
MAP-Elites to Generate a Team of Agents that
Elicits Diverse Automated Gameplay
Cristina Guerrero-Romero

School of Electronic Engineering and Computer Science
Queen Mary University of London

London, United Kingdom
c.guerreroromero@qmul.ac.uk

Diego Perez-Liebana
School of Electronic Engineering and Computer Science

Queen Mary University of London
London, United Kingdom
diego.perez@qmul.ac.uk

Abstract—The objective of this work is to provide a procedure
to generate a team of players for a game so they are available to
the developer to choose from and that can be used for automated
gameplay. Our solution applies the MAP-Elites algorithm to
generate agents with distinct behaviours. The resulting agents are
distributed in the space of features based on the result of their
actions when playing a game: wins, score, % explored, interactions,
kills, items collected, etc. The criteria used as the performance of
the elites does not come from how well an agent plays a game,
but by the time it takes it to play it and determine the cell in
the map it falls into. We present and implement the solution
and include details about the agent used, as well as the list of
heuristics created to elicit differentiated behaviours within the
game, representing distinct types of players. We executed the
algorithm implemented for three different games and a total of
33 configurations. The size and diversity of the pool of agents
generated allow running automated gameplays in each of the
games to elicit different expected behaviours. The options are
limited by the distribution of the team within the space, given
by the pair of features or the characteristics of the game. The
methodology gives the flexibility to extend the features or modify
the range of existing ones to have control over the behavioural
space and, therefore, the characteristics of the generated team.

Index Terms—games, automated gameplay, team generation,
MAP-Elites, agent behaviour, heuristics, methodology, GVGAI

I. INTRODUCTION

The ultimate objective of this work is to provide a resource
so a team of agents is available to play a game in different
ways. It concentrates on the means; the application of the
diverse automated gameplay provided by these agents depends
on the needs of the developer. These could consist of debug-
ging, obtaining analytics, profiling, or any other; and could be
employed during the development of the game or afterward.

We propose a method to generate a series of game-playing
agents with distinct behaviours so they are expected to act
and interact with the same game differently. These agents
form a team, from which it should be possible to choose a
player depending on the needs: 1) finishing the game with
the highest score possible; 2) playing the game interacting
with as many elements as possible while covering most of
the map; 3) collecting few items but killing all the monsters;
etc. We apply the MAP-Elites algorithm so each of the cells
of the resulting map contains the definition of the behaviours

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

of the agent, as well as their stats, obtained after playing the
game several times. The features of the map come from these
resulting stats (e.g. items, kills, % explored, etc), that will
define the agent behaviour. Also, the illumination of the space
of agents generated can provide insight into the level of the
game. The performance of the final agents does not come from
stats that measure how well they perform in terms of wins or
score, but by the time it takes it to reach a similar pair of those
final stats. It is possible to choose between different features
to define the space of the map and these have an impact on the
behaviours the agents are expected to elicit. Our work aims to
show that this is a general technique and, as such, is tested in
multiple games. However, the selection of features and agents
can be made game-dependent for specific applications.

Section II presents our previous work on this area and
introduces the MAP-Elites algorithm. Section III and IV give
details about the implementation of the agent, heuristics, and
the use of the MAP-Elites algorithm. Section V describes
the games and configuration used in the experiments and
Section VI presents a summary of the results. The paper is
concluded in Section VII.

II. BACKGROUND

A. Beyond Playing to Win: Heuristic Diversification

Our previous work introduces the diversification of be-
haviours in general algorithms when provided with heuristics
that elicit different goals: winning, exploration, knowledge
discovery and knowledge estimation [1]. Even when the core
of the algorithms was the same, experiments results showed
how 1) the performance between a set of them changed
depending on the heuristic assigned, and 2) the behaviour and
interactions in the game for each of these given heuristics were
considerably different to each other. These results inspired
us to outline the vision of creating a team of agents with
distinct behaviours so they can be used to assist game design
and automatic testing [2]. The generation of a team of these
characteristics is the work presented in this paper.

B. MAP-Elites

The Multi-dimensional Archive of Phenotypic Elites (MAP-
Elites) is an illumination algorithm that can search in a very
high dimensional space created by all possible designs to find

the highest performance criterion for each combinations of
features [3] (e.g. fastest robot for each combination of height,
weight and energy consumption per meter features). This
algorithm illuminates the relationship between performance
and dimensions of interest solutions returning a set of high-
performance diverse solutions. It requires defining:

1) Genome/genotype x: Candidate solution.
2) Phenotype px: Assessment of the characteristics of x.
3) Fitness function fx: Measures the performance to eval-

uate each candidate x.
4) Feature space: N-dimensions of variation of interests.
5) Feature/behaviour function bx: Defines the features that

correspond to each x, determining the values that should be
assigned to the N-dimensional vector of the map.

