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Abstract—The extent to which an individual or chance can
influence the outcome of a game is a central question in the anal-
ysis of games. Consequently, the ability to characterize sources
of variation in game outcomes may have significant implications
in areas such as game design, law, and multi-agent reinforcement
learning. We derive a closed-form expression and estimators for
the variance in the outcome of a general multi-agent game that
is attributable to a player or chance. We analyze poker hands to
show that randomness in the cards dealt has surprisingly little
influence on the outcomes of each hand. A simple example is given
that demonstrates how variance decompositions can be used to
measure other interesting properties of games.

Index Terms—luck and skill in games, descriptive statistics,
variance decomposition

I. INTRODUCTION

From game design studios to courtrooms, randomness in
games has been the subject of extensive discussion. Game
designers use random game elements to protect players’ egos,
increase gameplay variety, and limit the efficacy of mental
calculation [1]]. In U.S. state law, the question of whether Poker
is predominantly a game of chance or skill is considered to
be central to the legality of online Poker [2], [3].

The question of how to measure the role of luck versus
skill has proved difficult and produced many answers [1]], [3]-
[8]. For example, in USA v. Lawrence Dicristina, economic
consultant and high-level amateur poker player Randal Heeb
testified that “statistical analysis of poker hands confirms that
skill predominates over chance.” His conclusion was based
on a series of heuristic data analyses combined with intuitive
judgments [9]]. Others have argued that the strong association
between player skill rating and future earnings constitute
strong evidence that poker should be considered a game of
skill [3]], [10].

A first step in assessing the role of chance in a game is
to quantify sources of uncertainty. We examine how variation
in the outcomes of a game can be attributed to players or
chance events by expressing variation in game outcomes as
the sum of variance components associated with (i) the actions
taken by a player of interest, and (ii) all remaining sources
of variation. By applying this decomposition to a conceptual
“chance player,” we measure the degree to which randomness
inherent in a game biases the results in favor of a given player.
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We derive an analytical expression for these variance com-
ponents and use it to obtain estimators which are model-free
in the sense that they do not require access to an entire game
model or other players’ behavior. Our results apply to finite
extensive-form games in general. As an illustrative example,
we analyze poker hands played by the DeepStack poker agent
against professional players [[11]] and find that chance events
have very little influence on the expected per-hand profit for
a player relative to the total variation in per-hand profit. A
roadmap of the paper is as follows:

« Section [[I| defines extensive-form games.

e Section casts a general extensive-form game in
terms of random variables. Section [II-Bl describes how
to decompose the variance of a game outcome into the
sum of two nonnegative terms, gives a formula for the
terms, and provides two ways of estimating them.

o Section [[V] gives estimates for the variance component
for chance in collections of Poker games.

o Section |V|offers an idea for a further variance decompo-
sition for measuring skill, chance, and non-transitivity in
games and applies it to a conceptual game.

« Section [VI| discusses the interpretation and relevance of
the results.

II. EXTENSIVE-FORM GAMES

An extensive-form game is a tree-based representation of a
multi-agent system; Figure |I| displays a simple example. In
this representation, the game is played by traversing the tree
from the root to a leaf node, with a player’s action at each
node determining the next node visited. Our notation is based
on [12] and [[13]], with some modifications.

Let S denote the set of possible game states which we
assume is finite; each state is associated with a node in the
game tree. Define N' = {1,...,n} to be the set of (non-
chance) players and let ¢ denote the chance player. The player
function P": S — N U {c} associates each state with a player.
At each state s € S, there are a finite number of available
actions A(s), such that each a € A(s) uniquely determines
the next state visited in the tree [14].

A sequence of actions z = (ai,...,a,,) is a ferminal
history if it leads from the root to a leaf of the game tree; let Z
denote the set of all terminal histories. For each player i € N’
and terminal history z € Z, a reward r*(z) € R is obtained
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Fig. 1. An example of an extensive-form game. Each node in the tree is a state
s € S and is annotated with the corresponding player, P~(s). The dashed line
represents Player 2’s information state; in this example, they cannot tell what
move Player 1 played. Rewards for Player 1 are shown below the terminal
nodes.

by player i upon reaching z. Each player i € N has a set
of information states U* which represent collections of nodes
which are indistinguishable to the player. In particular, Z® is a
partition of {s € S : P'(s) = i} with the additional condition
that A(s) = A(s') if s and ¢’ are in the same information
state. So, we can write A(u) for v € U® unambiguously.
Define U¢ = {{s} : P"(s) = c}. We consider games of perfect
recall, so that for every player 4, each u € U* can be uniquely
identified with the sequence of information states and actions
required to arrive there.

