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Abstract—Expert Iteration (ExIt) is an effective framework
for learning game-playing policies from self-play. ExIt involves
training a policy to mimic the search behaviour of a tree search
algorithm -— such as Monte-Carlo tree search -— and using
the trained policy to guide it. The policy and the tree search
can then iteratively improve each other, through experience
gathered in self-play between instances of the guided tree search
algorithm. This paper outlines three different approaches for
manipulating the distribution of data collected from self-play,
and the procedure that samples batches for learning updates
from the collected data. Firstly, samples in batches are weighted
based on the durations of the episodes in which they were
originally experienced. Secondly, Prioritized Experience Replay
is applied within the ExIt framework, to prioritise sampling
experience from which we expect to obtain valuable training
signals. Thirdly, a trained exploratory policy is used to diversify
the trajectories experienced in self-play. This paper summarises
the effects of these manipulations on training performance
evaluated in fourteen different board games. We find major
improvements in early training performance in some games, and
minor improvements averaged over fourteen games.

Index Terms—reinforcement learning, self-play, games

I. INTRODUCTION

Over the past few years, many state-of-the-art results in
automated learning of policies for game-playing have been
obtained by training policies using experience generated from
self-play [1]–[4]. In the case of board games, the strongest
results to date have been obtained using Expert Iteration (ExIt)
[1]–[3], which is a self-play training framework in which an
expert policy and an apprentice policy iteratively improve each
other. The apprentice policy typically takes the form of a
parameterised policy that can be trained, such as a neural
network that outputs probability distributions over actions for
given states. The expert policy is typically a search algorithm,
such as Monte-Carlo tree search (MCTS) [5]–[7], enhanced
to use the apprentice policy to bias its search behaviour. This
bias allows the apprentice policy to improve the expert policy.
The expert policy subsequently improves the apprentice policy
by using the searching behaviour of the expert as a training
target for the apprentice policy.

In ExIt, it is customary to generate training experience
by running self-play games between instances of the expert
policy, where the agents select moves proportionally to the
visit counts of the search processes of MCTS. In contrast to

greedy move selection, selecting moves proportionally to visit
counts increases the diversity of experience that can be used
for training. Note that in some cases agents only select moves
proportionally to visit counts in the initial portions of games to
increase diversity, and switch to greedy selection in the latter
parts of training games [1].

There have been numerous attempts at analysing and im-
proving the performance of ExIt-based training procedures
[8]–[10]. This includes, for example, modifications to the
search behaviour or architecture of the function approximator
used for the policy, modification of the loss function, intro-
duction of auxiliary targets, or other changes to the training
target, and game-specific improvements (often for the game
of Go) [10]. Modifications to the search behaviour – such
as introducing different exploration mechanisms in the root
node of MCTS – typically lead to changes in the distribution
of states that we experience, but they also affect the visit-
count-based training targets. However, there has been little
investigation of the role played by the distribution of data
(game states encountered in self-play) that we generate, or
the procedure used to sample from that experience. The most
notable exceptions are publications describing state-of-the-art
results in various video games [4], [11], which involved ex-
tending the notion of self-play learning to use a larger, diverse
menagerie [12] of different agents to generate experience.

In the literature on reinforcement learning (RL) in standard
single-agent settings, off-policy RL [13] is a major area of
research that allows for trajectories of experience to be gener-
ated by a different behaviour policy than the target policy that
we aim to optimise or learn something about. Among other
applications, this is commonly used to generate more valuable
experience to learn from through directed exploration [14], or
to bias the probabilities with which batches of experience are
sampled based on how valuable of a training signal they are
estimated to provide [15]. Similar applications may turn out
to be valuable in the ExIt setting as well.

We explore three different ideas related to the manipulation
of either the distribution of data, or how we sample from
data, for training in ExIt – without extending the pool of
agents that generate experience to a large and diverse set
[4], [11]. In all three cases, we use importance sampling (IS)
[16], [17] to correct for changes in distributions. First, we
use IS in a manner that downweights samples of experience
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generated in longer episodes during self-play, and upweights
samples of experience generated in shorter episodes. Intu-
itively, this makes every episode equally “important” for the
training objective, rather than making every game state equally
important. Second, we explore the application of Prioritized
Experience Replay [15] in ExIt. Samples of experience that
are estimated to provide a valuable training signal are sampled
more frequently than they would under uniform sampling, and
IS is used to correct for the changed sampling strategy. Third,
we train a simple policy to navigate towards game states in
which the apprentice policy deviates significantly from the
expert policy, and mix this policy with the standard policy that
samples moves proportionally to visit counts for the purpose
of move selection in self-play. This changes the distribution
of data that we expect to see in the experience buffer, and we
investigate the use of IS to correct for this change.

