In our work, since we have no contract, the score of one
card play is the difference between the number of tricks won
by North-South and the number of tricks won by West-East.

Furthermore, to be fair between two pairs A and B, one
given deal of cards can be played twice (two card plays):
once with pair A playing North-South, and once with pair B,
playing North-South. This mechanism is called duplicate play.
In our work, we choose to use the duplicate mechanism. The
score of a deal played in duplicate is the difference between
the score of pair A playing North-South and the score of pair B
playing North-South. (Since our player are bots and not human
players, they do not memorize the cards of the first card play
and they can fairly play the second card play without being
suspected of cheating).

We used the duplicate mechanism for fairness purpose but
also for a variance reduction purpose as we explain it in
Section V.

III. RELATED WORK

This section describes how the Monte Carlo approach is
used in Computer Bridge and in card games such as Skat.

Computer Bridge [10] research is strongly influenced by the
so called Double Dummy Solver, a perfect solver of hands
with open cards, an instance of which was developed by Bo
Haglund and Soren Hein in the early 2000s [5]. For each card
in a hand, DDS gives the number of tricks gained by playing
this card under perfect play with open cards. DDS is an alpha-
beta algorithm which is publicly available. In our work, we
used this instance of DDS.

Under normal play (with hidden cards) standard Bridge
playing programs use DDS in the so-called Monte Carlo
approach.

Algorithm 1 gives the pseudo-code of this approach. A
is the given position. P is the player to play a card. S is
the simulator: S is DDS in state-of-the-art Bridge programs.
However, S can be any player able to complete a game until
the end and return a value. NCD is the number of card
distributions used. B1 and B2 are local positions. SCD is the
set of card distributions corresponding to the hidden cards. Its
size is NCD. Generally, S playout A means play the game
starting on A until the end with simulator S and give the end
value (number of future tricks). Specifically, if the simulator
S is DDS, it means solve position A with DDS and give the
end value under perfect play. The procedure outputs the card
to play and its mean value.

In this document, we name this approach the Monte Carlo
DDS (MC-D) approach.

In Bridge, MC-D is not surpassed by any other approach so
far because of two things. First, although it corresponds to a
result on open cards, the DDS value is strongly correlated with
winning tricks under hidden cards. Second, it corresponds to
a depth-one search and avoids the problem of non-locality
arising at depth-two in card game trees and in Imperfect
Information Game (IIG) trees in general.

More precisely, non-locality means that the value V of a
node X in a IIG tree, where player P is to play, does not
depend only on the sub-tree T below X but also on nodes Y
outside T . Nodes Y intervene in the computation of V because
they are situated at a depth greater than two, where players Q
different from P have to play, and because they belong to an
information set (infoset), built with the viewpoint of a player
Q, that also contains one node included in T [7]. The size
of the set of nodes Y equals the size of infosets of player Q,
which can be huge. Consequently, the non-locality issue is as
if the branching factor of the IIG tree were multiplied by the
size of the infosets.

However, the MC-D approach is criticized by human Bridge
players because it suffers from strategy fusion. Because it
plays with open cards, for states belonging to the same infoset,
DDS may find a state-dependent strategy to compute the value
of a card. This behaviour does not respect the principle of
playing the same action for all states of the same infoset when
playing with hidden cards.

Overall, MC-D is simple, fast, and sufficiently strong to
have been the basis of the best computer programs so far,
beating alternative approaches [4].

Perfect Information Monte Carlo (PIMC) is another term to
name MC-D. It means playing Monte Carlo simulations when
the simulator reasons or plays with perfect information. Long
and his colleagues studied the success of PIMC on synthetic
trees [7]. By extrapolation, their work on synthetic trees shows
that PIMC could be appropriate for card games such as
Skat, Bridge or Hearts. PIMC is opposed to IIMC (Imperfect
Information Monte Carlo). Generally speaking, IIMC is a MC
approach in which the simulator plays with hidden cards,

i.e. with imperfect information. The IIMC approach does not
suffer from strategy fusion.

