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Abstract—In recent years, reinforcement learning algorithms
have been used in the field of multi-agent systems to help
the agents with interactions and cooperation on a variety of
tasks. Controlling multiple agents simultaneously is extremely
challenging as the complexity increases drastically with the
number of agents in the system. In this study, we propose a
novel semi-centralized deep reinforcement learning algorithm,
MAIDRL, for mixed cooperative and competitive multi-agent
environments. Specifically, we design a robust DenseNet-style
actor-critic structured deep neural network for controlling mul-
tiple agents based on the combination of local observation
and abstracted global information to compete with opponent
agents. We extract common knowledge through influence maps
considering both enemy and friendly agents for unit positioning
and decision-making in combat. Compared to the centralized
method, our design promotes a thorough understanding of the
potential influence that a unit has without the need for a complete
view of the global state. In addition, this design enables multi-
agent understanding of common goals, unlike fully decentralized
methods. The proposed method has been evaluated on StarCraft
Multi-Agent Challenge scenarios in the real-time strategy game,
StarCraft II, and the results show that, statistically, the agents
controlled by MAIDRL perform better than or as well as those
controlled by centralized and decentralized methods.

Index Terms—Deep reinforcement learning, multi-agent sys-
tem, influence map, StarCraft II, SMAC, MAIRL, MAIDRL

I. INTRODUCTION

Artificial Intelligence (AI) has made enormous progress
in many aspects of our world in recent decades. The rapid
evolution in Al has enabled the high performance of a va-
riety of tasks including robotics, autonomous driving, and
game playing. For some of the above tasks, Al has reached
human-level performance or even outperformed the best hu-
man experts. However, the majority of the achievements of
Al have been in single-agent scenarios, where collaboration
and competition among agents is unnecessary. There are a
large number of applications that involve interaction between
multiple agents. These applications can be modeled as cooper-
ative or competitive multi-agent systems (MAS). For example,
coordination of self-driving cars, multi-robot control, and
multiplayer games all operate in a multi-agent domain. Among
many Al techniques, reinforcement learning (RL) has been
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considered one of the most promising methods in the past
several years. Unfortunately, solving such problems with tra-
ditional RL is non-trivial. Extending RL to enable cooperation
and competition among agents is critical to building artificially
intelligent systems in multi-agent environments.

There are many challenges in scaling up RL into multi-
agent environments. One of the primary challenges of multi-
agent RL (MARL) is that the traditional RL techniques like
the Q-learning and policy gradient methods do not generalize
well to MAS. This is evident when considering the state of the
MAS from the perspective of an individual agent. The actions
of this agent can be perceived to have non-stationary impacts
in the environment as a direct result of the actions of other
agents. This leads to significant stability issues, as well as the
limitation of applicable stability enhancing techniques such
as experience replay. Furthermore, MAS themselves introduce
additional layers of complexities. For example, in cooperative
MAS, agents must be able to act as a coordinated unit which
requires an understanding of the agents with whom they are
cooperating. This challenge in particular has been the focus of
much research. A common starting point is to utilize complete
state information to train agents. This technique, commonly
referred as centralized learning, provides each agent with
perfect environmental information regarding both the agent’s
local observations and the complete global information.

Many MAS, however, avoid the use of such perfect in-
formation as it may not be available during execution. Such
work has led to decentralized learning, which only provides an
agent with its local observations. This decentralized method,
while more widely applicable in practice due to the lack
of dependence upon global information, generally struggles
to understand global objectives, leading to lackluster perfor-
mance. This has been improved by the introduction of hybrid
centralized learning, decentralized execution methods as pre-
sented by Foerster et al. and Lowe et al. in [1], [2]. In response
to the aforementioned challenges, there has been much work
regarding an intermediate technique called semi-centralized
learning. Semi-centralized learning can be applied in various
ways, but it largely revolves around the representation or
provision of global information in an imperfect way that is
more generalizable to scenarios where perfect information may
be otherwise unavailable. An example of a semi-centralized



MARL technique is the Semi-Centralized Deep Deterministic
Policy Gradient (SCDDPG) [3]. However, the question of how
to use global information effectively for fine-grained decision-
making is still open.