Finally, the behavior of each player i € N U{c} is
described by a policy * (also known as a behavioral strategy),
which is a function that maps each information state u € U® to
a distribution over the allowable actions .A(u). A policy profile
is a tuple of player policies, 7 = (r!,...,7"). By convention,
the policy of the chance player 7¢ is considered to be a fixed
part of the extensive-form game itself and not a part of any
policy profile.

III. VARIANCE DECOMPOSITIONS FOR GAME OUTCOMES

To formalize our results, we represent an extensive-form
game in terms of random variables. Having done this, the
outcome of the game will be a random variable Y indicating
the score obtained by a particular player.

A. Extensive-form games with random variables

First, we introduce random variables that represent the
actions selected by players in a single play of the game. For
each i € N'U {c}, and for each u € U, let A(u) be a random
variable taking values in A(u) which represents the action
player ¢ would take given information state w. This variable
always realizes a value, even if u is not reached in a particular
play of the game. Note that for u # u' € U*, it need not be
the case that A(u) is independent of A(u'). This manner of
specifying player behavior is quite general and can account
for different models of player action selection. For example, a
player may randomly precommit to a deterministic policy (this
is known as a mixed strategy in the game theory literature),
or select actions independently at random at each time step (a
behavioral strategy) [15]].

For each terminal history z € Z and player ¢ € N U {c},
let m*(z) be the number of actions selected by player i along
z, so that for each j € {1,...,m’(2)}, we can write u ;
and a’ ; to denote the jth information state observed and
action selected by player ¢ along terminal history z. Define
Il ; = 1[A(ul ;) = a’ ;] to be the Bernoulli random variable

that indicates whether player i selects a’ ; at u’ ;. Finally,

define I! = H;n;f) I ; to be the Bernoulli random variable
that indicates whether player 7 selects all actions along z. (If
mi(z) =0, set I! =1.)

A terminal history occurs if and only if every action along
it is selected. Therefore, for each z € Z, I, = HiENU{c} I;
defines a Bernoulli random variable such that the success
probability P(I, = 1) is the probability that terminal history
z is realized. Let Z be a random terminal history variable such
that P(Z = z) = P(I, = 1) for all z that represents a random
play-through of the game. This allows us to cast the outcome
of an extensive-form game as

Y =['(2),...,m"(2)].

Write Y = 7(Z) = r"(Z), the random variable representing
the reward for a player h € N upon one play of the game.
Our goal is to express its variance, V (Y) = E{[Y — E(Y)]?},
as a sum of nonnegative terms corresponding to meaningful
properties of the game.

B. Variance decomposition

Let i € NU{c} be a player of interest, and let A* =
[A(u)]yeyi be the concatenation of all actions for player i.
By the law of total variance we can decompose the variance
in game outcomes as

V(Y) = VIE(Y|AY)] + B[V(Y]A)]. (D

The term E(Y|A?) is the average game outcome upon many
traversals of the game tree when player ¢ commits ahead of
time to playing the actions in A‘. For example, E(Y|A°)
represents the average outcome for a group of poker players
who play the same hand from a deck with a particular card
order many times, or the average outcome for a pair of
chess players who start with the same colors every game.
Then V[E(Y|A®)] is the variation in this mean as the chance
actions A€ vary, and represents the variation in game outcomes
“explained by” chance events. The latter term of (I) has a
similar interpretation as the variation in game outcomes not
explained by actions selected by player .

Let i € A" U {c} be a player of interest. Suppose that player
i plays according to a behavioral strategy 7', meaning that
A(u) is independent of A(u') for all u # u' € U* and action
probabilities are given by a policy such that P(A;,€ =1)=
7' (al plul ) forall z € Z and k € {1,...,m(2)}. No such
assumption is required for the remaining players; we only
require that other players’ (precommitments to) actions are
independent of the actions of player <.