An empirical evaluation using fourteen different board
games reveals major effects on training performance in in-
dividual games – in particular improvements in early stages
of training. In later stages of training, there are some games
where performance degrades, but the average performance
over all games is still improved.

A formalisation of the problem setting, and background
information on MCTS and IS, are provided in Section II.
Section III explains implementation details of ExIt. Section IV
discusses the use of IS in ExIt. Sections V, VI, and VII
describe the three proposed extensions. The experimental setup
and results are explained in Section VIII, and discussed in
Section IX. Finally, Section X concludes the paper.

II. BACKGROUND

In this section, we formalise the standard framework of
Markov decision processes and related concepts used through-
out the paper. We use bold symbols – typically lowercase (π,
θ), but sometimes uppercase (M) – to denote vectors.

A. Markov decision processes

Markov decision processes (MDPs) are a standard frame-
work for modelling problems in which an agent perceives and
acts in an environment, and is awarded rewards depending on
the states it reaches and/or the actions it takes. It is commonly
used throughout RL literature [13].

Every MDP consists of a finite set of states S, a finite set
of actions A, a transition function P , and a reward function
R. At discrete time steps t = 0, 1, . . . , the agent observes the
current state St ∈ S, selects an action At ∈ A, transitions into
a new state St+1, and observes a reward Rt+1. The transition
function P gives the probability P(s, a, s′) = Pr{St+1 = s′ |
St = s,At = a} for the agent to transition into any new
state s′ given a previous state St = s and a selected action
At = a. Similarly, the reward function R gives the probability
R(s, a, s′, r) = Pr{Rt+1 = r | St = s,At = a, St+1 = s′}
for any arbitrary real number r ∈ R to be observed as a reward
in that time step.

Because it simplifies notation, we assume that every episode
starts in the same initial state S0 = s0, but all the theory

can trivially be extended to the case where the initial state
is sampled from some fixed distribution. We are primarily
interested in domains with episodes of finite length, but use
sums

∑∞
t=0 over infinite numbers of time steps throughout

most of the paper – which covers infinite-duration episodes.
Finite-duration episodes, of length T , are still covered by
setting all rewards Rt+1>T after T time steps passed to 0.

A policy π is a function that, given a state s and an
action a, produces a probability 0 ≤ π(s, a) ≤ 1 for the
policy to choose to execute a in s. Note that we require
policies to yield probability distributions over all actions;∑
a∈A π(s, a) = 1 ∀s ∈ S. We use π(s) to denote a vector

of probabilities for all possible entries a ∈ A. We assume
that all policies automatically set probabilities of any illegal
actions to 0.

The value of a state s under a policy π, denoting the
(discounted) cumulative rewards that we expect to obtain when
sampling actions from π after reaching s, is given by;

V π(s)
.
= E

[ ∞∑
t=0

γtRt+1 | At′≤t ∼ π

]
, (1)

where 0 ≤ γ ≤ 1 denotes a discount factor. In infinitely long
episodes, we require γ < 1 to guarantee that all states have
finite value. In the practical implementations and experiments
described in this paper, we only use finite-duration episodes
and simply take γ = 1. The notation At′≤t denotes that
all actions At′ for t′ ≤ t are sampled from π. Note that
this expectation, and various other expectations throughout
the paper, formally also depend on the choice of initial state
s0 = S0. This dependence is left implicit for notational brevity.

When applying this framework to multi-player, adversarial
games, we generally do so from the “perspective” of a single
player at a time, which is oblivious to the presence of other
agents and simply treats them as a part of the “environment”.
This means that states in which other players are to move are
skipped over, and the influence of other agents on the proba-
bilities with which we reach states (through their policies) is
merged with the environment’s transition dynamics P .

