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Abstract—Deep Reinforcement Learning achieves very good
results in domains where reward functions can be manually
engineered. At the same time, there is growing interest within
the community in using games based on Procedurally Content
Generation (PCG) as benchmark environments since this type of
environment is perfect for studying overfitting and generalization
of agents under domain shift. Inverse Reinforcement Learning
(IRL) can instead extrapolate reward functions from expert
demonstrations, with good results even on high-dimensional
problems, however there are no examples of applying these tech-
niques to procedurally-generated environments. This is mostly
due to the number of demonstrations needed to find a good
reward model. We propose a technique based on Adversarial
Inverse Reinforcement Learning which can significantly decrease
the need for expert demonstrations in PCG games. Through
the use of an environment with a limited set of initial seed
levels, plus some modifications to stabilize training, we show
that our approach, DE-AIRL, is demonstration-efficient and still
able to extrapolate reward functions which generalize to the
fully procedural domain. We demonstrate the effectiveness of
our technique on two procedural environments, MiniGrid and
DeepCrawl, for a variety of tasks.

I. INTRODUCTION

In recent years Deep Reinforcement Learning (DRL) has
yielded impressive results on problems with known reward
functions in complex environments such as video games [1]–
[3] and continuous control [4]. However, designing and engi-
neering good hard-coded reward functions is difficult in some
domains. In other settings, a badly-designed reward function
can lead to agents which receive high rewards in unintended
ways [5].

Inverse Reinforcement Learning (IRL) algorithms attempt
to infer a reward function from expert demonstrations [6].
This reward function can then be used to train agents which
thus learn to mimic the policy implicitly executed by human
experts. IRL offers the promise of solving many of the
problems entailed by reward engineering. These approaches
have achieved good performance both in continuous control
tasks [7], [8] and in Atari games [9].

At the same time, there is increasing interest from the
DRL community in procedurally-generated environments. In

the video game domain, Procedural Content Generation (PCG)
refers to the programmatic generation of environments using
random processes that result in an unpredictable and near-
infinite range of possible states. PCG controls the layout
of game levels, the generation of entities and objects, and
other game-specific details. Cobbe et al. [10] noted that in
classical benchmarks like the Arcade Learning Environment
(ALE) [11], agents can memorize specific trajectories instead
of learning relevant skills, since agents perpetually encounter
near-identical states. Because of this, PCG environments are a
promising path towards addressing the need for generalization
in RL. For an agent to do well in a PCG environment, it has
to learn policies robust to ever-changing levels and a general
representation of the state space.

Most IRL benchmarks focus on finding reward functions
in simple and static environments like MuJoCo [12] and
comparatively simple video games like Atari [9]. None of
these RL problems incorporate levels generated randomly at
the beginning of each new episode. The main challenges
with procedurally-generated games is the dependence of IRL
approaches on the number of demonstrations: due to the
variability in the distribution of levels, if a not sufficiently large
number of demonstrations is provided, the reward function
will overfit to the trajectories in the expert dataset. This leads
to an unsuitable reward function and consequently poorly
performing RL agents. Moreover, in most domains, providing
a large number of expert demonstrations is expensive in terms
of human effort.

To mitigate the need for very many expert demonstrations in
PCG games, we propose a novel Inverse Reinforcement Learn-
ing technique for such environments. Our work is based on
Adversarial Inverse Reinforcement Learning (AIRL) [7] and
substantially reduces the required number of expert trajectories
(see figure 1). We propose specific changes to AIRL in order
to decrease overfitting in the discriminator, to increase training
stability, and to help achieve better performance in agents
trained using the learned reward. Additionally, instead of
using a fully procedural environment for training, we “under-
sample” the full distribution of levels into a small, fixed set of
seed levels, and experts need only provide demonstrations for
this reduced set of procedurally-generated levels. We show that978-1-6654-3886-5/21/$31.00 ©2021 IEEE



Fig. 1. Demonstration-efficient AIRL. The left part of the image illustrates the AIRL baseline, which extrapolates a reward function from expert demonstrations
directly on the fully procedural environment. This naive application of AIRL requires a large number of expert demonstrations. Our demonstration-efficient
AIRL approach is shown in the right part of the image. DE-AIRL extrapolates the reward function on a subset of all possible game levels, referred to
as SeedEnv, and is applied in the fully procedural environment, ProcEnv, only after training. This approach enables an RL policy to achieve near-expert
performance while requiring only a few expert demonstrations.

the disentangled reward functions learned by AIRL generalize
enough such that, subsequently, they enable us to find near-
expert policy even on the full distribution of all possible levels.
We test our approach in two different PCG environments for
various tasks.