Our response to the above question is the definition and
application of agent influence maps (AIM), aggregated into a
global multi-agent influence map (MAIM), which is used in
addition to local agent observations for fine-grained decision-
making. By abstracting a subset of the perfect global in-
formation into an imperfect but descriptive representation,
we demonstrate a significant improvement over centralized,
decentralized, and hybridized methods. We evaluate the ap-
plicability of MAIMs by defining a simple Artificial Neural
Network (ANN) that contains only a single hidden layer
and comparing the results of MAIM state representation to
a centralized alternative, with no additional changes. This
use of semi-centralized MAIM state representation is defined
as Multi-Agent Influence Reinforcement Learning (MAIRL).
MAIRL is then applied with a DenseNet-style model architec-
ture to improve the robustness and capability of the system. We
define this combined use of MAIRL and DenseNet-style model
architecture as Multi-Agent Influence Dense Reinforcement
Learning (MAIDRL). MAIRL and MAIDRL are evaluated
on StarCraft Multi-Agent Challenge (SMAC) scenarios in a
real-time strategy game, StarCraft II (SC2) [4]. The 3m, 8m,
25m, and 8m_wvs_9m scenarios are used in our evaluations
where the goal of each scenario is simply to defeat the
opposing team. Each scenario contains two teams with a
certain number of Marines, a SC2 medium-ranged infantry
unit, where the number of Marines per team is given in the
name of the scenario. The results show that, statistically, the
agents controlled by MAIDRL perform better than or as well
as those controlled by centralized and decentralized methods.

The remainder of this article is organized as follows: Sec-
tion II introduces the relevant RL techniques that have been
shown to perform well in RL and MARL scenarios, while
Section III described the methodology regarding our experi-
mentation. Section IV subsequently presents the results from
said experimentation, and Section V draws the conclusions
and suggests future works.

II. RELATED WORK

Extensive studies have been performed on applying different
variants of RL algorithms to controlling agents in cooperative
and competitive multi-agent systems. Konda et al. introduced
the actor-critic (AC) algorithm that combines value-based and
policy-based learning methods by utilizing the best features
of both Q-learning and policy gradient [5]. This method has
been improved and adopted widely in the deep RL (DRL)
community, with numerous variants such as deep deterministic
policy gradient (DDPG) which applied experience replay and
target network to expedite and improve the learning process
[6]. Xie and Zhong expanded the DDPG algorithm into semi-
centralized DDPG which utilized two-level AC structures to
process local and global observations separately to help the
agents with interactions and cooperation in StarCraft combat

[3]. Lowe et al. utilized DDPG in MARL scenarios and
introduced Multi-Agent DDPG (MADDPG) which showed
promising results by developing cooperation and competition
amongst agents in the grounded communication environment
[2], [7]. Additionally, Mnih et al. proposed advantage actor-
critic (A2C), which improves the learning curve of AC by
considering the advantage of taking an action over another,
and asynchronous advantage actor critic (A3C), which builds
upon the benefits of A2C by running multiple instances of
the simulation in parallel to reduce the overall training time,
have shown significant improvements over the standard AC
in the ALE [8]. The AC family has also been combined with
Monte-Carlo Tree Search by Silver et al. showing remarkable
success in AlphaGo, and have been explored in tandem with
centralized learning, decentralized execution techniques by
Foerster et al. in StarCraft [1], [9]. Our work differs from
Foerster et al.’s work in that we focus primarily on representing
the global information in an abstracted way as opposed to
providing the critic with direct global feature input.

In the MARL spectrum specifically, algorithms such as the
bidirectionally coordinated network (BiCNet) introduced by
Peng et al. have shown that using a vectorized extension of the
AC family can perform well with arbitrary numbers of agents
being considered [10]. Schulman et al. improved the way in
which DRL models learn with the introduction of trust region
policy approximation (TRPO) in 2015 and proximal policy
optimization (PPO) in 2017 [11], [12]. The research around
PPO is distinct from our work as PPO’s focus is on improving
the way in which models learn by clipping the gradient, while
our focus is on state representation.