The relationship between genotypes, phenotypes, and the
behaviour and performance of a candidate goes as follows:
x → px → bx, fx. It is possible that a direct encoding exists
between a characteristic of the candidates and phenotypical
feature, but it is also possible that there is an indirect encoding,
where a complex process maps the elements of the candidates
with components of the phenotype [3].

The original version of the MAP-Elites algorithm, presented
by Mouret et al. in [3], starts with the creation of an N-
dimensional map of elites, initialized by generating random
candidate solutions. In each new iteration of the algorithm,
until the stop condition is reached, one of the current solutions
of the map (elite) is randomly chosen and evolved to create a
new candidate solution. This new candidate is then simulated
to obtain its feature description, which defines its position on
the map; and its performance. The new elite is automatically
assigned to its correspondent cell if this is empty. If there is a
current elite occupying it, the new elite replaces the previous
solution if its performance is better.

The simplicity of the MAP-Elites algorithm allows its appli-
cation in different disciplines, including the field of games. A
constrained version of the MAP-Elites has recently been used
to procedurally generate levels for bullet hell games [4] and
to assist mixed-initiative design of levels in the Evolutionary
Dungeon Designer (EDD) [5]. Other applications include the
use of the MAP-Elites algorithm to study the relationship
between the parameters of a game and the behaviour of a
well-performed agent [6]; to build and balance Hearthstone
decks illuminating the space that influences gameplay [7]; as
well as to generate a pool of agents to play and perform in
the card game Hanabi [8].

C. GVGAI Framework

The General Video Game Artificial Intelligence (GVGAI)
Framework is an open-source platform that facilitates the
research in General Video Game Playing (GVGP) [9]. It has
been used for several competitions, resulting in the availability
of a range of agents [10]. These agents are general within the
framework and can play any of its games, written in the Video
Game Description Language (VGDL) [11]. All of these games
are single or two-player 2D arcade games. Each element of
the game is represented by a sprite and the rules are triggered

by collisions between them. Given the generality of the frame-
work, the sprites are not individually identified by the agent
but it is possible to recognize what category they belong to:
avatar (player) sprites, sprites generated from the avatar, sprites
representing Non-Playable Characters (NPCs), resources, etc.
Collisions between sprites are called interactions and those that
happen between the avatar or the sprites generated by it, cause
events. The sampleMCTS agent from GVGAI is an open-loop
version of Monte-Carlo Tree Search (MCTS). Details about
MCTS, variants and applications can be found in [12].

III. AGENT WITH DISTINCT PLAYING BEHAVIOURS

A. Agent: MCTS with an Interchangeable Heuristic

This work uses the sampleMCTS algorithm provided in
the GVGAI Framework, modified and extended so that the
heuristic can be plugged in externally, following an idea
similar to the one described in [1]. The evaluation of a state
comes from the comparison between the information of the
game in the current state and the final state reached with
the forward model. To achieve this, it is necessary to keep
track of the data in each of the states reached by the forward
model. The information tracked depends on the heuristic and
its characteristics; for example, the positions visited by the
avatar, the enemies killed or the events triggered in each of
the states reached with the forward model.

A series of heuristics that correspond to differentiated
types of players have been identified and implemented. The
behaviour of the agents resulting from applying each of these
heuristics would be interesting on their own but we are also
interested in combining them to produce and have at our
disposal a very diverse range of behaviours. Hence, we define
a parent heuristic called TeamBehaviourHeuristic (III-C).

B. Heuristics: Player Behaviours

The work in [2] served as inspiration to identify and create
heuristics that correspond to different behaviours or personas
that can be encountered in a same game: Winner, for winning
the game; Record breaker, for achieving a high score; Ex-
plorer, focused on covering as much area as possible; Curious,
focused on interacting with the elements of the game; Scholar,
that learns about the game and discovers elements that conform
it; Killer, focused on removing NPCs; and Collector, focused
on gathering resources. These heuristics have been designed
and implemented for this work, some of them merged together
for simplicity. They are general in the scope of GVGAI and
can be used in any of its games.