II. RELATED WORK

Inverse Reinforcement Learning (IRL) refers to techniques
that infer a reward function from human demonstrations,
which can subsequently be used to train an RL policy. It
is often assumed that demonstrations come from an expert
who is behaving near-optimally. IRL was first described in
[6], and one of its first successes was Maximum Entropy
IRL [13], a probabilistic approach based on the principle
of maximum entropy favoring rewards that lead to a high-
entropy stochastic policy. However, this approach assumes
known transition dynamics and a finite state space, and can
retrieve only a linear reward function. Guided Cost Learning
[8] relaxed these limitations and was one of the first algorithm
able to estimate non-linear reward functions over infinite state
spaces in environments with unknown dynamics. Recently,
Finn et al. [14] noticed that GCL is closely related to GAN
training, and this idea led to the development of Adversarial
Inverse Reinforcement Learning (AIRL) [7]. This method is
able to recover reward functions robust to changes in dynamics
and can learn policies even under significant variations in the
environment.

Similarly to IRL, Imitation Learning (IL) aims to directly
find a policy that mimics the expert behavior from a dataset
of demonstrations, instead of inferring a reward function
which can subsequently be used to train an RL policy.
Standard approaches are based on Behavioral Cloning [15],
[16] that mainly use supervised learning [15]–[20]. Generative
Adversarial Imitation Learning (GAIL) [21] is a recent IL
approach which is based on a generator-discriminator approach
similar to AIRL. However, since our goal is to operate in
PCG environments, we require IRL methods able to learn a

reward function which generalizes to different levels rather
than a policy which tends to overfit to levels seen in expert
demonstrations.

Other approaches combine IL and IRL [22]: they first do
an iteration of Behavioral Cloning, and then apply active
preference learning [23] in which they ask humans to choose
the best of two trajectories generated by the policy. With these
preferences they obtain a reward function, which the policy
tries to optimize in an iterative process.

Procedural Content Generation (PCG) refers to algorithmic
generation of level content, such as map layout or entity
attributes in video games. There is a growing interest in PCG
environments from the DRL community. As noted above, with
ProcGen [10] the authors created a suite of PCG benchmarks
and demonstrated that the ability to generalize becomes an
integral component of success when agents are faced with ever
changing levels. Similarly, Ziebart et al. [24] state that often
an algorithm will not learn a general policy, but instead a
policy that only works for a specific version of a specific task
with specific initial parameters. Justesen et al. [25] explored
how procedurally-generated levels can increase generalization
during training, showing that for some games procedural level
generation enables generalization to new levels within the
same distribution. Other examples of PCG environments used
as DRL benchmarks are [26]–[30]. Notably, Guss et al. [27]
applied Imitation Learning in the form of behavioral cloning
over a large set of human demonstrations in order to improve
the sample efficiency of DRL. To the best of our knowledge,
our work is the first to apply IRL to procedurally-generated
environments.

III. ADVERSARIAL INVERSE REINFORCEMENT LEARNING

Our approach is based on Adversarial Inverse Reinforce-
ment Learning (AIRL), which takes inspiration from GANs
[31] by alternating between training a discriminator Dθ(s, a)
to distinguish between policy and expert trajectories and



optimizing the trajectory-generating policy π(a|s). The AIRL
discriminator is given by:

Dθ(s, a) =
exp{fθ,ω(s, a, s′)}

exp{fθ,ω(s, a, s′)}+ π(a|s)
, (1)

where π(a|s) is the generator policy and fθ,ω(s, a, s
′) =

rθ(s, a)+γφω(s
′)−φω(s) is a potential base reward function

which combines a reward function approximator r(s, a) and
a reward shaping term φω . For deterministic environment
dynamics, AIRL authors show that there is a state-only reward
approximator f∗(s, a, s′) = r∗(s) + γV ∗(s′) − V ∗(s) =
A∗(s, a), where the reward is invariant to transition dynamics
and hence “disentangled”.