There has also been research into several other RL methods
that are distinct from DRL, but can be supplementary. For
example, Bain and Sammut introduced behavioral cloning, or
imitation learning, which is the process of using supervised
learning to learn a policy based upon a dataset of state-action
pairs from expert replays, which has been shown to improve
the performance of DRL methods when used as a warm-start
in various complex environments such as Minecraft and SC2
[13]-[16]. Reward shaping, introduced by Ng, Harada, and
Russell, allows agents to achieve intermediate rewards for
accomplishing goals that may not be inherently clear at a high
level. This method of rewarding agents for intermediate actions
has been shown to be effective in various scenarios [1], [17],
[18]. Heuristic search can also be used in RL, with algorithms
such as Monte-Carlo Tree Search and Portfolio Greedy Search
showing promising results in various scenarios such as Silver
et al’s work in Go, Churchill et al. and Liu, Louis, and
Nicolescu’s analysis in SC2, and Churchill and Buro’s large-
scale combat in SC2 [9], [19]-[22]. Relational reinforcement
learning (RRL), inspired by Muggleton and De Raedt [23]
and defined by Zambaldi et al. [24], is an interesting and
unique approach to RL that aims to represent states, actions,
and policies using a relational language, which improves the
generalizability of said features.

To our knowledge, the work that is most similar to ours
with respect to our interpretation of agent influence maps is



the work done by Liu et al. in 2013 [20], [21]. In these works,
potential fields (PF) and influence maps (IM) are defined using
various unit parameters and are used to represent unit influence
in the environment. These works, however, focus on the use
of genetic algorithms (GA) and the comparison of GAs to
heuristic search algorithms, whereas our work focuses solely
on the use of DRL.

III. METHODOLOGY

In order to evaluate MAIDRL, we use the StarCraft Multi-
Agent Challenge (SMAC) as our MARL research platform and
conduct a series of experiments to compare the performance
of MAIDRL with the centralized and decentralized methods.
The SMAC environment provides a set of multi-agent micro-
management challenges where the objective is to defeat your
opponents with the given units.

A. Environmental Description

There are two types of observation spaces that we consider:
local and global. The local observation space represents a
decentralized perspective, where each agent has access to the
information that it can observe in the local vicinity, while
the global observation space is the centralized equivalent. The
local observation is defined as the following attributes in the
form of a one-dimensional vector for both allied and enemy
units within sight range: distance, relative x, relative y, health,
and unit type. All aforementioned features are provided by
SMAC, where the distance is the euclidean distance between
the observing and the observed agent, the relative x and y are
the directional difference of the same pair of agents, and the
health and unit type are of the observed agent. The global
observation contains information regarding all units on the
map with the relative positions to the center of the map along
with all other features from the local observations, albeit from
a global perspective, in addition to unit cooldowns and energy
levels. All features are normalized by their maximum values in
both the local and global observation spaces [4]. The actions
that living units are allowed to take are a discretized subset
of the full action set that is available in SC2. The rewards
received are the default shaped rewards provided by the SMAC
environment. Once an episode has finished, we calculate the
discounted rewards with a decay rate of 0.9, then normalize
and use the resulting reward per environmental step to train
our models.

The SMAC combat scenarios that were used in training and
evaluation are 3m, 8mn, 25m, and 8m_vs_9m. Scenarios such
as these can be represented with a Markov game, which is a
multi-agent extension of Markov Decision Processes (MDPs)
[1]1, [2], [10]. A Markov game with N agents comprises a set of
states S that describe the properties of the agents and the envi-
ronment, and a set of actions A1, Ao, ..., Ay and observations
01,03, ...,0Op for each of the N agents. Each of the agents
treat the surrounding units as a part of their local information
and perform an action in the environment based upon its own
observation. Sx A1 x...x Ay — S’ denotes the state transition
from S to S’ where each agent performs an action following a
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Fig. 1: Example DenseNet-style group of n 128-neuron layers.

policy 7 in each environmental step. We used the 8m scenario
in SMAC as the baseline experimental scenario where each
team controls eight Marines to fight against each other. This
scenario serves as a foundation for our research, as it has
neither very large nor very small numbers of units, and it is
representative of a medium-scale MARL scenario, while the
other selected scenarios demonstrate the generalizability of the
evaluated methods. Each of these scenarios are comprised of
medium-ranged infantry units called Marines, with the number
of Marines per team given in the name of the scenario. The
objective of the agents in each scenario is to defeat the built-in
SC2 game Al by eliminating all of the enemies without losing
all of the allied troops. Allied agents must work together and
focus their fire on enemies to efficiently reduce the amount
of damage received while maintaining damage dealt over time
by minimizing sustained casualties.