1) Winning and Score: It prioritizes winning the game
while maximizing the score difference. This heuristic heavily
penalizes states where the game is lost.

2) Exploration: It maximizes the physical exploration of
the map, which is divided into tiles. In contrast to the Ex-
ploration Maximization Heuristic (EMH) implemented in [1]
(which just indicates if a position has been visited or not),
Exploration takes into consideration the number of times each
position has been visited. It prioritizes visiting those positions
that haven’t been visited before and, once visited, those that

have been visited the least. As it favours exploring as much
as possible, reaching a game over state is penalized.

3) Curiosity: It maximizes the discovery and interaction
with sprites in the game, prioritizing interactions with new
sprites. We consider interactions the collisions of the avatar or
any sprite generated from the avatar with other sprites of the
game. When no new interactions are possible, it prioritizes
interactions in new locations of the game, called curiosity
interactions [1]. The heuristic considers and gives different
values (from high to low) to the following cases: a) New
sprites discovered and new interactions; b) New curiosity
interactions; c) Total of different curiosity interactions; and
d) Number of total interactions. As it tries to investigate as
much as possible, reaching a game over state is penalized.

4) Killing: It maximizes destroying Non-Playable Charac-
ters (NPCs) and penalizes end of game states. The heuristic
considers ”kills” those interactions between sprites generated
from the avatar (hits) and sprites of the NPC type. When
using this heuristic in the GVGAI framework, the following
assumptions are made a) Enemies are killed in one shot; b)
Enemies are only killed by sprites generated from the avatar.
c) The avatar is not able to kill an enemy by colliding with it
or by using elements of the terrain.

5) Collection: It maximizes the collection of resources and
penalizes end of game states. The heuristic considers ”collec-
tions” those interactions between the avatar (collisions) and
resources. When using this heuristic in the GVGAI framework,
it is assumed that a) Items are of the Resource type; b) Items
can only be collected by the avatar by colliding with them.

C. TeamBehaviourHeuristic

This is the parent heuristic implemented that can be as-
signed to the agent so it can be given different combinations
of the behaviours introduced in Section III-B. It is composed
by the following elements, that must be assigned during its
initialization: members list, enabled heuristics and weights:

1) Members list: {t0, ..., tm}, being m the total number of
behaviours available. All the heuristics in this list participate
in the collection of data to obtain the stats related to the
behaviours they represent. However, it is possible that not all
of them are enabled to participate in the final evaluation.

2) Enabled heuristics: {h0, ..., hn}, being n <= m the
total number of enabled behaviours, taken from the members
list. This list contains the heuristics that participate in the
evaluation of a state and that, therefore, take part in deciding
the action that should be carried out next by the agent.

3) Weights: {w0, ..., wn}, being n <= m the total number
of enabled behaviours. Each of the weights can be given a
value between 0.0 and 1.0, representing the significance of
the behaviour it is assigned to.

The list of enabled heuristics and weights define the be-
haviour of the agent. The final value of the heuristic in a
state (S) is obtained by the sum of each of the enabled
heuristics multiplied by each of the correspondent weights:
H(S) = h0w0 + ...+ hnwn.

IV. MAP-ELITES APPLICATION

The MAP-Elites algorithm described in [3] has been applied
to generate a team of agents that play a game eliciting different
types of gameplay. When the algorithm finalizes, each of the
cells of the map contains the description of an agent that
implements the TeamBehaviourHeuristic given by a set of
weights (III-C), which has been evolved during the execution.
Each of the candidates is assigned to the map by observing
the stats resulting from playing the game repeated times. The
map is divided into a fixed number of cells given by the
two feature dimensions. Each of the features is assigned a
minimum, maximum and bucket size value, so a certain value
is assigned to the bucket that contains the range it belongs to.

The performance considered to replace elites in the map is
not related to how well they perform in the game (wins or
score), as these are considered features, but in terms of how
fast are the agents that end up getting a pair of features in
a similar range. Algorithm 1 shows the pseudocode of the
implemented MAP-Elites, with the following components:

1) Genotype x: Vector of weights {w0, ...wn} that repre-
sents the presence of each of the enabled heuristics when
assigned to the agent.

2) Phenotype px: Set of stats generated by the agent with
{w0, ...wn} after playing the game a certain number of times.

3) Fitness function fx: How quick the game end is reached.
4) Feature description/behaviour function bx: Values re-

sulting from the actions of the agent, given by the stats
obtained. These features are defined by the members list and
are dependent on the game and its characteristics. The value
of the chosen stats is converted into the correspondent map id.