B. Monte-Carlo tree search

Monte-Carlo tree search (MCTS) [5]–[7] is a tree search
algorithm that gradually builds up (typically in an asymmetric
fashion) its search tree over multiple iterations. During every
iteration, MCTS traverses the tree that has been built up so far,
using a selection strategy that balances exploitation of parts of
the search tree that appear promising so far, and exploration
of parts of the search tree that have not yet been sufficiently
explored in previous iterations. The search tree is typically
expanded by a single node in the area reached by this selection
strategy. A fast, (semi-)random play-out strategy is typically
used to roll out all the way to a terminal game state, which
then yields a (highly noisy) estimate of the value of all states
traversed in the current iteration. This value is backpropagated
through the tree, and may be used to inform the selection
strategy in subsequent iterations. The number of iterations that
traversed through any given node during the search process is



referred to as the visit count of that node. Note that MCTS is
not restricted to the MDP framework, and can account for the
actions that other agents with opposing interests may take.

C. Importance sampling

Importance sampling (IS) [16], [17] is a standard technique
to correct for differences between two distributions when using
samples from one distribution to estimate expectations from
another distribution. Suppose that we collect a set of n samples
{xk | 1 ≤ k ≤ n} from a distribution µ, and wish to estimate
the expected value Eπ [x] under a different distribution π.
Let µ(xk) denote the probability of observing xk under µ,
and π(xk) the probability of observing xk under π. Then,
the importance sampling ratios ρk = π(xk)

µ(xk)
can be used to

compute an estimator x̂ for Eπ [x]:

x̂ =

∑n
k=1 ρkxk
n

≈ Eπ [x] . (2)

This estimator is unbiased, but often exhibits high variance.
This becomes particularly problematic in off-policy RL ap-
plications [18], [19], where sequences of multiple IS ratios –
correcting for differences between policies across sequences
of multiple time steps – are often all multiplied together.
An alternative to this estimator, referred to as the weighted
importance sampling (WIS) estimator, is given by:

x̂ =

∑n
k=1 ρkxk∑n
k=1 ρk

. (3)

Estimators of this form are not unbiased, but have substan-
tially lower variance and are often found to perform better in
practice – also in off-policy RL applications [18], [20].

III. EXPERT ITERATION

Expert Iteration (ExIt) [1], [2] is the self-play training
framework for which an intuitive description was provided in
Section I. This section provides a few implementation details
that are particularly important for the remainder of this paper.

We aim to train a parameterised policy πθ, with parameters
θ. These are often the parameters of a deep neural network
[1]–[3], [8]–[10], but in the empirical evaluation in this paper
we focus on simpler linear function approximators. This makes
it computationally feasible to perform our evaluations in
general game playing settings, using a wide variety of games
as test domains. The theoretical aspects of this paper are
written to facilitate either form of function approximation. Let
φ(s, a) denote a feature vector for the state-action pair (s, a).
For every such pair, in any given game state s, we compute a
logit z(s, a) = θ>φ(s, a). The policy’s probabilities πθ(s, a)
are then given by a softmax over all the action logits:

πθ(s, a) =
exp z(s, a)∑

a′∈A exp z(s, a′)
. (4)

Experience is generated by playing games of self-play
between identical MCTS agents, which use πθ to guide
their search. We use the same selection strategy as AlphaGo

Zero [1], which traverses the tree by traversing edges that
correspond to actions aPUCT selected according to:

aPUCT = argmax
a

Q̂(s, a)+CPUCT
πθ(s, a)

√∑
a′ N(s, a′)

1 +N(s, a)
,

(5)
where s denotes the state of the current node, Q̂(s, a) denotes
the current value estimate of executing a in s as estimated
by the MCTS process so far, and N(s, a) denotes the visit
count of the edge that is traversed by executing a in s.
Contrary to most related work with ExIt, we do not use a state-
value function approximator, and only backpropagate values
resulting from playouts executed using πθ. This eliminates the
need for learning a strong state-value function.

In the self-play games, agents select moves proportional to
the visit counts along edges from the root node after executing
an MCTS search process for a fixed number of iterations.
Suppose that we built up a search tree by running MCTS from
a root node with a root state s. Then, we can formally define
a policy Ms, that assigns probabilities Ms(s, a) as follows:

Ms(s, a) =
N(s, a)∑
a′ N(s, a′)

, (6)

where N(s, a) denotes the final visit counts after searching.
Experience in self-play is generated by, for every en-

countered state s, running an MCTS process rooted in s,
and selecting an action by sampling from Ms(s). A tuple
containing s, Ms(s), and any other data required for training,
is stored in a limited-capacity experience buffer that discards
the oldest entries first when the maximum capacity is reached.