B. General Experimental Features

Each explored MARL method was executed in 32 in-
dependent instances with corresponding random seeds. All
experiments are executed for a duration of 3,000 episodes
in their respective combat scenarios. Our experiments pro-
mote early exploration followed by incrementally increasing
exploitation with an e-soft approach that initializes epsilon to
1.0 and diminishes it to 0.0001 over the course of 30,000
environmental steps. In addition to e-soft, we utilized A2C
as the core learning algorithm in all of our experiments, with
separate neural networks for the actor and critic. The size of
the inputs to the actor and critic vary between explored MARL
methods and combat scenarios. The size of the actor outputs
layer is dependent upon the number of agents in the scenario,
while the critic always maintains a single output neuron. The
activation function used in all layers with the exception of
the output layers is the Exponential Linear Unit (ELU) with
a = 1.0. The output layer of the actors used softmax, and the
output layer of the critics used a simple linear activation. The
actor and critic were compiled with losses categorical cross-
entropy and mean squared error, respectively, and both use the
adam optimizer with a learning rate of 0.00001. The actor and
critic are trained using the unique experiences of each of the
agents at the end of an episode, meaning that in the case of the
8m scenario, the actor and critic learn from the experiences of
8 distinct perspectives of the environment, one for each ally.

C. Simple versus Dense A2C

Before considering the inclusion of the DenseNet-style
model architecture, we explored the effectiveness of using
a MAIM state representation in tandem with an ANN that



Algorithm 1: Create and Update Agent Influence Map

Result: Square agent influence array based on Iy, Ay,
and dj, centered on the agent.
if AIM not defined then
N=2xdr+1
AIM = N x N array of 0’s
end
or cell € AIM do
if dist(cell, center) < d; then
| AIM]cell] = A\ x Iy
end

Yty

end

contained only a single hidden 1024-neuron layer. We used
the 8m scenario in this experiment, noting that 8m was
chosen as our baseline scenario due to its intermediate scale
and difficulty. We improve the simple A2C by defining a
DenseNet-style model architecture for both actor and critic
[25]. Fig. 1 demonstrates an example of a DenseNet-style
grouping of layers which is defined to be an arbitrary number
of n layers such that the output of every layer is input to
each of the following layers in the group via concatenation.
Our network architectures contain two of such groups, each
with five 128-neuron dense layers. The only additional layer
in our DenseNet architecure is a 256-neuron dense layer that
precedes the first DenseNet-style group of layers, immediately
after the input layer.

D. Centralized versus Decentralized

We apply A2C in centralized, decentralized, and hybridized
state scenarios to investigate how to effectively use global
information for fine-grained decision-making in multi-agent
environments. First, we apply A2C in a centralized scenario
where each agent utilizes local and global observations to
train the actor and critic networks for learning interaction
among agents. This method is further used as the baseline for
comparison with other algorithms. Second, we explored the
option of a global critic with a local actor (GCLA), where the
critic received the global information while the actor received
the local observations of each agent. This particular method
is unique from the other methods in that the critic is arguably
centralized but not with respect to each agent, while the actor
remains entirely decentralized. Third, we explored the option
of total critic and a local actor (TCLA), where the critic is
centralized, while the actor is decentralized. This method was
inspired by the use of centralized training with decentralized
execution as in the case of MADDPG [2].

E. Semi-centralized with Multi-Agent Influence Maps

In addition to the centralized and decentralized experiments,
we propose a novel method to abstract the global features in
such a way that is representative of how a human usually
interpret them. We define an agent influence map that is
determined by three values: the source influence Iy, the
influence decay rate A\;, and the range of influence d; for
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Fig. 2: Example MAIM at environmental step ¢t = 1,5,9

each unit in the environment. Algorithm 1 demonstrates the
creation and update process of each AIM. For our experiments,
we set dy equal to the range of the agent as defined by SC2,
Iy equal to the current relative health of the agent as defined
by SMAC, and A equal to the inverse of the distance from the
agent, where a distance of 0 was assigned the value of ;. To
allow for a distinction between allied units and enemy units,
we set Iy of the allied units to the negative of the relative
health provided by SMAC.