In Bridge, an approach different from MC-D hardly works.
The idea presented in this document is to test a RMC approach
for Computer Bridge either with DDS or with a random
player. The RMC approach is known in card games in general.
Although it uses a perfect information simulator, a PIMC
player can be used as a simulator for a IIMC approach. Buro
and Furtak assessed recursive PIMC for the game of Skat [8].
They showed that a level-one recursive PIMC with carefully
chosen parameters outperforms PIMC in Skat. Our work is
very near to this previous work in that our work shows that
recursive PIMC outperforms PIMC in Bridge card play.

Recursive MC is a generalization of Nested Monte Carlo
search to imperfect information and multi-player games.
Nested Monte Carlo search adresses planning problems with
one player like solitaire [11]. Bouzy used Nested Monte Carlo
Search to solve Weak Schur Number problems [12].

In perfect information games, Monte Carlo Tree Search
(MCTS) [13] is the state-of-the-art tree search approach for
most of these games. MCTS is famous for its successes on
two-player games such as Go. However, it cannot be used
without important differences in IIG.

Information Set MCTS (ISMCTS) [14] is an adaptation of
MCTS for IIG. In ISMCTS, each node corresponds to an In-
formation Set (infoset) from the viewpoint of a given player. In
Single Observer IS MCTS (SO-ISMCTS), IS MCTS develops
one tree in which the information sets are from the point of
view of the player who is to play at the root. Let us name
it P. In Multiple Observer ISMCTS (MO-ISMCTS), ISMCTS
develops one tree for each player. In the tree corresponding
to player Q, the information sets are built with the viewpoint
of Q. In SO-ISMCTS, at depth one, the nodes correspond to
IS with P viewpoint although it is it would be correct to have
the viewpoint of depth-one player. So, to us, we think that the
mean values computed at depth one cannot be accurate.

MO-ISMCTS is a step toward solving this problem. How-
ever, the issue of MO-ISMCTS is how to sample correctly
the viewpoint of a player Q, given that P cannot see his
cards? MO-ISMCTS may sample without respecting the cards
of P because Q does not see cards belonging to P. But then
the samples are very different from the cards of P, and the
algorithm reasons on cards far from reality. This problem is
related to the non-locality issue of IIG. Except on toy IIG,
MO-ISMCTS appears to be inefficient.

Poker is the most famous IIG for which artificial intelli-
gence is already successful [2]. Counter-Factual Regret (CFR)
minimization algorithm is the core algorithm used in com-
puter Poker [15]. Monte Carlo CFR (MCCFR) is the Monte
Carlo version of CFR converging to a Nash equilibrium [16].
Online Outcome Sampling (OOS) also converges to a Nash
equilibrium [17]. Because Bridge and Poker are both IIG, these
algorithms could be in principle applied to Bridge. However,
Bridge is a trick-taking game and Poker is not. Moreover, we
think that Bridge with 13 cards per player is currently out of
the scope of CFR minimization algorithms. Therefore, in our

study, we do not consider these algorithms and we focus our
effort on RMC search.

IV. RECURSIVE MC

A. Background

The RMC approach consists in using a PIMC or a IIMC
as simulator rather than a basic one [8]. In the pseudo-code
of Algorithm 1, a level N + 1 RMC uses a level N RMC as
simulator S. When N = 0, the simulator is a basic one: DDS,
the random player, a policy network or any knowledge-based
player. We call MC2-D a level 1 RMC using DDS at level 0.
We call MC2-R a level 1 RMC using the random player at
level 0.

The upside of RMC is that the programming effort is
negligible. The downside is that the time used by a recursive
IIMC at level N + 1 in one order of magnitude greater than
the recursive IIMC at level N . The goal of this document
is to experimentally assess the RMC approach for Computer
Bridge.