Training is typically done by uniformly sampling batches
of experience tuples with states s from the buffer, and taking
gradient descent steps to minimise the cross-entropy between
apprentice policy πθ(s) and expert policy Ms(s). The loss,
estimated by averaging over a batch of size N , is given by:

LCE ≈
1

N

N∑
i=1

Msi(si)
> logπθ(si). (7)

It is common to include an L2 regularisation term [1], [3],
but this is omitted in this paper, as our use of relatively simple
function approximators and significantly lower training times
reduces the risk of overfitting.

IV. IMPORTANCE SAMPLING IN EXIT

Suppose that an experience buffer is filled with tuples of
experience corresponding to all states si encountered in self-
play, as described above. If the MCTS agent used to generate
experience remains fixed, the weightings dM(s) with which
we expect to observe states s in the buffer is then given by:

dM(s)
.
=

∞∑
t=0

Pr{St = s | At′<t ∼MSt′}. (8)

The standard approach of sampling batches to estimate
the gradients for gradient descent updates uniformly from
this buffer then yields an expected probability of p(s) =

dM(s)∑
s′ d

M(s′)
for a tuple containing any particular state s to



be sampled. Note that the assumption that the MCTS agent
used to generate experience remains fixed is a simplifying
assumption. In practice, the agent’s behaviour is gradually
modified by updating the apprentice policy πθ, while retaining
old experience generated using older versions of the policy in
the experience buffer until they are discarded due to the limited
capacity of the buffer.

Sampling states according to these probabilities p(s) implies
that, in expectation, the cross-entropy loss that we estimate
using Equation (7) – and therefore optimise – is given by:

LCE =
∑
s∈S

p(s)
(
Ms(s)

> logπθ(s)
)
. (9)

A. Optimising for a different data distribution

Generating data (experience) as described above is the most
common procedure, and has produced state-of-the-art results
empirically [1], [3], but it is not certain that the optimal loss
function is one that weights states s by p(s) as in Equation (9).
It is possible that different weightings may perform better. If
we have target probabilities ω(s) that we expect to work better
than p(s) in Equation (9), we may use IS ratios ρ(s) = ω(s)

p(s) (as
described in Subsection II-C) to estimate appropriate gradients
– without requiring a change in how ExIt generates experience.

B. Optimising with a different data distribution

Even if we expect the cross-entropy loss function in Equa-
tion (9), where states s are weighted by p(s), to be the
optimal one to optimise. It is still possible that approaches
leading to experience buffers with different data distributions,
or approaches that sample from it in a different (non-uniform)
manner, may be expected to perform more successfully. By
using µ(s) to denote the new probability for any state s to
be sampled due to a modified data-generating or sampling
procedure, we can specify IS ratios ρ(s) = p(s)

µ(s) to estimate
appropriate gradients for the optimisation of Equation (9). This
holds even if ExIt has been modified to store (or sample from)
experience in a different way.

V. WEIGHTING ACCORDING TO EPISODE DURATIONS

One of the original publications on ExIt [2] describes only
storing a single state s in the experience buffer for every
full episode experienced in self-play. The primary motivation
for this was to break correlations in the data, because states
that occurred in the same episode may be highly correlated.
For a similar reason, the value network of AlphaGo [21] was
trained from data containing only one state per game of self-
play. In contrast, AlphaGo Zero [1] and AlphaZero [3] were
trained using buffers that contained all states observed in self-
play. Presumably, the improvements in sample efficiency were
found to outweigh possible detriments due to correlated data.

Aside from the observation that storing only a single state
per episode breaks correlations, it also has a different effect
on the data distribution; it ensures that every episode is
represented “equally” by a single state. When storing all
states, longer-duration episodes may be argued to be “over-
represented” due to having more states. When storing all

states in experience buffers, and therefore preserving sample
efficiency, we can treat the data distribution where every
episode – regardless of duration – is equally represented as
target distribution, and use IS ratios to correct for the potential
issue of overrepresentation of states from long episodes.