Let n'(z) = P(I! = 1) be the probability that player
1 assigns to actions along terminal history z; similarly,



17(2) = P(Tlyenugep I = 1) is the probability
assigned by other players, and 7(z) = 7'(z)n~i(z) =

P(I, = 1). For each information state u € U’, define
Z(u) = {z € Z : u is visited in z} n(w) = 3 .ez(w) N(2),
n(u) = _ Zzez(u)n( z), and 7~%(u) such that n(u) =
1(u) ‘(u). For each a € A(u), define Z(ua) = {z €

Z : w is visited in z and action a is selected at u.}. Define
q(u,a) = E[r(Z)|Z € Z(u,a)] to be the expected outcome
given that player ¢ is at u and takes action a; similarly, define
v(u) = E[r(2)|Z € Z(u)].

Our main result is an expression of the variance in game
outcomes explained by player i’s actions as a sum of weighted,
squared action-value and value functions over all of player ¢’s
information states:

VIE(Y|AY)] =
>y ( S gt a))? ' (afu) - [v<u>12) 0= ) ().

weU? N a€A(u)
2)

A proof is provided in Appendix [A] Computing this re-
quires traversing the game tree a fixed number of times and
hence is O(|S|). From this we obtain a formula for the
other variance component by observing that E[V (Y]A")] =
V(Y) — V[E(Y|A?)], where V(Y) can be evaluated as
S ezlr() = Soez rmE)20(2).

Assuming n~*, ¢, and v are known, given an i.i.d. sequence
of v playthroughs of the game, each generating a sequence
Uy = (Uk,1s---,Uky,) of observed information states in ut,
then the followmg is a consistent estimator for V[E(Y|A")]
as proved in Appendix
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In practice, ¢ and v can be estimated by supervised learn-
ing and 7° = 7n/n~% can be estimated with H(u) =
v S (U = w) and 7(u) = 7f(u) (assuming
the analyst does not have access to opponent policies and
observations). However, if there are many possible information
states, i.e., |U¢| is large, f(u) will greatly overestimate the
visit probability. An alternative is a more straightforward
regression-based estimator. Our regression-based estimator
works by fitting a model for the conditional mean of the game
outcome given a player’s actions, then computing the empirical
variance of the conditional mean estimator. The procedure is:
1) Specify a model fy that maps the collection of all
actions for the player of interest to a real number,

fo+ Xueus Alu) = R
2) For a each observed game k € {1,...,v}, record action-
outcome pairs (Af,Yy). For each k, if an information
state for the player of interest, v € /* was not visited
in game k, sample A(u) ~ 7'(Ju) and include the

sampled action in Af. Fit the model on the action-
outcome pair data to find a 6 that minimizes the mean
square error, v~ Y1 [V — f5(AL)]?, so f5(:) esti-
mates E(Y]A' = ).

3) Estimate V[E(Y|A%)] using the sample analog with
f7(A") plugged in for E(Y|A"):

—12 f9 Az

The regression-based estimator is consistent if f5 is consistent
for E(Y|A" = -); a proof is provided in Appendix
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IV. ANALYSIS OF PROFESSIONAL POKER PLAYERS VERSUS
DEEPSTACK

We analyze 150 thousand hands of heads-up no-limit poker
played by different players against the DeepStack poker agent,
including 45 thousand hands played by self-identified profes-
sional players. For details on how the data were generated, see
the supplemental materials of the DeepStack paper [[11]]. Our
goal is to understand the role chance has in influencing the
per-hand profits of a human playing against DeepStack, so we
will estimate the variance component for chance for games
played by each human player indexed by j € {1,...,33}.
We also include an algorithm used for poker agent evaluation
called Local Best Response (index j = 0), which we include
as a form of transfer learning in order to improve estimates
of expected outcomes for the human players. Assume that
player j plays according to a policy 7; and write E, (Y|A°)
to denote the expected per-hand profit for player j against
DeepStack given all chance events A°. Then we would like
to know V[E (Y|A*)] for each j.