The objective of the discriminator is to minimize the cross-
entropy between expert demonstrations τE = (sE0 , a

E
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π
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The authors show that, at optimality, f∗(s, a) =
log π∗(a|s) = A∗(s, a), which is the advantage function of
the optimal policy. The learned reward function is based on
the discriminator:

r̂(s, a) = log(Dθ(s, a))− log(1−Dθ(s, a)), (3)

and the generator policy is optimized with respect to a maxi-
mum entropy objective (using equations (3) and (1)):

J(π) = Eτ∼π

[
T∑
t=0

r̂t(st, at)

]

= Eτ∼π

[
T∑
t=0

fθ(st, at)− log(π(at|st))

]
. (4)

IV. MODIFICATIONS TO AIRL

In the following we present three extensions to the original
AIRL algorithm which increase stability and performance,
while decreasing the tendency of the discriminator to overfit
to the expert demonstrations.
• Reward standardization. Adversarial training alternates

between discriminator training and policy optimization,
and the latter is conditioned on the reward which is
updated with the discriminator. However, forward RL
assumes a stationary reward function, which is not true in
adversarial IRL training. Moreover, policy-based DRL al-
gorithms usually learn a value function based on rewards
from previous iterations, which consequently may have a
different scale from the currently observed rewards due
to discriminator updates. Generally, forward RL is very
sensitive to reward scale which can affect the stability of
training. For these reasons, as suggested in [9] and [22],
we standardize the reward to have zero mean and some
standard deviation.

• Policy dataset expansion. In the original AIRL algo-
rithm, each discriminator training step is followed by only
one policy optimization step. The experience collected in
this policy step is then used for the subsequent discrimi-
nator update. However, a single trajectory may not offer
enough data diversity to prevent the discriminator from
overfitting. Hence, instead of just one policy step, we per-
form K iterations of forward RL for every discriminator
step as suggested by [9].
Moreover, as already noted by [7] and [18], IRL methods
tend to learn rewards which explain behavior locally for
the current policy, because the reward can forget the
signal that it gave to an earlier policy. To mitigate this
effect we follow their practice of using experience replay
over the previous iterations as policy experience dataset.
For the same reason, when we apply the learned reward
function, we do not re-use the final, possibly overfitted
reward model, but rather one from an earlier training
iteration.

• Fixed number of timesteps. Many environments have
a terminal condition which can be triggered by agent
behavior. Christiano et al. [23] observed that these condi-
tions can encode information about the environment even
when the reward function is not observable, thus making
the policy task easier. Moreover, since the range of the
learned reward model is arbitrary, rewards may be mostly
negative in some situations, which encourages the agent
to meet the terminal conditions as early as possible to
avoid more negative rewards (the so-called “RL suicide
bug”). For these reasons we do not terminate an episode
in a terminal state, but artificially extend it to a fixed
number of timesteps by repeating the last timestep.

V. DEMONSTRATION-EFFICIENT AIRL IN PROCEDURAL
ENVIRONMENTS

In PCG game environments, the configuration of the level
as well as its entities are determined algorithmically. Unless
the game is very simplistic, this means it is unlikely to see
the exact same level configuration twice. Forward RL benefits
from such environmental diversity by increasing the level of
generalization and credibility of agent behavior. However, as a
consequence of this diversity, many expert demonstrations may
be required for IRL to learn useful behavior. This is especially
challenging for an adversarial techniques like AIRL as it is
known that GANs require many positive examples [32].

In the following, we call the fully procedural environment
ProcEnv. Levels Li ∼ ProcEnv are sampled from this envi-
ronment, and sample trajectories τLi ∼ Li from each level,
where trajectories τLi = (s0, a0, . . . , aT−1, sT ) are sequences
of alternating states and actions. Consequently, if we have two
trajectories τLi and τLj , in most cases (unless Li = Lj) they
differ not only in their state-action sequences, i.e. the behavior,
but also in their level content Li vs Lj from which they are
sampled.

To illustrate this, suppose we have a simple ProcEnv
with two generation parameters: the number of objects o ∈



(a) Minigrid (b) Potions task (c) Maze task (d) Ranged task

Fig. 2. Screenshots of the various environments and tasks.