Let T denote the duration of one particular episode. If we
were to only include a single state from this episode in the
experience buffer, the probability for any particular state s to
be selected would be 1

T . Recall that dM(s) denotes the relative
weightings with which we expect to observe states s when
storing every state per episode, leading to probabilities p(s)
after dividing by

∑
s′ d
M(s′) for normalisation. The relative

weightings dMsingle(s) with which states would be observed
if we only stored a single state per episode are given by
dMsingle(s) = 1

E[T |s observed]d
M(s), where E [T | s observed]

denotes the expected duration of episodes in which s is
observed. Normalising to probabilities leads to the following
target probabilities ω(s):

ω(s) =
T

E [T | s observed]
dM(s)∑
s′ d
M(s′)

=
T

E [T | s observed]
p(s),

(10)

where T denotes the expected duration of any episode in ExIt.
As described in Subsection IV-A, this means that we can

use IS ratios ρ(s) given by:

ρ(s) =
ω(s)

p(s)
=

T
E [T | s observed]

p(s)
1

p(s)

=
T

E [T | s observed]
.

(11)

In practice, the empirical duration T of the episode in
which any particular state s was observed can be stored in
the experience buffer along with s, and used as an unbiased
estimator of E [T | s observed]. We keep track of a moving
average T̂ of episode durations during self-play as an estimator
for T. Recent episodes are given a higher weight than old
episodes in this moving average, because our MCTS agent is
not stationary in practice due to its use of the apprentice policy
(which is trained over time). More concretely, after completing
the ith episode with a duration Ti, we update T̂ as follows:

ui ← 0.95ui−1 + 1 (u0
.
= 0)

T̂← T̂+
1

ui
(Ti − T̂).

(12)

VI. PRIORITIZED EXPERIENCE REPLAY

Prioritized Experience Replay (PER) [15] is an approach
that samples batches of experience in a non-uniform manner.
Elements from a larger replay buffer are sampled more fre-
quently if they are expected to perform a valuable training
signal, and less frequently if a trained model already appears
to provide accurate predictions for them. It is commonly used
in value-based RL approaches, where it has been found to be
one of the most valuable extensions [22] for DQN [23].

In PER, tuples of experience i in a replay (or experience)
buffer are assigned priority levels pi. When sampling batches



from the buffer for training, tuples i are sampled with probabil-
ity P (i) = pαi∑

k p
α
k

. The exponent α is a hyperparameter, where
α = 0 leads to uniform sampling, and α > 0 causes tuples
with higher priority levels to be sampled more frequently.
Sampling according to these probabilities can be implemented
efficiently using a binary tree structure [15].

When applied to value-based RL, priority levels are typi-
cally assigned based on the absolute values of the temporal
difference errors, which may intuitively be interpreted as the
magnitudes of the mistakes made by a value function approx-
imator for given tuples of experience. For the optimisation of
the cross entropy loss (Equation (9)) considered in this paper,
we similarly assign priorities based on the differences between
apprentice and expert distributions.

Let si denote a state that occurs in our experience buffer,
with an expert distribution Ms(s) over all actions, and an
apprentice distribution πθ(s). As in the original PER imple-
mentation [15], the priority level is simply set equal to the
maximum priority level across all existing tuples of experience
if si is newly entered (i.e. if we have not yet used it for even
a single update). After using si for an update, its new priority
level pi is set by summing up the absolute differences between
the distributions for all actions:

pi =
∑
a∈A
|Msi(si, a)− πθ(si, a)| . (13)

We also considered using only the maximum absolute error,
rather than the sum, or simply using the cross-entropy loss
Ms(s)

> logπθ(s) as a priority level. We decided against
using the maximum absolute error, because that tends to be a
(decreasing) function of the number of legal actions in a state,
more so than an indication of how well a policy performs. The
cross-entropy loss was not used because its absolute value may
be arbitrarily large, which can lead to instability.

As in the original PER [15], we compute IS ratios ρ(si) for
sampled states si using:

ρ(si) =

(
1

N

1

P (i)

)β
, (14)

where N is the total number of tuples in the experience buffer.
The exponent β is a hyperparameter, where β = 0 leads to no
corrections for bias, and β = 1 fully corrects for the changes
in sampling probabilities as described in Subsection IV-B. For
improved stability, we also divide all IS ratios ρ(si) in any
batch by the maximum IS ratio across that batch [15].

Note that the original PER publication [15] describes mul-
tiplying the IS ratios with the temporal-difference errors in
Q-learning updates, which yields WIS estimators [20]. In
the case of the cross-entropy losses considered in this paper,
we multiply the IS ratios with the full cross-entropy loss.
Obtaining a WIS estimator still requires explicitly constructing
an estimator of the form in Equation (3).