We use a neural network to estimate Er;(Y]A®) given a
player and the realization of all chance events

o The player’s pocket cards (2 cards)
o DeepStack’s pocket cards (2 cards)
o The flop (3 cards)
e The turn (1 card)
The river (1 card)

The neural network shares a representation of cards across
all inputs: each card rank (e.g. Ace) and suit (e.g. hearts)
is associated with a learned vector embedding; a card is
represented by the concatenation of these embeddings. To
capture the unordered nature of players’ pocket cards and
the flop, the card representations for each of those groups
is summed. The architecture is depicted in Figure [J] and
hyperparameters are given in Appendix [C|

Our model was trained by stochastic gradient descent with
the Adam optimizer [[16] with early stopping based on cross-
validation loss using a 90%/10% train-test split. If a hand
ended before all chance events were observed (for example,
if a player folded before the river), the cards associated with
that chance event were randomly sampled from the remaining
cards in the deck at that point in the game. These cards
were resampled in each epoch of training in order to decrease
variance. We present our results in Table|l} For each player, the
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Fig. 2. The neural network architecture used for analysis of DeepStack hands.
The input for each card (shown in blue) is a concatenation of the rank and
suit of the card. The rank and suit are each assigned a vector embedding, with
the same weights shared for all card inputs.

empirical variance of the regression estimator was computed
over both the training and test data and is recorded in column
“Chance var”” Due to randomness in the training procedure
(neural network initialization, train-test split, and sampled
actions), we repeat the procedure 100 times and report average
results and standard deviations.

The results are somewhat surprising: typical values for
the percent of total variance “explained” by chance events
fall between 0% and 5%, with low standard deviations. We
conclude that the influence of chance events alone on per-
hand outcomes is quite limited. Rather, the large amount of
variation in per-hand profits is mostly explained by player
randomization and the interaction between those actions and
chance. We elaborate in the Discussion section.

V. A THREE-WAY DECOMPOSITION FOR ASSESSING
SKILLFULNESS OF A GAME

As another example of using variance decompositions to
analyze games, we present a concept for measuring skill,
chance, and non-transitivity that is inspired by prior work
on decompositions of games [17] and recent developments
regarding learning in the context of complex games with
nontransitive elements [[18]] [[19]]. For simplicity, assume we are
given a symmetric two-player zero-sum game and a population
of players represented by a finite set of policies II, each with
a skill rating p, for m € II. One notion of the skillfulness
of the game is the variance in outcomes explained by players’
skill ratings alone, assuming two policies (71, 7o) are sampled
uniformly from II:

V(Y) = V[E(Y|p7r1vpﬂ'2)] + E[V(Y|pﬂ1 ) pﬂ'z)}' &)

Applying the law of total variance to the conditional variance
V(Y |pry, Pry), Wwe condition on chance actions A€ as in ()

Changing ¢
(fix @ = 0.25, n = 100)
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Fig. 3. Three-way variance decompositions for SkillRPS with different game
parameters under the assumption that players selects moves independently and
uniformly at random, i.e., for ¢ € {1,2}, N; ~ Uniform({1,...,n}) and
A; ~ Uniform({Rock, Paper, Scissors}) and are independent. Details on the
variance components for SkillRPS are included in Appendix

to obtain V(Y |pr,, pr,) = VIE(Y|AS, pry, pry)|pr s pra] +
E[V(Y|AS, prys Pry)| Py » Prn]- Using linearity of expectation
and the tower rule, this allows us to extend @ to

V(Y) =V[E(Y|pr,; o) (skill)
+E{V[E(Y|A®, pxys pr,)|pry, Prp] ) (chance)
+E[V(Y‘AC7 Pryy Py )} . (remaining)

(6)

We apply this formula to analyze a simple game
parametrized by constants n € N, ¢ € N U {0}, and
a € [0,1] that is an abstract model of a game with a skill
component (some strategies are strictly better than others), a
nontransitive component (there exist cycles of pure strategies),
and chance (some games are decided by events entirely
out of the players’ hands). Skillful Rock Paper Scissors, or
SKillRPS(n, ¢, «v), is defined as follows: each player i € {1, 2}
simultaneously selects a number N; € {1,...,n} and a
move A; € {Rock, Paper, Scissors}. Player 1’s score is
S = N; — Na + ¢ - RPS(44, Ay), where RPS is the payoff
function for Rock Paper Scissors depicted in Table [[I}