B. Time complexity

Let us estimate the time complexity of level-one RMC.
Let NCD be the number of card distributions used at each
recursive level, A the number of actions available and L the
length of a game. A is determined by the number of cards of
each player. L = 52 or L = 20 according to the size of the
deck. Let tsolve be the time used by DDS to solve an open card
problem, and trand be the time to choose a random move in a
hand. Let tcc(X) be the time to choose a card for player X.

We have:

tcc(MC-D) = O(NCD ×A× tsolve) (1)
tcc(MC-R) = O(NCD ×A× L× trand) (2)

Let tpg(X) be the time to play one game for player X. We
have:

tpg(MC-D) = O(L×NCD ×A× tsolve) (3)
tpg(MC-R) = O(L×NCD ×A× L× trand) (4)

With one recursion, we have:

tcc(MC2-D) = O(NCD2 ×A2 × L× tsolve) (5)
tcc(MC2-R) = O(NCD2 ×A2 × L2 × trand) (6)

Then we have:

tpg(MC2-D) = O(L2 ×A2 ×NCD2 × tsolve) (7)
tpg(MC2-R) = O(L3 ×A2 ×NCD2 × trand) (8)

V. EXPERIMENTS

Globally, the goal of the experiments is to compare Recur-
sive MC against MC with no recursion. The experiments can
be performed either with 13 cards per player, or with 5 cards
per player. The MC players may use either DDS as simulator,
or the random player. The first section explains the settings of
the experiments.

Preliminary experiments are necessary to obtain the best
MC players, i.e. MC players with no recursion against which
the RMC players are confronted. These MC players are
described in the second section. A third section describes
experiments to assess level-one RMC players. A fourth section
describes experiments with level-two RMC. A fifth section
describes experiments with level-three RMC.

A. Settings

Playing in duplicate allows a significant variance reduction.
In order to compare two pairs of players (A, A) and (B, B),
an experiment consists in playing 100 card distributions (CD)
played in duplicate. In duplicate, the card play is played twice:
once with (A, A) playing North-South, and once with (B, B)
playing North-South. The result of the card play in duplicate
is the difference between the number of tricks obtained by (A,
A) playing North-South and the number of tricks obtained by
(B, B) playing North-South. For instance, if the result of (A,
A) playing North-South is 10-3 and the result of (B, B) playing
North-South is 7-6, then the result of this card distribution in
duplicate is +3 for (A, A). The result of an experiment is the
average of the results over the 100 CD, which we call µ. When
playing with 13 cards per player (resp. 5 cards per player)
the standard deviation σ equals 1.2 (resp. 0.5) on average.
Therefore, after 100 CD, the standard deviation of the average
over the 100 results, which we name σ in the following, is
0.12 (resp. 0.05) with 13 cards (resp. 5 cards) per player. For
a specific experiment, when σ is different from these values,
this will be detailed.

It is very important to use duplicate experiments to reduce
variance over card distributions. Without the duplicate mecha-
nism, the scores varies between -13 and +13 and the standard
deviation can be between 5 and 10. In duplicate, the scores
equal 0, +1 or -1 most of the times, 2 or 3 in absolute value
sometimes only, and other values occur very rarely, which
yields a standard deviation of roughly 1. Playing in duplicate
reduces the standard deviation by a factor of roughly 10. For
the same precision on µ, this reduction allows to perform 100
CD instead of 10,000, which is substantial.

For testing, we use two sets of CD, one set for 5 cards per
player, and one set for 13 cards per player. These two sets are
drawn at random, once for all, and they are the same for all
the experiments.

Besides, in this study, we assume that there is no trump.
For scoring, there are several ways to implement a score.

The simplest is counting the difference of tricks. When a
contract is defined by a bidding phase, two other kinds of
scoring are possible: a win-loss scoring giving 1 when the
contract has succeeded and 0 otherwise, and a weighted
combination of the win-loss scoring with the trick scoring. In
this paper, we use the difference of tricks as explained above.

Concerning DDS, we used the instance developed by Bo
Haglund and Soren Hein [5].

We used an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz
to perform the experiments.