A. Performance

In this work, we prioritize agents that would finish the game
quickly. The idea is that, given two agents that behave in
the same way (collide in the same MAP-Elites cell), one is
considered better than the other if it took it least time playing
the game, independently of the outcome.

B. Features

The features are computed from the stats resulting from the
agent playing the game multiple times. Although the MAP-
Elites supports an N-dimensional feature space, in our work
we focus on two-dimensional MAP-Elites. We consider only
pairs of features for simplicity in the setup and readability of
the results. There is a wide list of features available:

1) Wins: Percentage of wins.
2) Score: Total amount of points at the end of the game.
3) Exploration: Different positions of the map visited.
4) Exploration percentage: Percentage of the map visited.
5) Discovery: Different types of sprites discovered.
6) Sprites interactions: Unique interactions with sprites of

different types.
7) Curiosity: Unique interactions with sprites of different

types in different locations of the map.
8) Collisions: Total avatar interaction with other sprites.
9) Hits: Total from-avatar sprites interactions with sprites.

Algorithm 1 Use of the MAP-Elites algorithm [3] to generate a team of agents that elicit differentiated gameplays.
We use the following nomenclature: X ← map, x ← elite, b ← feature description, P, p ← performance,
α ← nEnabledHeuristics, β ← nRandomInitialisations

X ←MAPElitesInitialisation() . Add to the map α elites with only each of the behaviours enabled
. Generate β elites with random weights and add them to the map

for iter = 1← nAlgorithmIterations do
x← random selection(X) . Select one of the current elites of the map randomly
team weights′ ← evolution(x.team weights) . Evolve the weights assigned to the elite to generate a new one
x′ ← createGameplayElite(team weights′) . Agent plays the game nGameRuns times to get the stats
b′ ← x′.featureStats() . Get the stats corresponding to the features in use for the new elite
p′ ← x′.performanceStats() . Get the stats corresponding to the performance criteria for the new elite
if X(b′) = ∅ or p′ > P (b′) then . Appropriate cell is empty or current occupant’s (elite) performance is worst

P (b′)← p′

X(b′)← x′

return X , P

10) Interactions: Total number of interactions of any type.
11) Kills: Total number of NPCs hit.
12) Items: Total number of resources collected.

C. Configuration

To facilitate running experiments, the implementation ac-
cepts a configuration file; allowing to dynamically set up the
following options of the algorithm and its execution:

1) gameName, level: Game and id of the level the experi-
ments are executed with.

2) agentName: Name of the algorithm to use.
3) nGameRuns: Number of times the agent (candidate) will

play the game with each set of weights to obtain its stats.
4) featureX, featureY: Pair of features that define the map

dimensions and behavioural space.
5) nRandomInitialisations: Number of random sets of

weights that are generated to initialize the map.
6) nAlgorithmIters: Number of MAP-Elites iterations.

V. EXPERIMENTAL WORK

The agents, heuristics and MAP-Elites implementation are
in a Github repository1. Executable and configuration files
used for the experiments can be found in an OSF repository2.

A. Games and Levels

We selected 3 of the games available in the GVGAI
Framework to carry out the experiments: Butterflies, Zelda and
Digdug. They have different complexities in terms of wining
conditions and number of sprites (Butterflies is the simplest,
followed by Zelda and Digdug) and define different types of
players, allowing a range of behaviours. The objective is to
make comparisons of the results, studying how the method-
ology works when applied to distinct games, and showing its
flexibility to adapt to different games and behaviours. The rules
of the games have been modified so the assumptions described
in Section III-B are met. All experiments are conducted on a
same level of each game, corresponding to the screenshots.

1https://github.com/kisenshi/gvgai-agent-behaviour-research
2https://osf.io/whxm8/

Fig. 1: Butterflies at t = 0: 6 butterflies, 27 cocoons, 102 trees.

1) Butterflies (Fig. 1): The goal is colliding with all the but-
terflies before the time runs out or there are no more cocoons.
Each collision with a butterfly adds 2 points to the score. The
cocoons generate new butterflies when a butterfly collides with
them. The butterflies are NPCs and they disappear when the
avatar collides with them, so they would not be considered
kills or items. Thus, Killing and Collection heuristics are not
enabled in the experiments for this game.