The outcome of the game for player 1 is V¥ =
(1-W)L(S>0)—-1(S<0)]+W(2Z—1), where W ~
Bernoulli(«) and Z ~ Bernoulli(1/2) are chance events such
that W determines whether the game is decided by a fair coin
flip Z. Note that when n = 1, ¢ > 0, a = 0, the game is
classic Rock Paper Scissors, when o« = 1 it is a coin flip,
and when ¢ = 0 it is a transitive game. The game can be
represented in extensive form as shown in Figure [I] which
depicts SkillRPS(2, 0, 0.5).

In Figure [3] the three-way decomposition is given across
many values of the SkillRPS game parameters, showing that
the components correspond to meaningful properties of games:
increasing the probability that the game outcome is determined
by a coin flip increases the chance variance component to 1 as
the other variance components decrease smoothly; increasing
the bonus for winning at Rock Paper Scissors decreases
the skill component. In this case, the “remaining” variation



Player name Hands played  Mean profit ~ Variance  Chance var. ~ Chance var. %
Local best response 106,221 -0.07 4.71 0.11 (0.04) 2.4 (0.9)
Ivan Shabalin 3,122 -0.03 3.42 0.09 (0.03) 2.7 (1.0)
Pol Dmit 3,026 -0.09 4.99 0.11 (0.05) 2.2 (0.9)
Muskan Sethi 3,010 -0.21 8.07 0.12 (0.05) 1.5 (0.7)
Dmitry Lesnoy 3,007 0.01 4.42 0.09 (0.03) 1.9 (0.7)
Stanislav Voloshin 3,006 0.01 3.27 0.11 (0.05) 33(1.4)
Lucas Schaumann 3,004 -0.02 2.59 0.11 (0.04) 4.1 (1.5)
Phil Laak 3,003 -0.08 3.58 0.10 (0.04) 2.8 (1.1)
Antonio Parlavecchio 3,003 -0.11 7.22 0.13 (0.05) 1.8 (0.7)
Kaishi Sun 3,002 -0.00 4.14 0.11 (0.04) 2.6 (1.0)
Martin Sturc 3,001 0.05 2.58 0.09 (0.03) 3.5 (1.3)
Prakshat Shrimankar 3,001 -0.02 3.47 0.10 (0.04) 2.9 (1.2)
Tsuneaki Takeda 1,901 0.03 7.46 0.09 (0.04) 1.3 (0.6)
Youwei Qin 1,759 -0.20 14.80 0.11 (0.04) 0.7 (0.3)
Fintan Gavin 1,555 0.00 10.97 0.11 (0.05) 1.0 (0.4)
Giedrius Talacka 1,514 -0.05 11.46 0.12 (0.05) 1.0 (0.5)
Juergen Bachmann 1,088 -0.18 7.80 0.17 (0.09) 2.2 (1.2)
Sergey Indenok 852 -0.03 13.90 0.11 (0.05) 0.8 (0.3)
Sebastian Schwab 516 -0.18 6.25 0.10 (0.05) 1.7 (0.8)
Dara Okearney 456 -0.02 3.37 0.15 (0.06) 4.5 (1.9)
Roman Shaposhnikov 330 0.09 3.95 0.09 (0.04) 2.3 (1.0)
Shai Zurr 330 -0.12 4.15 0.09 (0.04) 2.2 (0.8)
Luca Moschitta 328 -0.14 4.83 0.11 (0.07) 2.4 (1.4)
Stas Tishekvich 295 0.03 3.90 0.11 (0.05) 2.9 (1.2)
Eyal Eshkar 191 -0.07 8.77 0.13 (0.05) 1.5 (0.6)
Jefri Islam 176 -0.38 10.56 0.10 (0.05) 0.9 (0.4)
Fan Sun 122 0.13 9.27 0.12 (0.08) 1.2 (0.9)
Igor Naumenko 102 -0.09 0.61 0.08 (0.04) 13.1 (6.4)
Silvio Pizzarello 90 -0.51 10.44 0.17 (0.19) 1.7 (1.9)
Gaia Freire 76 -0.01 0.09 0.10 (0.06) 111.8 (63.9)
Alexander Bos 74 -0.00 1.29 0.05 (0.03) 39 (2.1)
Victor Santos 58 0.18 0.96 0.12 (0.07) 12.6 (7.5)
Mike Phan 32 1.12 25.58 0.07 (0.05) 0.3 (0.2)
Juan-Manuel Pastor 7 -0.73 1.14 0.06 (0.08) 5.7 (7.3)
TABLE I