The AIM of each agent is aggregated into a multi-agent
influence map, where the AIM is simply added to the MAIM
based upon the agents position in the environment. The MAIM
is a scaled representation of the units on the map in a SMAC
scenario. For example, the 8m scenario has a map size of
32 x 32 units, but the MAIM dimensions can be any positive
integers, and our implementation will automatically scale the
AIM to fit the MAIM’s dimension while also maintaining the
scale of the agents influence on 8m. We explored MAIMs of
size 16 x 16, 32 x 32, and 64 x 64, each with the same AIM
parameters. Fig. 2 demonstrates three snapshots in the form of
a heatmap of a 64 x 64 MAIM where the blue is portraying
allied units and red portrays enemy units. This is a sample
MAIM generated from a random agent versus the built-in SC2
AI which shows that the built-in AI overwhelms the random
agent. We can see on the MAIM that each team of units starts
in separate clusters where the enemy units are scripted to move
toward the spawn point of the allied units, so a conflict is
almost guaranteed. We used this MAIM representation as a
semi-centralized subset of the global state in our MAIRL and
MAIDRL experiments, which was then flattened and used as
inputs to our networks.

IV. RESULTS AND DISCUSSION

We analyze the results of the MARL methods used with
three metrics: the average of the running average episode
reward, the standard deviation of the running average episode
reward, and the percentage of seeds that achieve a maximum
running average reward with respect to various thresholds, all
with respect to the full set of 32 seeds. Henceforth, these
metrics shall be referred to as overall performance, overall
stability, and peak performance, respectively. We define the
running average episode reward as the average reward of
the most recent 50 episodes. We also perform more detailed
evaluation regarding the peak performance per method across
all seeds, considering the minimum, maximum, average, and
standard deviation.
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Fig. 3: Simple Architecture Results on 8m

TABLE I: Running Average Reward Across all Seeds with
Simple Architecture

Scenario Method Min Max Avg Std
8m Centralized  5.31 1455 995 279
64 x 64* 10.30  19.58 16.13  2.64

32 x 322 8.16 18.81 1519 273

16 x 162 6.44  18.05 1273  3.39

& MAIRL with given MAIM dimensions.

A. Simple Architecture and MAIRL

Fig. 3 and Table I display the results achieved by the use of
the simple network architecture in the 8m scenario. It is evi-
dent that MAIRL considerably increased the overall and peak
performance of the agents, as well as maintained comparable
overall stability to the centralized method. Fig. 3a shows that
each of the MAIRL variants achieved an overall performance
around 11, while the centralized method only achieved 8.
MAIRL is further shown to outperform the centralized method
in terms of peak performance in Table I, with the 64 x 64
MAIRL variant achieving a 4.99 higher minimum, 5.03 higher
maximum, and 6.18 higher average, all with a 0.15 lower
standard deviation.

B. DenseNet Architecture and MAIDRL

Centralized: Due to the underwhelming performance of
the centralized method with the simple network architecture,
we considered ways to create a more competitive baseline
with which to form a basis of comparison for our proposed
methods. We found that the introduction of a DenseNet-style

—— Centralized
—— GCLA
16| —+— TCLA
14 64x64
—— 32x32
—&— 16x16

D S S M e e

4
o
frpd Al
2 ot
0

0 500 1000 1500 2000 2500 3000
Episode

(a) Average of the Running Average Episode Reward

k=1 —— Centralized
£ —— GCLA
| —— TCLA
0.2 —0— 64x64
01] —e— 32x32
—&— 16x16

0 1 2 3 4 5 6 7 8 9 10 11
Reward Threshold

12 13 14 15 16 17 18 19

(b) % of Seeds that Achieve a Maximum Running Average Reward Greater
Than or Equal to Various Thresholds

Fig. 4: DenseNet Architecture Results on 8m

model architecture considerably improved the performance of
the centralized method, raising the overall performance from 8
to more than 10, and raising the peak performance across seeds
5.45 points to a perfect maximum of 20, while simultaneously
improving the average peak performance across seeds to 14.20,
a 4.25 point improvement. Fig. 4b shows that this method
maintains a high percentage of seeds that are capable of
achieving running averages that are close to the upper limit,
with almost 16% of all seeds achieving a maximum running
average greater than 19. Additionally, Table II shows that the
centralized method with the DenseNet architecture is capable
of achieving a perfect running average score. The results of
the DenseNet-style architecture with the centralized method
suggest that the use of such a structure yields better results
overall, with a moderate increase in standard deviation, though
we argue that the general improvements in the other metrics
outweigh this detriment. As such, the centralized DenseNet
architecture is considered the baseline for comparison for each
of the following methods, and said methods are applied in
tandem with the same architecture.