2) Zelda (Fig. 2): The goal is leaving the dungeon by taking
the key (resource) and opening the door before the time runs
out, avoiding being killed by the monsters (NPCs) when they
collide with the avatar. The player can kill the monsters by
hitting them with a sword. Killing a monster increases the
score by 2 and bringing the key to the door by 1.

Fig. 2: Zelda at t = 0: 1 key, 1 door, 6 monsters.

3) Digdug (Fig. 3): The goal is to kill all monsters (NPCs)
and collect all gems and gold (resources) of the map before
the time runs out while avoiding being killed by the enemies.
The player has a shovel that can be used to a) hit walls to

break them; b) hit rock blocks (those marked with a G) to
create gold and c) hit monsters to kill them. Collecting gems
increases the score by 1 and killing monsters by 2. This version
has no boulders and gold is collected by colliding with it.

Fig. 3: Digdug at t = 0: 20 gems, 7 gold blocks, 4 initial
monsters, 2 monster spawners.

B. Configuration for the experiments

All executions are carried out with an MCTS agent and
TeamBehaviourHeuristic. Depending on the game and exper-
iment, different heuristics (or behaviours) are enabled. As
detailed in Section III-C, the final characteristics of the agent
depend on the weights assigned to each behaviour by evolution
by MAP-Elites. The algorithm has been executed with the
following configurations (Section IV-C):

1) nGameRuns: 100. We consider that the most important
characteristic to take into consideration for these experiments
is the consistency of the stats obtained for the gameplay of the
agents generated, to ascertain they are assigned to the right cell
of the map. This consistency is achieved by making the agent
play the game a high number of times so the outliers in the
data do not skew the resulting average. A low number of data
samples per game run (< 100) was not representative enough,
while 1000 repetitions made the execution time too long.

2) nRandomInitialisations: 10.
3) nAlgorithmIters: 200 (Butterflies); 250 (Zelda, Digdug).
4) Features: We use a 2-dimensional MAP-Elites so a pair

of available features (IV-B) is assigned to each experiment.
The selection and range of features depend on the game and
its characteristics: rules, type, the number of sprites, etc.

For simplification in the tables and results, the experiments
carried out for each game are given a unique code. Table I
shows these codes and the different combinations of features
used in each block of experiments: B2 is the game Butterflies
with 2 heuristics enabled: Winner and Explorer. B3 is again
Butterflies with 3 heuristics enabled: Winner, Explorer and
Curious. Z5 is Zelda with all 5 heuristics enabled: Winner,
Explorer, Curious, Killer and Collector; and D5 is Digdug
with all 5 heuristics enabled.

VI. RESULTS AND DISCUSSION

The nGameRuns value is high (100) so each iteration of
the MAP-Elites algorithm takes a long time. This execution
time is also dependent on the number of heuristics enabled,

TABLE I: Combination of feature pairs used in experiments.

X
Y Score Exploration Curiosity Collisions (B2,B3) Kills Items

Percentage Interactions (D5,Z5)

Wins B2 B2
B3 B3
B2 B2 B2 D5 D5

Exploration B3 B3 B3 Z5
Percentage D5 D5 D5

Z5 Z5 Z5
B2 B2

Curiosity B3 B3
D5
Z5
B2 D5 D5

Collisions (B2, B3) B3 Z5
Interactions (D5,Z5) D5

Z5
Kills D5

as each of them requires their own calculations; as well as
the complexity of the game and the average time the game
over is reached by the agents. The nAlgorithmIters value
was initially set to 250 for Z5 and D5; requiring a total of
25000 plays for each of their experiments. As the total time
required for these executions was higher than the maximum
time allowed, results for these games ended up with fewer
iterations of the MAP-Elites: 125 for Z5 and 100 for D5.
Running the experiments has resulted in the generation of
a total of 33 maps, containing between 4 and 49 elites
each. The group of elites generated in each map forms the
team of available agents for future automated gameplay. We
include highlights of the results below; the full set of JSON
data and generated graphs can be found in an OSF repository3.

Fig. 4 shows the MAP-Elites generated for the same pair
of features (Exploration percentage and Score) in each of the
games and configurations. Comparing the results, we note:

1) Elites performance: Not all agents generated are equally
fast in terms of when the game over is reached and, in some of
the cases, they are quite slow. However, the performance is not
as important of a factor as it was in other applications of the
MAP-Elites, as the interest of the methodology implemented
resides in the diversity of the solutions. The final performance
value of the elite assigned to a certain cell serves as a reference
to know what to expect when using the agent for automated
playing and how long its execution would take on average.