VII. CROSS-ENTROPY EXPLORATION

The intuition behind PER is that states s for which the
apprentice policy’s distribution πθ(s) does not yet approxi-
mate the expert policy’s distribution Ms(s) may be especially

valuable to learn from. This intuition does not only have to
apply to the stage where we sample collected experience from
a buffer, but may also inform how we should collect experience
in the first place. It may be beneficial for learning to actively
seek out states in self-play that lead to large differences
between the two policies. We refer to this idea as Cross-
Entropy Exploration (CEE).

More concretely, we train an additional policy µ using
REINFORCE [24]. At every time step t in an episode, µ
obtains the sum of absolute differences between probabilities
assigned to all actions by the expert and apprentice as a reward:

Rt+1 =
∑
a∈A
|MSt(St, a)− πθ(St, a)| . (15)

This means that µ is trained to navigate towards states that
(eventually) lead to large errors for the apprentice distribution.
Note that – unlike typical rewards used in games such as
“wins” or “losses” – these rewards are invariant to the state’s
current mover. This means that we can collect rewards from all
encountered states, rather than only from those corresponding
to a specific player. This policy is trained using a discount
factor γ = 0.99.

In self-play, we no longer sample actions proportionally to
the visit counts of MCTS, but we sample actions from a mixed
distribution with action-probabilities 0.9Ms(s, a)+0.1µ(s, a).
A correction for the modified probabilities for a single step

requires an IS ratio ρ(St) =
MSt(St, At)

0.9MSt(St, At) + 0.1µ(St, At)
.

As in multi-step off-policy RL settings [18], [19], longer
trajectories of multiple time steps with a modified behaviour
policy require a product of many such IS ratios. For improved
stability – and to avoid cases where large portions of entire
episodes become completely useless when MSt(St, At) = 0
but µ(St, At) > 0 – we truncate these (products of) IS ratios
to always lie in [0.1, 2]. This comes at the cost of some bias.

VIII. EXPERIMENTS

This section describes experiments used to empirically eval-
uate the effects of weighting states according to episode dura-
tions (WED), Prioritized Experience Replay (PER), and Cross-
Entropy Exploration (CEE) on the performance of agents with
policies trained using ExIt.

A. Setup

We use fourteen different board games, implemented in
the Ludii general game system [25]; Amazons, Ard Ri,
Breakthrough, English Draughts, Fanorona, Gomoku, Hex,
Knightthrough, Konane, Pentalath, Reversi, Surakarta, Tablut,
and Yavalath. These are all two-player, deterministic, perfect
information board games, but otherwise varied in mechanics
and goals. Ard Ri and Tablut are highly asymmetric games.

For each of WED, PER, and CEE, we run a training run of
ExIt for 200 games of self-play. We also include a standard
ExIt run (without any of the extensions discussed in this
paper), an additional run of CEE without performing any IS
corrections, and a training run that uses WED, PER, and CEE
(without IS) simultaneously. Policies use local patterns [26] as



binary features for state-action pairs. We start every training
run with a limited set of “atomic” features, and add one
feature to every feature set after every full game of self-play
[27]. Because we include asymmetric games, we use separate
feature sets, separate experience buffers, and train separate
feature weights, per player number (or colour). Experience
buffers have a maximum capacity of 2500 states. Policies are
trained by taking a gradient descent step at the end of every
time step in self-play, using a centred variant [28] of RMSProp
as optimiser, and batches of 30 states to estimate gradients.

PER uses α = β = 0.5 for its hyperparameters. These are
the default values for PER in the Dopamine framework [29]. In
all cases where IS is used for WED, PER, or CEE, we use WIS
estimators of the form in Equation (3) to estimate gradients.
The unbiased, higher-variance ordinary IS estimators were
found not to perform as well in preliminary experiments.

For every training run, we store checkpoints of feature sets
and trained weights after 1, 51, 101, 151, and 200 games
of self-play, leading to five different versions of each of the
following: ExIt (no extensions), WED, PER, CEE, CEE (No
IS), and WED + PER + CEE (No IS), for a total of 30
trained agents. In evaluation games, we also add two more
non-learning agents as benchmarks: UCT (a standard UCT
[7] implementation), and MC-GRAVE (an implementation of
GRAVE [30] without exploration term in the selection phase),
for a total of 32 agents participating in evaluation games.