TABLE I
13 CARDS PER PLAYER. GROWING NCD EXPERIMENT FOR MC-D. ONE
COLUMN FOR EACH CONFRONTATION. A POSITIVE VALUE CORRESPONDS

TO A BETTER PLAY FOR THE FIRST PLAYER OF THE COLUMN.

3 vs 1 10 vs 3 30 vs 10 100 vs 30 300 vs 100 1k vs 300
+1.3 +0.8 +0.25 -0.05 +0.10 -0.15

TABLE II
13 CARDS PER PLAYER. GROWING NCD EXPERIMENT FOR MC-R

AGAINST MC-D-100. ONE COLUMN FOR EACH VALUE OF NCD . THE
NEGATIVE VALUES MEANS THAT MC-R IS WEAKER THAN MC-D-100.

100 300 1k 3k 10k 30k 100k
-3.9 -3.1 -2.9 -2.7 -2.7 -2.7 -2.8

B. No recursion

The playing level of a MC player depends on the number
of card distributions used for the simulations, named NCD
in this paper. The greater NCD , the better the playing level.
We call MC-X(NCD = y) the MC player using simulator
X and y card distributions. However, for each MC player, a
plateau is met when NCD is greater than a specific value,
named the plateau value in this study. The plateau value
is determined with the growing NCD experiment. For in-
stance, MC-D(NCD=1) plays against MC-D(NCD=3), MC-
D(NCD=3) plays against MC-D(NCD=10), and so on.

1) DDS simulator:
a) 13 cards per player: Table I shows the results of the

growing experiment on DDS. We see that the plateau value of
MC-D equals 100. MC-D-100 is the benchmark in this setting.

b) 5 cards per player: For 5 cards per player with MC-
D, the plateau value of NCD equals 20.

2) Random simulator:
a) 13 cards per player: We make MC-R(NCD) play

against MC-D-100. Table II show the results. The plateau
value of MC-R is roughly 3000. We see that MC-D-100 is
2.7 trick stronger than MC-R-3000 on average.

b) 5 cards per player: For 5 cards per player with MC-R,
the plateau value of NCD roughly equals 600.

C. One recursion

When using level-one recursion, two parameters are impor-
tant: NCD1 the number of card distributions dealt at the high
level, and NCD2 the number of card distributions dealt at the
low level. MC2-X-NCD1 -NCD2 names the level one RMC
player with X as simulator (X can be D or R). NCD1 names

TABLE III
13 CARDS PER PLAYER. MC2-R-NCD1 -NCD2 VS MC-D-100. ONE

LINE FOR EACH VALUE OF NCD2 . ONE COLUMN FOR EACH VALUE OF
NCD1 . MEAN VALUES OVER 100 CD. σ = 0.10.

30 100 300 1k 3k 10k 30k
10 -2.9 -1.3 -0.9 -1.0 -0.70 -0.22 +0.08
30 -2.3 -1.2 -0.4 -0.30 -0.10 -0.04 -0.17
100 -0.9 -0.6 -0.54 -0.14 +0.10 -0.02
300 -1.1 -0.22 -0.34 -0.16

TABLE IV
5 CARDS PER PLAYER. MC2-R-NCD1 -NCD2 VS MC-D-20. ONE LINE

FOR EACH VALUE OF NCD2 . ONE COLUMN FOR EACH VALUE OF NCD1 .
MEAN VALUES OVER 100 CD. σ = 0.05.

10 20 25 30 40 60 100
10 -0.3 -0.24 -0.12 -0.16
20 -0.22 -0.10 -0.14 -0.12
25 -0.34 0.00 +0.04 +0.10 -0.24
30 -0.34 +0.04 -0.02 +0.03 -0.12 -0.32
40 -0.40 -0.08 +0.10 +0.04 -0.14 -0.20
60 -0.24 +0.06 +0.02 +0.02 -0.16 -0.24 -0.30
100 -0.34 0.00 0.00 +0.06 -0.06 -0.26 -0.24

the number of card distributions at the high level and NCD2
the number of card distributions at the low level. In order to
test MC2-X-NCD1 -NCD2 against MC-D-100, we display the
results in tables with different values of NCD1 and NCD2 ,
one line for each value of NCD2 , one column for each value
of NCD1 . A number in a cell (NCD1 , NCD2) corresponds to
µ, the result of one experiment (100 CD played in duplicate).