2) Elites distribution: We see differences in the distribution
of the resulting elites depending on the game. All the agents
generated achieve an average exploration percentage higher
than 21% and, within the dimensions of the game, are found
in a certain range of scores. However, their alignment is
very different between games: While in Butterflies there is
a continuity in the occupied cells, the agents are clustered in
blocks in Zelda and Digdug, having no coverage for certain
exploration ranges. This aggregation is even more noticeable
for the latter, where just a few exploration ranges (21− 30%,
61− 65%, 71− 75%, >= 96%) are included.

3) Diverse behaviour; diverse team: The team generated
for both configurations (B2 and B3) have a similar distribution
within the features space. However, including the Curious

3https://osf.io/whxm8/

(a) Butterflies with Winner and Explorer behaviours (B2) (b) Butterflies with Winner, Explorer and Curious behaviours (B3)

(c) Zelda with Winner, Explorer, Curious, Killer, Collector be-
haviours (Z5)

(d) Digdug with Winner, Explorer, Curious, Killer, Collector be-
haviours (D5)

Fig. 4: Resulting MAP-Elites for Feature pair Exploration percentage and Score for all games and configurations (B2, B3.
Z5, D5). The team of agents generated for each experiment is of different sizes (15, 20, 42 and 19) and the behaviours and
distribution in the space depends on the characteristics of the game.

as additional behaviour allows the generation of more elites,
increasing the choices of agents when looking for a high score
(41−50): B2 only produces an agent capable of reaching this
high score, tight to a high exploration percentage (91− 99%).
B3, in contrast, generates a total of 5 agents related to this
high score, each of them in different ranges of exploration
(31 − 40%, 61 − 70%, 71 − 80%, 91 − 99% and 100%).
We observe similar results in maps resulting for other pair
of features: Exploration percentage x Collisions results in 10
final elites for B2 and 49 for B3; and Curiosity x Score in 4
and 16 respectively. We can infer that having more behaviours
enabled generates a more diverse team.

4) Team size: The number of elites generated for Zelda
is 42, a much higher number than the ones generated for
Digdug (19). When looking at the number of elites at the
iteration 100 for Z5, this value was 39. In general, the team size
resulting for the D5 experiments is not very high compared
to Butterflies and Zelda. The reasons could be that Digdug is
such a complex game that requires many more iterations, or
that it is not possible to elicit further behaviours in Digdug

and, as a result, the pool of agents available will be smaller.
Fig. 5 shows the resulting MAP-Elites for B3 when the

feature pair is Exploration Percentage and Collisions. The
solution generates 49 agents. The higher the number of
collisions, the higher its relationship with the exploration
percentage and the average game over time of the agents. It is
possible to select agents to cover different percentages of the
map but, when requiring an agent able to obtain more than
300 collisions, this selection gets reduced to agents that attain
a very high exploration (> 90%). Yet, if the target is obtaining
more than 1000 collisions, two additional agents are found in
a lower percentage range. Taking a look at the stats for the
latter, we see how their curiosity value average is 100.64 and
103.76. There are 102 trees and 33 butterflies in the game, so
the behaviour expected from these agents would be interacting
mostly with the trees, sticking to the borders of the map, and
avoiding getting into the open areas, unless they get the chance
to interact with a butterfly at reach.

Fig. 6 shows the resulting MAP-Elites for Z5 when the
feature pair is Interactions and Kills. The solution generates 35

Fig. 5: B3 MAP-Elites for Feature pair Exploration percentage
and Collisions

Fig. 6: Z5 MAP-Elites for Feature pair Interactions and Kills.
Table II includes details about the elites highlighted (En).

agents capable of killing at least 2 monsters while interacting
with the elements of the game in different capacities. The
range of the average of iterations elicit by the team goes from
[1 − 100] to [1401 − 1500]. The pool of agents in the team
where we can find the most diverse skill at killing monsters
is tight to the lowest number of iterations ([1 − 200]). When
requiring an agent to reach higher iterations, it is expected that
the agent ends up killing at least 4 or 5 monsters when playing
the game. If it is desired that an agent kills all monsters when
playing, the pool is reduced to 5 agents, any of them able to
reach an average of interactions higher than 800.