UCT uses a value of
√
2 for its exploration constant. All

of the trained agents use CPUCT = 2.5 in Equation (5).
All variants of MCTS re-use relevant parts of search trees
from previous searches, and run 800 iterations per move – in
training as well as evaluation games. The use of 800 iterations
is consistent with AlphaZero [3]. Value estimates in all variants
of MCTS lie in [−1, 1]. Unvisited nodes are always estimated
to have a value equal to the value estimate of their parent,
except in MC-GRAVE where unvisited nodes get a value
estimate of 10, 000. In evaluation games, all agents select the
action that maximises the visit count (breaking ties randomly).

For every game, we run 120 evaluation matches for every
possible (unordered) pair of agents that could be sampled –
with replacement – from the total pool of 32 agents. Every
agent plays each side of its matchup in half of the evaluation
games (i.e. 60 out of 120).

B. Results

The thick lines in Fig. 1 depict the average win percentages
of each of the 30 different (checkpoints of) learning agents
across all games against all 31 possible opponents. Different
checkpoints of the same training run are connected, forming
learning curves. The two non-learning agents (UCT and MC-
GRAVE) are drawn as horizontal lines. The fourteen thin lines
depict similar learning curves for WED + PER + CEE (No IS)
for individual games (i.e., not averaged over all games), and
only use ExIt at equal training checkpoints as opponent (i.e.,
not averaged over all opponents).

While these win percentages offer some insight into relative
playing strengths, a shortcoming of this metric is that every
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Fig. 1. Thick lines depict progression of win percentages, averaged over all
fourteen games and all 31 possible opponent agents, including 95% Agresti-
Coull confidence intervals for the mean over all those data points. The fourteen
thin lines depict win percentages in individual games of WED + PER + CEE
(No IS), against only ExIt with equal numbers of training games.

possible opponent is considered equally important. Suppose
that there are three agents A, B, and C. If A outperforms
the other two by a small margin, we may consider it to
be the strongest agent. But if B (outperformed by A) more
aggressively exploits the weakest agent C, it may be ranked
as the top agent by average win percentages. Therefore, we
also evaluate our agents using α-rank [31], [32]. This ranking
approach, based on evolutionary game theory, would find that
agent A is dominated and would be eliminated from the
population of agents in the example above.

We use tables of pairwise win rates as payoff tables for α-
rank, conducting a sweep over its ranking-intensity hyperpa-
rameter α to find sufficiently high values [31] for every game.
We treat all games as asymmetric games, meaning that α-rank
does not generate rankings of agents, but rankings of pairs
of agents corresponding to the two player indices in 2-player
games. In some games the same agent is the top-performing
agent for both player numbers, but there are also cases where
one agent performs best as Player 1 and another as Player 2.

Table I shows the results of the α-rank evaluations. For
every agent, we count how often it is present in the top-
ranked strategy across all games. There is a total of 28 top
ranks available across fourteen games. For every agent, we also
compute the strategy mass of that agent in α-rank’s stationary
distribution over strategies – averaged over the fourteen games.
These two metrics are often correlated, but can still provide
different insights. When a single agent clearly outperforms all
the others, it achieves the top ranks as well as gaining all
the strategy mass in a game. When multiple closely-matched
agents outperform each other (e.g., pure strategies in Rock-
Paper-Scissors), the strategy mass is more evenly distributed
among these agents.

For the trained agents, we add up the top ranks and strategy
masses for all the different checkpoints of the same training



TABLE I
RESULTS FOR α-RANK EVALUATIONS IN FOURTEEN GAMES. THE SECOND

COLUMN SHOWS THE NUMBER OF TOP RANKS THAT EVERY AGENT HAS
OBTAINED ACROSS THE GAMES (WITH 2 TOP RANKS AVAILABLE PER

GAME, FOR THE 2 PLAYERS). THE THIRD COLUMN SHOWS THE STRATEGY
MASSES OF THE DIFFERENT AGENTS IN THE STATIONARY DISTRIBUTION

OF α-RANK (AVERAGED OVER GAMES).

Agent Num. Top Ranks Avg. Strategy Mass

UCT 0 0.010
MC-GRAVE 4 0.145
ExIt 3 0.085
WED 9 0.304
PER 2 0.118
CEE 1 0.048
CEE (No IS) 4 0.146
WED + PER + CEE (No IS) 5 0.144

Total 28 1.0

run. There were only few cases where the final checkpoints
were not definitively the strongest agents of their run.