1) Random simulator:
a) 13 cards per player: We assessed MC2-R-NCD1 -

NCD2 . Globally, MC2-R-NCD1 -NCD2 outperforms MC-
R-NCD1 and MC-R-NCD2 . For low values of NCD1 and
NCD2 , the greater NCD1 and NCD2 , the better the playing
level. We assessed MC2-R-NCD1 -NCD2 against MC-D-100.
Table III shows the results.

Overall and roughly, we observe that the greater NCD1 ,
the better MC2-R-NCD1 -NCD2 . So far, the best results are
obtained with NCD1 × NCD2 = 300k. The average score
is +0.10 with MC2-R-3k-100, and +0.08 with MC2-R-30k-
10. These 2 positive results are promising (after 100 CD, the
standard deviation equals 0.10). With NCD1×NCD2 = 1M
the results are slightly negative. These results make us think
that MC2-R can be on a par only with MC-D-100 but can
hardly surpass it. Beside, MC2-R-300-30 is a good compro-
mise between quality of play and time used: average score
equals −0.4 and 10 minutes are used for playing one CD in
duplicate.

b) 5 cards per player: We assessed MC2-R-NCD1 -
NCD2 against MC-D-20. Table IV shows the results.

Obtaining this table took about 5 minutes to get one result in
a cell. We observe that 20 ≤ NCD1 ≤ 30 and 25 ≤ NCD2
gives the best results. MC2-R(25, 40) and MC2-R(30, 25) give
the best results: +0.10. The standard deviation is roughly 0.05
after 100 CD. Therefore, with the 2 sigma rule (with 95%
confidence), this result is statistically significant.

2) DDS simulator:
a) 13 cards per player: This paragraph assesses MC2-

D-NCD1 -NCD2 against MC-D-100 with different values of
NCD1 and NCD2 with 13 cards per player. Table V shows
the results. Today, the two best results are +0.57 by MC2-D-
300-30 and +0.58 by MC2-D-300-100. Because the standard
deviation is 0.14 after 100 CD, saying that MC2-D-300-30
and MC2-D-300-100 are superior to MC-D-100 is statistically

TABLE V
13 CARDS PER PLAYER. MC2-D-NCD1 -NCD2 VS MC-D-100. ONE

LINE FOR EACH VALUE OF NCD2 . ONE COLUMN FOR EACH VALUE OF
NCD1 . MEAN VALUES OVER 100 CD. σ = 0.15.

3 10 30 100 300 1000
1 -7.0 -2.9 -1.4 -1.1 -0.56 -0.23
3 -2.8 -1.9 -0.40 +0.19 +0.18 +0.03
10 -2.9 -1.06 -0.12 +0.31 +0.44 +0.41
30 -2.0 -0.14 -0.12 +0.52 +0.57
100 -2.3 0.00 +0.11 +0.36 +0.58

TABLE VI
5 CARDS PER PLAYER. MC2-D-NCD1 -NCD2 VS MC-D-20. ONE LINE

FOR EACH VALUE OF NCD2 . ONE COLUMN FOR EACH VALUE OF NCD1 .
MEAN VALUES OVER 100 CD. σ = 0.05.

1 3 10 20 30 60
1 -1.6 -1.1
3 -1.7 -0.9 -0.26 -0.02 -0.08 -0.28
10 -0.74 -0.18 +0.16 +0.06 -0.26
20 -0.16 +0.24 +0.02 -0.06
30 -0.32 +0.06 +0.06 -0.22
60 -0.12 +0.10 -0.04 -0.24

significant. One CD of the (100, 100) experiment lasts 12
hours.

b) 5 cards per player: This paragraph assesses MC2-
D-NCD1 -NCD2 against MC-D-20 with different values of
NCD1 and NCD2 with 5 cards per player. Table VI shows
the results.