ANALYSIS OF THE VARIANCE IN PER-HAND PLAYER PROFIT (IN $1,000°S) FOR HUMAN PROFESSIONALS AGAINST THE DEEPSTACK POKER AGENT.
STANDARD DEVIATIONS ARE GIVEN IN PARENTHESES AND ARE BASED ON 100 REPLICATIONS OF THE TRAINING PROCEDURE.

ai\a2 ‘ Rock  Paper  Scissors
Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0
TABLE II

THE PAYOFF FUNCTION RPS(a1,a2).

corresponds directly to the non-transitivity introduced by the
RPS component of the game.

VI. DISCUSSION

One might hope that the variance component for chance
V[E(Y]A®)] measures how lucky a game is in the context
of the players playing the game. We argue that this is not
the case, and conclude with thoughts on the applicability of
variance component estimation for the analysis of games.

First, the variance component for chance does not measure
how lucky a game is because by design it avoids measuring
variation introduced by random player actions. Consider the
classic version of Rock Paper Scissors (RPS) depicted in Table
A cautious player can guarantee an expected payoff of 0
by assigning uniform probability to each action, causing the
outcome of the game to be uniformly random over {—1,0,1}.
For this reason, it is natural to view RPS as a game of luck—
however, RPS as typically modeled does not have a chance

player. All variation in RPS comes from randomness in player
action selection. So, if we are to call RPS a game of luck,
then a notion of luck that only considers chance events is
inadequate.

Second, the variance component for chance is conservative
in that it only measures the marginal (average) effect of
chance actions on game outcomes. It does not capture the
interaction between chance events and player actions. For
example, consider a variant of RPS in which one of the
players is replaced with a chance player. If the non-chance
player employs a uniform random policy, then the expected
outcome is 0 regardless of action is selected by chance. Thus
E(Y|A® = a) = 0 for each a € {Rock, Paper, Scissors}.
This means that for any chance policy, the variance component
for chance is 0, yet from the player’s perspective, against a
uniform chance policy, it is as though the game outcome is
entirely determined by chance!

What the variance component for chance actually measures
is the per-game amount that chance biases the outcome in favor
of a player. In both the examples given above, luck plays a
significant role in the game outcomes, but the realization of
chance events alone does not tend to significantly tilt the game
in the favor of either player— so our measure evaluates to 0.
Returning to the analysis of DeepStack poker hands, we see
that despite the large amount of variation in per-hand profits



(of which any one realization could be called “lucky”) the
game (as played at a high level) is in some sense fair: on a
hand-by-hand basis, the average amount that the random deck
order advantages or disadvantages a particular player is small.

Video game designers may find the variance component for
chance helpful in assessing the per-play advantage gleaned
by a player due to chance events. We speculate that for a
rewarding game experience, the variance component should be
kept low, or else players will feel a sense of limited agency.
Returning to the question of the legality of poker, our measure
could represent a sufficient (but not necessary) criterion for
determining that a game is “predominantly due to chance:” if
the ratio of the variance component for the chance player to
the total variation is greater than 50%, then clearly the game
outcomes could be said to be predominantly due to chance.
The three-way variance decomposition in (6) offers a way to
characterize meaningful properties of games that arise in the
context of multiagent reinforcement learning and presents new
research challenges such as (i) accounting for estimation error
in the skill rating (however it is defined), and (ii) accounting
for the actual distribution from which policies are sampled to
play each other, which is often not uniform but rather skill-
based, such that players with nearby skill ratings are likely to
be placed together.
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APPENDIX A
VARIANCE COMPONENT FORMULA DERIVATION

Here we derive (@), the formula for V[E(Y|A%)]. The
basic strategy is to write the game outcome Y as a sum
of random variables representing different paths through the
game tree, then to use basic properties of probability and
algebra to manipulate the expression, concluding with an
inductive argument. ‘