IX. DISCUSSION

In Fig. 1, we see WED and the combination of extensions
WED + PER + CEE (No IS) outperforming the ExIt baseline
on average, especially for the early checkpoints of 51 and
101 training games, but also in later checkpoints to a lesser
extent. PER on its own also has a small positive impact in the
initial stages of learning. Both variants of CEE are detrimental
for performance on average, with the variant that uses IS
corrections performing significantly worse than the variant that
ignores IS corrections.

The thin learning curves in Fig. 1 show that the combination
of extensions leads to major improvements in playing strength
in the early stages of training in multiple games, with win
percentages between 60% and 85% against ExIt with the same
amount of training in five out of fourteen games after 51
training episodes. For other games, the playing strength tends
to be closer to even. After 200 training episodes, there are
two games where the regular ExIt has a major advantage in
playing strength, but on average the extensions still lead to a
minor advantage. For other extensions, we similarly observed
that there can be major effects – both positive and negative –
in individual games, but we omit these plots for visual clarity.

The α-rank evaluations in Table I show particularly domi-
nant results for WED, in terms of its number of achieved top
ranks as well as average presence in the stationary distributions
over agents. This is interesting considering it is also the
simplest of all the evaluated extensions of ExIt. PER achieves
only two top ranks, but has a high average strategy mass
relative to this number of top ranks. This suggests that PER
has a relatively stable level of performance; it rarely leads
to the best agent, but it is also rarely entirely dominated by
other strategies. In contrast, ExIt without any extensions has
a relatively low average strategy mass.

X. CONCLUSION

This paper explores three different extensions for the Expert
Iteration (ExIt) self-play training framework, all three of which

involve manipulations of the distribution of data that we learn
from – either by modifying the distribution of data that we
collect, or by modifying how we sample from it.

Firstly, we investigated applying importance sampling (IS)
corrections based on the durations of episodes in which sam-
ples of experience were observed, such that – in expectation –
we optimise the cross-entropy loss for the distribution of states
that we would have collected if we only stored one state for
every full game of self-play. We still retain sample efficiency
because we do in practice retain all states – IS corrects for
this discrepancy between the distribution of collected data, and
distribution of data for which we optimise. This is referred to
as weighting according to episodes durations (WED).

Secondly, we apply Prioritized Experience Replay (PER)
[15] to the ExIt training framework. The impact that experi-
enced states may have on our training process is estimated
by the differences between expert and apprentice policies
for these states, and states that are estimated to be more
informative are sampled more frequently. IS ratios are used
to correct for bias introduced by this non-uniform sampling.

Thirdly, we use REINFORCE [24] to train an additional
exploratory policy that is rewarded for navigating to states in
which there is a large mismatch between expert and apprentice
policies. This exploratory policy is mixed with the standard
visit-count-based policy when selecting actions during self-
play training. This is referred to as Cross-Entropy Exploration
(CEE). We evaluate the introduction of this exploration mech-
anism both with and without applying IS corrections to correct
for the modified distribution of experienced states.

An empirical evaluation across fourteen different 2-player
games shows that – on average – WED, and a combination of
WED + PER + CEE (No IS), lead to policies with stronger
performance levels in terms of average win percentage against
a pool of 31 other agents. This difference is primarily notice-
able in the early stages of training. This pool of other agents
includes earlier and later checkpoints of the same training
run, all checkpoints of all other training runs, and two non-
training agents (UCT and MC-GRAVE). PER on its own also
appears to have a minor advantage in early training stages.
Either variant of CEE on its own appears to be detrimental.

An additional evaluation using the α-rank [31] method
from evolutionary game theory provides additional evidence
for some of these conclusions. The α-rank evaluation is
particularly favourable for WED, but also for other extensions
proposed in the paper.

From these results, we conclude that it is worth examining
the distributions of experience for which we optimise cross-
entropy losses in self-play training processes such as ExIt more
closely. Various extensions that maniupulate these distributions
show improvements in playing strength when averaged over
fourteen games. WED, which is arguably the simplest modi-
fication examined in this paper, also appears to have one of
the most noticeable impacts on training performance. Effects
averaged over all games tend to be small, but we observe major
effects in individual games.

For CEE, in this paper we focused on training a policy to



explore trajectories that leads to large cross-entropy losses. In
future work, it would also be interesting to investigate other
forms of targeted exploration [14]. For example, a policy that
has already been trained in one game may be directly used
to diversify the experience collected – and speed up learning
– in a second game [33]. Finally, it would be interesting to
investigate if there are certain patterns to which extensions
provide positive or negative effects in which games.
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