GCLA: The GCLA method is shown in Fig. 4 to perform
considerably worse with regard to both overall and peak
performance, only achieving an overall performance of 4
and with no seeds managing to exceed a peak performance
of 16 at any point. We hypothesize that these poor results
are indicative of the incomplete information given to the
critic. The maximum and average of the peak performance
achieved in any seed was considerably lower than that of



TABLE II: Peak Running Average Reward Across all Seeds
with DenseNet-style Architecture

Scenario Method Min Max Avg Std
8m Centralized 3.24 20.00 1420 4.22
GCLA 2.87 15.31 599 315

TCLA 6.47 19.53 1232 392

64 x 642 10.35 1986 16.84 2.99

32 x 322 6.53 19.86 1438 4.18

16 x 16* 6.79  20.00 1430 3.62

2 MAIDRL with given MAIM dimensions.

the compared methods, as shown in Table II, only achieving
15.31 and 5.99, respectively. Because the actor learns from
the advantage, which is determined in part by the critic, the
lack of understanding of the local state for each agent on the
part of the critic unsurprisingly leads to a poor performance
overall. This hypothesis is supported by the results of the
TCLA method, where the only change that was made is the
provision of the local information in addition to the global.

TCLA: The TCLA method, inspired by [2], is shown in
Fig. 4 to perform notably more poorly overall than the
MAIDRL and centralized methods, peaking at a score around
8 at episode 1100, then steadily declining from there. TCLA
performed somewhat comparably to the other methods with
respect to the percentage of seeds at various thresholds, though
it is consistently below all other curves for the majority of
said thresholds, with the exception of GCLA. Table II further
demonstrates the results shown in Fig. 4. The maximum of the
peak performance across all seeds is 19.53, which is only 0.33
lower than the next highest and is a 4.22 improvement over
the GCLA method, but the average of the maximum running
average reward is only 12.32, which suggests that such a peak
is less than common. The results show that, while TCLA is
capable of performing well in the 8m scenario, it fails to do
so consistently.

MAIDRL: Our semi-centralized MAIDRL method produced
varying levels of results depending upon the size of the MAIM.
The 16 x 16 and 32 x 32 MAIM MAIDRL variants both
performed very similarly to the centralized baseline on each
of the three metrics that we consider, though they both do fall
just below the baseline in terms of peak performance greater
than 19. The 64 x 64 MAIM significantly outperformed each
of the other MARL methods that we tested, notably without a
significant decrease in overall stability, maintaining a standard
deviation just below 4. Fig. 4a demonstrates that the learning
curve for the 64 x 64 MAIM grew to the highest point around
14 in a comparable amount of time as the other methods.
While the steady decline thereafter is somewhat worrisome,
we note that there is a distinct improvement with respect to
the peak performance above 19, with a total of just over 34%.
Furthermore, Table II demonstrates that each MAIDRL variant
outperformed the baseline in every regard when considering
the peak performance across all seeds, with the exception of
the maximum, where the 16 x 16 MAIM variant matched the
perfect score of the baseline, while the others fell short by
0.14 points.

TABLE III: Peak Running Average Reward Across all Seeds
with DenseNet-style Architecture on Extended Scenarios

Scenario Method Min Max Avg Std
3m Centralized 4.00 18.79 1441 4.19
64 x 64* 3.74 18.83 1148 5.04

32 x 32% 5.89 18.80 14.86 4.10

16 x 16> 1242 18.76 16.61 1.87

25m Centralized 8.18 13.27 1081 1.35
64 x 64* 7.20 1273  10.08 1.50

32 x 322 5.34 13.53 9.82 1.77

16 x 16* 7.97 13.20 1026 1.25

8m_vs_9m  Centralized 7.69 10.68 9.59 0.76
64 x 64* 6.25 10.95 9.21 1.20

32 x 322 7.05 10.67 9.33 0.98

16 x 16* 6.55 10.12 9.0 0.99

& MAIDRL with given MAIM dimensions.

—F Centralized
64x64
16 —— 32x32
14 —— 16x16

Ko S

0 500 1000 1500 2000 2500 3000
Episode

Fig. 5: DenseNet Architecture Results on 3m

C. Generalizability of MAIDRL

In order to evaluate the generalizability of our approach,
we further applied the DenseNet Architecture and MAIDRL
on three new SMAC scenarios: 3m, 25m, and 8m_vs_9m.
Note that we are interested in the generalizability of our
methodology itself, rather than that of the trained neural
networks, so each scenario starts with fresh networks.