Today, the two best results are +0.24 by MC2-D-20-20 and
+0.16 by MC2-D-20-10. Because the standard deviation is
0.05 after 100 CD, these two results show that MC2-D-20-10
and MC2-D-20-20 are superior to MC-D-20 with statistical
significance. 100 CD of the (20, 20) (resp. (60, 60)) experiment
lasts about 1 hour (resp. 10 hours).

D. Two recursions

In this section, we aim at assessing level-two RMC. With
52 cards, our experiments lasted a long time, which forbids
testing high values of NCD for the 3 levels of MC3-R or
MC3-D. So as to observe the behaviour level-two recursive
MC more quickly, we assess MC3-R only and not MC3-D,
and we launch experiments with 5 cards per player. In this
setting, MC-D-20 is our benchmark, and we assess MC3-R
against it.

1) Random simulator:
a) 5 cards per player: This paragraph assesses MC3-R-

NCD-NCD-NCD against MC-D-20 with different values of
NCD with 5 cards per player. Table VII shows the results.
(To simplify the complexity of these experiments, NCD is
common to all recursion levels).

Today, the two best results are +0.20 by MC3-R-25-25-25
and +0.14 by MC3-R-30-30-30. Because the standard devia-
tion is 0.05 after 100 CD, these two results are significantly
positive. 100 CD of the (20, 20, 20) (resp. (30, 30, 30))
experiment lasts about 2 hours (resp. 5 hours). We observed
that increasing NCD above 40 was not beneficial.

TABLE VII
5 CARDS PER PLAYER. MC3-R-NCD -NCD -NCD VS MC-D-20. ONE

COLUMN FOR EACH VALUE OF NCD . MEAN VALUES OVER 100 CD.
σ = 0.05.

10 16 18 20 25 30 32 36
-0.34 -0.38 +0.04 +0.08 +0.20 +0.14 +0.10 -0.06

TABLE VIII
5 CARDS PER PLAYER. MC4-R-NCD -NCD -NCD -NCD VS MC-D-20.
ONE COLUMN FOR EACH VALUE OF NCD . MEAN VALUES OVER 100 CD.

σ = 0.05.

1 5 10 15 20 25 30
-1.8 -0.34 -0.18 -0.19 +0.16 +0.02 0.00

E. Three recursions

In this section, we assess MC4-R, and not MC4-D, in
experiments with 5 cards per player. MC-D-20 is still our
benchmark.

1) Random simulator:
a) 5 cards per player: This paragraph assesses MC4-

R-NCD-NCD-NCD-NCD against MC-D-20 with different
values of NCD with 5 cards per player. Table VIII shows
the results. (To simplify the complexity of these experiments,
NCD is common to all recursion levels).

Today, the best result is +0.16 by MC4-R-20-20-20-20. The
standard deviation is 0.05 after 100 CD. 100 CD of the (20, 20,
20, 20) experiment lasts about 4 days. Increasing NCD above
30 was not tried. Because this result is far from being superior
to the result obtained with two recursions, this experiment
shows that the third recursion is actually not beneficial.

VI. DISCUSSION

This section discusses the results, firstly, in the normal game
with 13 cards per player, then, in a simplification with 5 cards
per player.

A. 13 cards per player

1) Novelty: Within the game of Bridge, the work is very
novel in that for the last twenty years, MC-D remains the
state-of-the-art. For the first time, MC-D is surpassed very
significantly by MC2-D. Always, in the domain of Bridge, a
second novelty is that MC2-R is on a par with MC-D, which
means that DDS is not necessary to achieve the level of the
state of the art. This result opens up the path toward learning
approaches without knowledge, and at least without DDS.