Table II contains details about 5 of the resulting agents
for this experiment, highlighted in Fig. 6. The features in the
MAP-Elites work as guidance on diversifying the behavioural
space but the stats also show great differences, exhibiting
diversity in the way each of the agents relates to the game in
general. This information helps to have a better understanding
of what to expect from an automated gameplay when using
each agent from the team: While E1 would always be
expected to win and E5 would always be expected to lose, the
latter would achieve a slightly higher score than the former
and interact with elements of the game much more. Given this

Fig. 7: D5 MAP-Elites for Feature pair Kills and Items

information, plus E5’s low exploration skills and the fact that
it rarely picks the key (the only item in the game), we deduce
that this agent would rarely reach the area where the key
is, expecting it to stick to the left and bottom zones of the map.

Most of the solutions of the MAP-Elites generated for
Digdug show an average of end of game ticks very close to
the maximum allowed (2000), the lowest value being at 1200.
Fig. 7 shows the resulting MAP-Elites for D5 when the feature
pair is Kills and Items. Only one of the 18 agents available
in the pool has a lower average of game ticks (1400). This
particular agent is in the range of [22− 24] items and [7− 9]
kills, so it is on the top tier of the agents encountered in this
space, although it is not the one that reaches the most number
of monster kills and items. All the agents can collect at least
7 items and kill between 7 and 12 monsters, but they rarely
win the game (the highest win rate find in the team is 0.05%);
so they are either killed by a monster or play for its whole
duration. Therefore, future automated gameplays for this game
are expected to be slow, independently of the description of
the agent chosen.

VII. CONCLUSIONS AND FUTURE WORK

This work proposes and implements an adaptation of the
MAP-Elites to generate a team of agents with distinct be-
haviours so they can be used for automated gameplay. The
solution provides a number of agents in a feature space; the
location of each of them gives an idea of what to expect when
they are selected to play the game. The features of the map are
defined by the results of the actions of the agents: wins, score,
exploration, kills, items collected, etc. The performance of the
agent to be assigned to a cell to the map is given by the time
it takes them to play the game obtaining a similar range of
values for the features, and not how well they perform on it in
terms of score or wins. The algorithm used to play the game is
the MCTS, which has been adapted so it is possible to provide
a list of heuristics and corresponding weights. The heuristics
implemented represent type of players that can be found on
the games: Winner, Explorer, Curious, Killer and Collector.
The list of features and heuristics used in this work can be
adapted and extended based on the game under consideration

TABLE II: Details about elites highlighted (En) in Fig 6. Includes the description of the weights of each behaviour (Winner,
Explorer, Curious, Killer, Collector) as well as the associated value of their features, game over timestamp (ts) and average
stats resulting when an agent with this description plays the game (Zelda) 100 times.

E1 E2 E3 E4 E5
Behaviour weights [0.66, 0.13, 0.01, 0.04, 0.16] [0.23, 0.13, 0.01, 0.64, 0.16] [1.0, 0.13, 0.68, 0.58, 0.16] [0.52, 0.13, 0.68, 0.64, 0.16] [0.0, 0.0, 0.8, 0.0, 0.77]

Feature X: Interactions 37.91 150.07 314.52 713.64 1411.24
Feature Y: Kills 1.95 5.53 3.62 5.38 3.32
Game over ts 544.32 1905.71 1023.71 1912.60 1970.68

Gameplay stats (average of 100 plays)
% Wins 91.99% 6.00% 70.00% 8.00% 0.00%

Score 5.72 12.12 8.8 11.81 7.18
Exploration percentage 70.35% 95.80% 78.00% 96.01% 34.61%

Unique interactions 3.33 4.99 4.46 5.07 3.75
Curiosity 25.70 80.65 61.82 90.95 37.61
Collisions 35.96 144.54 310.90 708.26 1407.92

Hits 1.95 5.53 3.62 5.38 3.32
Kills 1.95 5.53 3.62 5.38 3.32
Items 0.97 0.98 0.98 0.99 0.60

and the needs of the user. The MAP-Elites has been executed
for 3 games of different characteristics and complexity with
various configurations. In one of the games, two different sets
of heuristics were enabled, distinguishing between 4 blocks
of experiments (B2, B3, Z5, D5). A total of 33 different
configurations of the MAP-Elites were executed and 95, 227,
253 and 175 agents were generated respectively. The size and
diversity of the pools of agents generated by the MAP-Elites
make it possible to find agents to run automated game play-
throughs in each of the games based on different needs. The
options are limited by the distribution of the team within the
space, caused by the pair of features, the characteristics of the
game, and the enabled heuristics set for the agent.