Recall that I. = [T,cnip 12 = [ienoge [Tt 12
is the indicator that all actions along terminal history z are
selected, Y = Y7 > 7(2) I, and u, ; is the jth information
state observed by player ¢ in terminal history z. Write I , =

H;n:,(j) I ;. the indicator that player 7 selects all actions in z
at and after ulz - Let d(u) be the depth of w in its trajectory;
for example, if u is the first observation of a player in their tra-

jectory, d(u) = 1. Define Wy, =37 ¢ 5,y 7(2) 1™ "(2) IL 4.
and U} = {u € U" : d(u) = d}. Then

VAN =V | ¥ e ()1

z€EZ

VY S e

u€U} 2€Z(u)

v(xm). ™)

uel;

Note that histories z € Z that contain no information states
for player i have I! = 1, so they are constant inside the
conditional expectation, which is why the second and third
expressions are equal.

By the perfect recall assumption, each information state u
can be uniquely identified with the sequence of information
states and actions required to reach w. Furthermore, the be-
havioral strategy assumption gives that A(u) is independent



of A(w) if u # u' € U’. Therefore if ul; # ul, ; for
some j, then Iz h is independent of Il by for all h, b’ €
{4,...,min[m (z), {(2N)]}. We conclude that W, is inde-
pendent of W, if u # u'. This allows us to split up as
follows:

V[E(Y|AY)] = V( > Wu) =) V(W)

ueUs u€eUs

=Y (V{E[WU|A(u)]}+E{V[WuA(u)]}>. (8)

uelUi
The last equality holds by the law of total variance.
To evaluate the components of (§), write W,, =

> ez (ua) (2) N~ (2) I;[d(u)ﬂ]: for each a € A(u) so we
have that

Wy = Z 7“(2)77_2(2) ;d(u):

z€Z(u)

2. 2

a€A(u) z€Z(ua)

> Wual(A

acA(u)

z d(u) I z,[d(uw)+1]:

u) = a).
With this we obtain the following expressions for the compo-
nents of (B):

V{E[W.|A(u)]}

= ) BW,

a€A(u)
E{V[W.|A(u

2

[ZE ) mialu)|

acA(u)

= Y VIW.lA(w) = a] P[A(u) = d].
ac€A(u)

Write r(u,a) = E{r(Z)1]Z € Z(u,a)]} and r(u) =
E{r(Z2)1[Z € Z(u)]}. It can be shown that

E(Wua) = r(u, a) [ (u)m(alu)] ™!

Substituting these terms back into the expression for the
variance component, we get that

VEW.|Aw)]}
- [n%u)]—?(
E{VIW AW}

S v( ) r(z)n%zﬂz,[d(um]z) 7(alu).

acA(u) z€Z(ua)

>

acA(u)

(r(u, )] 7 (a3 ) — [r(un?);

Now take Yo = 3= 2 (,0) 7(2) 17(2) IL 14, 41). and repeat
the steps shown in inductively to obtain that:

VIE(Y|AT)]

- Z( 3 [r(w)}?/wi(au)[r(u)}z)/n%u).
ueU’ N acA(u)

7(alu) and r(u)

Because r(u,a) = q(u,a)n(u) = v(u) n(u),

this yields (2).

APPENDIX B
CONSISTENCY PROOFS
First, we prove consistency of (@). Let p(u) =
n(u)/ > ey (w) be a normalized reach probability. Then

VIE(Y]AT)]

=S ( T [q(u,an%i(am)—[v(u)]z) 7 ) ()

ueU? “acA(u)
- (Z n(u)> o]
ueY’
(3 wwaPeao) - poR) @),
a€A(U)
Note that
Do) =23 > )= > n)ue )
ueY? wEU? z€Z(u) ueU zEZ
=2 n(=) 3 Aue2) = Eld'(2))
zEZ ueU’

where d*(Z) is the length of the trajectory for player i
in terminal history Z. So, by the law of large numbers,
v A (Ze) B Y ey m(w) as v — oo. Consider the
Markov Chain {U;}+cn defined by the information states for
player ¢ observed upon repeated independent playthroughs

of the game and let ¢(u) = {ZaEA(u)[ ( a)? 7 (alu) —
[o()]?} 5~ (w). Then TS, 6(U7) *3 Eypopo(U)] as
T — oo by a Law of Large Numbers for Markov Chains
since {U,} is irreducible and positive recurrent.