Within card games, the first time that recursive MC beat MC
was for the game of Skat [8]. However, Skat is less complex
than Bridge: 35 cards in Skat versus 52 in Bridge, 3 players
in Skat versus 4 players in Bridge, 9 tricks in Skat versus 13
in Bridge. For this reason, our result is novel.

2) Significance: Our results show that with sufficient com-
puting time, MC-D can be surpassed in a statistically signifi-
cant way by RMC-D. After 100 CD, we have σ = 0.15. The
average difference between RMC-D and MC-D equals +0.58.

Thus, the 3-sigma rule says that RMC-D is superior to MC-D
with probability 0.99.

Furthermore, in Bridge standards, +0.5 trick per card dis-
tribution on average in duplicate is huge. Intuitively, it means
that, for each deal (card distribution), either RMC-D wins 1
trick more than MC-D, or RMC-D wins the same number of
tricks. When you think that a Bridge contract can be won or
lost for 1 trick, it may mean that RMC-D may win 50% of
contracts and may draws the other 50% of deals. Half-a-trick
difference on average is huge.

Because the tests are performed in duplicate, another way
to show the significance of the result is to count the number of
deals in which RMC-D wins more tricks than MC-D (a win),
or the same number of tricks (a draw), or less tricks than MC-
D (a loss), i.e. the number of wins, draws and losses. Over 100
deals, the +0.58 result corresponds to 49 wins for RMC-D,
35 draws and 16 losses, which is striking.

3) Zero-knowledge approaches are possible: With 13 cards
per player, our work shows that the random player is a serious
option to be used as a simulator. First, a level-one RMC
approach using the random player as simulator is far better
than the simple MC approach using the random player as
simulator (more than +2 tricks per CD). Second, a level-one
RMC approach using the random player as simulator plays on
a par with the current MC-D approach (without surpassing it).
This result is very interesting because it is obtained without
knowledge. It means that other zero-knowledge approaches
can be fruitful as well, in particular any learning approach
like Expert Iteration (ExIt) [18].

4) Limitation: With 13 cards per player, the time to perform
one deal by some of our best players, MC2-D-100-30 or MC2-
R-10k-30, is roughly 5 hours, which is currently impractical
in the context of real play against human players. However,
MC2-D-100-3, playing one deal in less than 30’ can be a good
compromise between playing level (+0.19) and computing
time. Optimizing the computing time of our players more
accurately is an interesting perspective.

B. 5 cards per player

With 5 cards per player, we performed RMC experiments
as well. With MC2-D (resp. with MC2-R), we obtain +0.24
(resp. +0.10) against MC-D-20. We performed a level-2 (resp.
level-3) recursion experiment with MC3-R (resp. MC4-R),
and we obtain +0.20 (resp. +0.16) against MC-D-20. These
experiments confirm the results obtained with 13 cards per
player: MC-D is significantly surpassed by MC2-D and MC2-
R slightly surpasses MC-D (or, at least, MC2-R plays on
par with MC-D). However in our experiments, growing the
number of recursions is not effective: against MC-D, MC3-R
and MC4-R obtain results not better than those obtained by
MC2-R.

Furthermore, with 5 cards per player, we observe that the
rule G saying that “the greater the NCD , the better the
playing level” seems to be wrong for RMC. Our tables of
results obtained with 5 cards per player show that the best
results are obtained when NCD1 ranges in a specific interval:

[20, 30]. For higher values of NCD1 the results are worse.
This observation is hard to explain. We think that RMC may
amplify anomalies specific to simple MC. Rule G is perhaps
wrong with simple MC as well. We want to investigate on this
issue in a future work.

VII. CONCLUSION

In this research, we studied Recursive Monte Carlo Search
for Bridge card play. We obtained positive and significant
results in some conditions. With 13 cards per player against
MC-D-100, the most significant result is +0.5 by MC2-D.
This result experimentally shows that level-one recursion is
useful to make a first step to break the non-locality issue of
Bridge. Beside, still with 13 cards per player against MC-
D-100, MC2-R obtains +0.1, showing that, within a one-level
RMC framework, the random simulator, i.e. a zero-knowledge
approach, is a possible alternative to DDS as simulator.