The implementation and experiments were carried out in
the GVGAI Framework: the generality of the algorithm and
heuristics within the framework allows to execute the method-
ology in different games. For simplicity, only a pair of features
were set in each experiment, but the MAP-Elites algorithm is
not limited to a 2-dimensional feature space. The approach
can be extended to N-dimensional spaces to generate a more
diverse and versatile archive of agents.

The results and stats refer to the level the algorithm was
executed on. The portability of the agents generated in each
game was out of scope for this paper, but it is possible to study
it with further experimentation. The generality of the heuristics
used allows for a fair comparison running the agents in other
levels. Future work also includes extending the heuristics so
it allows setting new player types and features, using larger
dimensions for the MAP-Elites, alternative algorithms; as well
as porting the idea to more complex but specific games, using
heuristics particularly tuned for them.

A shortcoming of the technique is the necessity of coming
up with the heuristics to describe the behaviours applied to
the agent. We propose a list of heuristics in our previous
work [2] that can serve as inspiration, but we believe that
game designers can also come up with other behaviours based
on player types suitable for the game. The downside of this
adaptation of the MAP-Elites is its long execution time, which
comes from the necessity of having to play the game with each
candidate solution a high number of times, to make sure it is

assigned to the right cell. This repetitive execution causes that
each iteration of the MAP-Elites takes a long time, slowing the
overall processing time. However, in contrast to other usages
of the MAP-Elites in games, this application is not expected
to be used ”online”. The ultimate objective of this work is to
provide a resource so a team of agents is available for a game,
either during its development or afterward. Some possible
applications are using these agents for automated gameplay
to 1) find bugs and code debugging; 2) obtain game analytics;
3) check game performance using profiling tools.

ACKNOWLEDGMENT

Work funded by the EPSRC CDT IGGI EP/L015846/1.

REFERENCES

[1] C. Guerrero-Romero, A. Louis, and D. Perez-Liebana, “Beyond Playing
to Win: Diversifying Heuristics for GVGAI,” in IEEE CIG, 2017, pp.
118–125.

[2] C. Guerrero-Romero, S. M. Lucas, and D. Perez-Liebana, “Using a Team
of General AI Algorithms to Assist Game Design and Testing,” in IEEE
CIG, 2018, pp. 1–8.

[3] J.-B. Mouret and J. Clune, “Illuminating Search Spaces by Mapping
Elites,” arXiv preprint arXiv:1504.04909, 2015.

[4] A. Khalifa, S. Lee, A. Nealen, and J. Togelius, “Talakat: Bullet Hell
Generation through Constrained MAP-Elites,” in Proc. of The Genetic
and Evolutionary Computation Conference, 2018, pp. 1047–1054.

[5] A. Alvarez, S. Dahlskog, J. Font, and J. Togelius, “Empowering Quality
Diversity in Dungeon Design with Interactive Constrained MAP-Elites,”
in IEEE Conference on Games (CoG), 2019, pp. 1–8.

[6] M. Balla, A. Barahona-Rıos, A. Katona et al., “Illuminating Game Space
Using MAP-Elites for Assisting Video Game Design,” in 11th AISB
Symposium on AI & Games (AI&G), 2021, pp. 1–6.

[7] M. C. Fontaine, S. Lee et al., “Mapping Hearthstone Deck Spaces
through Map-Elites with Sliding Boundaries,” in Proc. of The Genetic
and Evolutionary Computation Conference, 2019, pp. 161–169.

[8] R. Canaan, J. Togelius, A. Nealen, and S. Menzel, “Diverse Agents for
Ad-Hoc Cooperation in Hanabi,” in IEEE CoG, 2019, pp. 1–8.

[9] J. Levine, C. Bates Congdon, M. Ebner et al., “General Video Game
Playing,” in Artificial and Computational Intelligence in Games, ser.
Dagstuhl Follow-Ups. Dagstuhl Publishing, nov 2013, p. 8.

[10] D. Perez-Liebana, J. Liu et al., “General Video Game AI: A Multitrack
Framework for Evaluating Agents, Games, and Content Generation
Algorithms,” IEEE Trans. on Games, vol. 11:3, pp. 195–214, 2019.

[11] T. Schaul, “A Video Game Description Language for Model-Based or
Interactive Learning,” in IEEE Conference on Computational Inteligence
in Games (CIG), 2013, pp. 1–8.

[12] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas et al., “A Survey
of Monte Carlo Tree Search Methods,” IEEE Trans. on CI and AI in
games, vol. 4:1, pp. 1–43, 2012.