1) SMAC-3m: 3m is a similar scenario to 8m, but the unit
count on each team is reduced to three. We chose this scenario
to explore the applicability of MAIDRL in combat scenarios
of varying complexity. In theory, 3m should be simpler to
learn than 8m. A consistent trend that was found amongst
the baseline and each MAIDRL variant is that none of them
seemed to accomplish a peak performance greater than 19. We
hypothesize that this is due to the somewhat different score
distribution in 3m as a result of the lower number of units on
the field.

Centralized: The most concerning phenomenon that was
recorded by the centralized baseline was the notable decrease
in overall performance to 8§ after reaching the initial maximum
of 11. The percentage of seeds that achieved various peak
performance thresholds also behaved similarly as in the 8m
scenario, but with a notably more drastic decline at the highest
threshold, decreasing from nearly 35% of seeds achieving peak
performance above 18, to none above 19. Table III further
illustrates that the baseline method performed consistently in
3m and 8m, with the most significant difference being in the
maximum of the peak performance across all seeds.

MAIDRL: The MAIDRL variants performed much differ-
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ently on 3m when compared to 8m. In the 3m scenario, the
64 x 64 MAIM yielded the worst overall results, while it had
previously shown to yield the best. The overall performance
across seeds decreased considerably, as did the average peak
performance per threshold, from 14 to 9 and 16.84 to 11.48, re-
spectively. The most notable difference occurred in the 16 x 16
MAIM, which wholly outperformed the other variants, as well
as the centralized method, achieving an overall performance of
14, with minimal decline thereafter. It further improved with
respect to the standard deviation, leveling out at only 2. This is
markedly better than the other MAIDRL variants, and better
still compared to the centralized method, particularly when
considering that it simultaneously achieved the highest overall
performance. Table III shows that the 16 x 16 variant also
dominated in regard to the peak performance across all seeds.
Interestingly, the 64 x 64 variant achieved the highest peak
overall, though less consistently than the other tested methods,
which is reflected in the average of the peak performance
across all seeds.

2) SMAC-25m and SMAC-8m_vs_9m: The 25m and
8m_vs_9m scenarios were selected due to their highly chal-
lenging nature. 25m represents one of the largest combat
scenarios that SMAC offers, with 25 marines on either team.
As such, it is a considerably more challenging scenario to
master. We chose the 25m scenario because it is representative
of large-scale combat. While 3m and 8m represent small- and
medium-scale respectively, they are both significantly smaller
and less complex than 25m. 8m_vs_9m, unlike the symmetric
scenarios we consider, gives a considerable advantage to the
enemy forces, as they have an extra unit on their side. In order
to win, a MARL system must demonstrate remarkable micro-
management techniques and be able to wholly outperform the
built-in SC2 game Al to an overwhelming degree. While suc-
cess in this scenario is indicative of a superior methodology,
failure is not necessarily indicative of a poor methodology.
This scenario is used deliberately as an unfair challenge to
the tested methodologies. The difficulty of these scenarios are
reflected universally across each of the tested methods in that
neither the centralized nor the MAIDRL methods managed to
achieve a peak performance greater than 14. We note here that
the results of each method in 25m and 8m_vs_9m are similar
enough that we only show 25m visually in Fig. 6.

Centralized: The centralized baseline method yielded a

TABLE IV: Welch’s Unequal Variance t-test with null hypoth-
esis Hy : [iCentralized < MM ArDRL Where i is the average
of the average episode reward over all episodes per seed

Scenario Method Test Statistic P-Value Power
8m 64 x 64 -1.5045 0.9312 0.0001
32 x 322 0.2910 0.3860 0.1071

16 x 162 0.1013 0.4598 0.0662

3m 64 x 642 1.6634 0.0507 0.7440
32 x 322 -1.9117 0.9697 0.0000

16 x 16* -4.4780 1.0000 0.0000

25m 64 x 642 1.3098 0.0979 0.5663
32 x 322 2.5923 0.0071 0.9680

16 x 16* 1.1923 0.1189 0.5018

8m_vs_9m 64 x 64* 1.2604 0.1062 0.5393
32 x 322 1.7636 0.0414 0.7865

16 x 16* 2.4109 0.0095 0.9544

2 MAIDRL with given MAIM dimensions.

definite decrease in the overall performance as shown in
Fig. 6, maintaining scores around 7-8. The standard deviation
demonstrated a notable improvement over the 8m and 3m
scenarios, settling around 2 for the large majority of the
episodes, though we note that this is most likely a direct
result of the overall performance being consistently lower than
the aforementioned scenarios. The most significant indicator
that the baseline failed to perform as well as it had in the
smaller scenarios is apparent when considering that there were
no seeds that managed to break a maximum running average
greater than 14 and 11 in 25m and 8m_vs_9m, respectively.
This is not surprising, as the complexity of MAS increases
with more or unfair numbers of agents, though it does show
that this method was able to make progress.