Converting both these results to the notation of the
original statement of the estlmator we have =130 1 B
Duewn(w) and (325, lk) 2= 121 L oU) 3
Eyu[¢(U)] as v — oo. Therefore their product converges
to the estimand, as desired.

To prove consistency of the regression-based estimator
(@), we employ a basic style of argument from empirical
process theory. For background on notation and concepts,
see Chapter 19 of [20]. Let operator P denote expecta-
tion and operator IP,, denote empirical expecation. Assume
without loss of generality that F(Y) = 0, so we can
write V[E(Y|AY)] = Pg, where g: X, A(u) — [—b, b]
is given by g(a) = [E(Y|A? = a)]?, where the bound b =
max.cz[r'(z)]* exists by finiteness of Z. Let g, =
min( fA b), noting the implicit dependence of § on the sample
size v. Then P,.g, is our estimator and we have that

Pngy — Pg| = [Png, — PG, + Pg, — Py|
S ‘Pn§u7P§v|+|P§u7Pg|
Sbup Upng _Pg‘+P|gV g|a
g'eg
where G refers to the set of bounded functions
g Xueyi Alu) = [=b,b]. It is not hard to show that

the finite domain and uniform boundedness of G implies that
its bracketing numbers are always finite. Thus, by a Glivenko-
Cantelli theorem [20], the left-hand side converges to O in



probability. The right-hand side converges to O in probability
if sup,, [g,(a) — g(a)| £ 0, which by the continuous mapping
theorem is equivalent to f; being consistent (in a uniform
sense) for E(Y|A! = -).

APPENDIX C
NEURAL NETWORK HYPERPARAMETERS

« Embedding sizes: player - 3, card suit - 5, card rank - 14
o Card representation size: 10

« Dense layer sizes: 50, 20

o Activation functions: ReLU (hidden), identity (output)

« Batch size: 16

o Learning rate: 0.001

« Early stopping patience: 3 epochs

APPENDIX D
SKILLRPS DECOMPOSITION DETAILS

In this section, we show how to derive the exact variance
components for SkillIRPS. Recall that in SkilIRPS, the outcome
isY=(1-W)[L(S>0)—1(S<0)]+W(2Z—1), where
S = Ny — No + ¢ - RPS(44, As). In this case, a player’s
selection of V; is considered to indicate their skill level, and
A° = (W, Z) is the collection of all chance actions. Adapting
the three-way decomposition equation () to SkillRPS yields

V(Y) = VIE(Y|N1, Na)] (skill)
+ E{V[E(Y|W, Z, N1, N2)|Ny, N2]}  (chance)
+ E[V(Y|W, Z, N1, Ny)]. (remaining)

Assuming that Np, N o Uniform({1,...,n}) and are in-
dependent of A, As Y Uniform({Rock, Paper, Scissors}),
we can derive closed form expressions for each variance
component.

Using routine probability manipulations, one can derive the
following term for the variance in Y explained by the “skill”
of the players in the case that the coin flip didn’t happen
(W = 0), for all n € N and ¢ € NU {0}. Begin by finding
E(Y|N1 = n1, Ny = ng,W = 0) for arbitrary ny,n, €
{1,...,n}, which is easy since the only remaining source of
variation is RPS(A;, As) ~ Uniform({—1,0,1}). Next, treat
this term as a discrete random variable depending on N; and
Ny and compute its variance. This yields:

V[E(Y|N13N2aW = O)]

1-41 ifc=0
= 1—%4—78”2*3;;166” if0<c<n
(1-14)/9 if ¢ > n.

Call this term % (n, ¢). From here it can be shown that:

VIE(Y|N1,N2)] = (1 — a)*4)(n, c)
B{V[E(Y|W, Z, N1, N2)|N1, No]} = a + a1 — a) ¢(n,c).

Finally, it follows that

E[V(Y[W, Z,Ny,N,)]

0
={(l-a)1-2+
(1-a)(g

ife=0
if0<e<n
if ¢ > n.
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