With 5 cards per player, we performed level-one recursion
experiments with the random simulator and with DDS. With
MC2-D (resp. with MC2-R), we obtained +0.24 (resp. +0.10)
against MC-D-20. Furthermore, with 5 cards per player, we
performed a level-2 (resp. level-3) recursion experiment with
MC3-R (resp. MC4-R), and we obtained +0.20 (resp. +0.16).
These results confirm the good results obtained with 13
cards per player. However, they also show that the recursion
mechanism does not add up well.

Because the zero-knowledge approach MC2-R works, the
future work may consist in approximating MC-R or MC-D
with a learning neural network which can be used as simulator.
However, approximating MC-R or MC-D can be difficult [19].
With such an approximation, we hope to obtain results as good
as those obtained with MC2-R ou MC2-D so far. Then, if this
works well, we want to iterate this approach as done in Expert
Iteration (ExIt) [18] or in AlphaStar [1].

REFERENCES

[1] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “Mastering Chess and Shogi by self-play with a general
reinforcement learning algorithm,” arxiv, 2017.

[2] N. Brown and T. Sandholm, “Superhuman AI for multiplayer Poker,”
Science, vol. 365, no. 6456, pp. 885–890, August 2019.

[3] Y. Costel, “Wbridge5,” http://www.wbridge5.com/.
[4] M. L. Ginsberg, “GIB: Steps toward an expert-level bridge-playing

program,” in IJCAI, 1999, pp. 584–589.
[5] B. Haglund and S. Hein, “Double dummy solver,”

https://github.com/dds-bridge/dds.
[6] I. Frank and D. Basin, “Search in games with incomplete information: a

case study using Bridge card play,” Artificial Intelligence Journal, vol.
100, pp. 87–123, 1998.

[7] J. Long, N. Sturtevant, M. Buro, and T. Furtak, “Understanding the
success of perfect information Monte Carlo sampling in game tree
search,” in AAAI, 2010, pp. 134–140.

[8] T. Furtak and M. Buro, “Recursive Monte Carlo search for imperfect
information games,” in CIG-2013, 2013, pp. 1–8.

[9] A. C. B. League, “How to play Bridge,” www.acbl.org.
[10] V. Ventos and O. Teytaud, “Le Bridge, nouveau défi de l’ intelligence

artificielle ?” Revue d’Intelligence Artificielle, vol. 31, no. 3, pp. 249–
279, 2017.

[11] T. Cazenave, “Nested Monte Carlo search,” in IJCAI, 2009, pp. 456–461.

[12] B. Bouzy, “An abstract procedure to compute weak Schur number lower
bounds,” LIPADE, Paris Descartes University, Tech. Rep., 2015.

[13] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey
of Monte-Carlo Tree Search methods,” IEEE TCIAIG, vol. 4, no. 1, pp.
1–43, 2012.

[14] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information Set Monte
Carlo Tree Search,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 4, no. 2, pp. 120–143, 2012. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6203567

[15] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Regret
minimization in games with incomplete information,” in NIPS, 2007,
pp. 1729–1736.

[16] M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowling, “Monte Carlo
sampling for regret minimization in extensive games,” in NIPS, 2009,
pp. 1078–1086.

[17] V. Lisý, M. Lanctot, and M. Bowling, “Online Monte Carlo counterfac-
tual regret minimization for search in imperfect information games,” in
AAMAS, 2015, pp. 21–34.

[18] T. Anthony, Z. Tian, and D. Barber, “Thinking fast and slow with deep
learning and tree search,” in NIPS, 2017, pp. 5366–5376.

[19] K. Mossakowski and J. Mandciuk, “Learning without human expertise.
a case study of double dummy Bridge problem,” IEEE Transactions on
Neural Networks, vol. 20, no. 2, pp. 278–299, February 2009.