MAIDRL: The 25m and 8m_vs_9m scenarios are the only
scenarios that we tested whose results are not immediately ap-
parent with respect to whether our semi-centralized MAIDRL
method is as performant or better than the centralized baseline.
Fig. 6 suggests that MAIDRL may be equivalent to the
baseline, though we note that each MAIDRL variant fell below
the baseline in terms of peak performance. Table III shows
that, when comparing the peak performance across all seeds
of each method, MAIDRL variants still achieved the highest
maximum values in both 25m and 8m_vs_9m, with values
that are 0.26 and 0.27 better than the respective baselines.

D. Centralized versus MAIDRL Discussion

Table IV contains the results of performing Welch’s Unequal
Variances t-test on the averages of the running average episode
reward comparing the baseline method to the MAIRL variants,
as well as the calculated statistical power of the test. We use
Welch’s t-test in lieu of Student’s because of the underlying
assumption of Student’s t-test that the variances of the samples
are equivalent.We note here that the null hypothesis used in
all of the t-tests is Hy : picentralized < UM AIDRL, With o =
0.05 as the chosen level of significance. The power of the test
is representative of the probability that we would accept the
alternative hypothesis, if it were true.

From the table, it is clear that in 8m, the overall per-
formance of each MAIDRL variant is shown statistically to



be greater than or equal to that of the centralized baseline,
with each p-value much larger than any common level of
significance, albeit with small powers. Furthermore, this trend
continues in the 3m scenario, with even the poorly performing
64x64 MAIDRL variant demonstrating statistical significance.
The 25m scenario shows that the 64 x 64 and 16 x 16
MAIDRL variants tested fulfill this same condition, while
the 32 x 32 variant definitively does not come close to
our selected level of significance, though we note that it is
close to the commonly selected 0.01. Finally, the 8m_vs_9m
scenario shows that the 64 x 64 MAIDRL variant fulfills the
condition for statistical significance, the 32 x 32 variant comes
close to our selected level of significance, and the 16 x 16
variant is very close to the common 0.01 level of significance.
When considering this statistical analysis, we claim that our
semi-centralized MAIDRL method is statistically shown to be
capable of matching or outperforming the overall performance
of a centralized alternative in MAS of varying complexities.

V. CONCLUSION AND FUTURE WORK

In this article, we introduced MAIRL and MAIDRL, novel
semi-centralized methodologies to solve various MARL sce-
narios using abstracted feature information in the form of
MAIMs and a robust model architecture inspired by DenseNet.
MAIDRL was demonstrated in SMAC combat scenarios of
varying complexity to be statistically capable of matching or
bettering the overall performance of a comparable centralized
baseline, even in scenarios with large or unfair numbers of
agents. It also demonstrated significant improvements in the
overall performance, overall stability, and peak performance
shown in some of said scenarios, with MAIDRL variants
being the top performers by a large degree in both small-
and medium-scale MARL scenarios. We hypothesize that the
varying results of the considered MAIM resolutions may
suggest a positive correlation between the complexity of the
environment and the optimal MAIM resolution, though more
research is required to verify this hypothesis.

While we did not demonstrate full comprehension of all
scenarios by MAIDRL, there are several aspects that can
be improved in our future work. First, a logical next step
would be to incorporate the use of convolutional neural
networks (CNN) in our network architectures. The MAIM
representation of features lends itself very well to CNNs and
would allow for a more intelligent interpretation of the MAIM
by the networks. Second, we plan to use multiple MAIMs
to represent various features. We focused on the relative
health of the unit as described in Section III-E, but there are
other features that could be used as well, e.g. cooldown or
possible damage per second. These various feature MAIMs
might be considered as channels by the CNN, allowing the
interpretation of the relationships between them. Finally, there
is need to investigate the generalizability of MAIDRL in
heterogeneous scenarios. We demonstrated generalizability in
a range of homogeneous scenarios, but we acknowledge that
the application of MAIDRL in heterogeneous scenarios is a
necessary consideration for future work.
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