[1, 10] and the number of enemies e ∈ [1, 6], so overall
|ProcEnv| = 10 · 6 = 60 level configurations. Sampling expert
demonstrations is a two-stage process: first, we sample levels
L1 = (3, 4), L2 = (5, 1), L3 = (7, 2) ∼ ProcEnv, where (o, e)
denotes the number of objects and enemies, respectively, and
next we sample corresponding trajectories τ (3,4)1 , τ

(5,1)
2 , τ

(7,2)
3 ,

which form our expert dataset. When faced with another
trajectory sample based on a random level, say, τ (1,4), the
discriminator can simply distinguish expert and non-expert
trajectories by counting objects and enemies in the levels as
observed in the states of the trajectories and ignoring agent
behavior entirely. Sampling more expert trajectories increases
the probability of levels being equal (or at least similar),
and thus makes it harder to memorize level configurations.
However, collecting a large number of demonstrations can be
very expensive, and cannot not ultimately solve the problem
for rich enough PCG environments.

Our objective is to make AIRL effective and data-efficient
when working with PCG environments. Our main idea is to
introduce an artificially reduced environment, which we call
a SeedEnv, that consists of n � N levels sampled from the
fully procedural ProcEnv. These levels are then used to obtain
n randomly sampled expert demonstrations:

SeedEnv(n) = {L1, ..., Ln | Li ∼ ProcEnv}
Demos = {τLi | Li ∈ SeedEnv(n)}

Using the simplified example from before, this would
mean that SeedEnv(3) = {L1, L2, L3} and Demos =
{τL1

1 , τL2
2 , τL3

3 }. In the following, we refer to each Li ∈
SeedEnv(n) as seed level.

The reward function is learned via AIRL on the reduced
SeedEnv environment instead of the fully-procedural ProcEnv.
To distinguish expert from non-expert trajectories, the dis-
criminator thus cannot rely on memorized level characteristics
seen in expert demonstrations, but instead must consider
the behavior represented by the state-action sequence of the
trajectory.

Once the discriminator is trained on SeedEnv, the learned
reward function can be used to train a new agent on the full
ProcEnv environment. The disentanglement property of AIRL
encourages the reward function to be robust to the change
of dynamics between different levels, assuming a minimum
number of seed levels necessary to generalize across level
configurations.

In summary, we observe that there are two sources of
discriminative features in expert trajectories: those related to
the level, and those related to agent behavior. If AIRL is
applied naively to PCG environments, the discriminator is
prone to overfitting to level characteristics seen during expert
demonstrations instead of focusing on the expert behavior
itself. On the one hand, by reducing discriminator training
to the SeedEnv – the set of expert demonstration levels –
we force the discriminator to focus on trajectories and to
avoid overfitting to level characteristics. On the other hand,
SeedEnv must contain enough levels to enable the resulting
reward function to generalize beyond levels in the reduced
ProcEnv sample. We show empirically in the next section
that the number of levels required to generalize beyond levels
sampled in ProcEnv is much smaller than the number required
to avoid overfitting, which may be infeasibly large for PCG
environments with many configuration options.

VI. EXPERIMENTAL RESULTS

We evaluate our method on two different PCG environ-
ments: Minigrid [28] and DeepCrawl [30]. For all experiments,
we train an agent with Proximal Policy Optimization [33]
on the ground-truth, hard-coded reward function and then
generate trajectories from this trained expert policy to use as
demonstrations for IRL. The apprenticeship learning metric is
used for IRL evaluation: agent performance is measured based
on the ground-truth reward after having been trained on the
learned IRL reward model.

We use the state-only AIRL algorithm with all modifications
described in section IV to learn a reward function in all
experiments. We also trained policies with state-only GAIL
but, as it is not an IRL method, we cannot re-optimize the
obtained model, so we instead transfer the learned policy from
the SeedEnv to ProcEnv.

To highlight the importance of our SeedEnv approach for
learning good rewards in the context of PCG environments,
we perform the following ablations for each task:
• DE-AIRL (ours): We train a reward function on See-

dEnv and use it to train a PPO agent on ProcEnv. We
show results for a varying number n of seed levels in
SeedEnv(n).

• AIRL without disentanglement: We train a reward
function on SeedEnv, but without the shaping term φω(s)
which encourages robustness to level variation.



(a) (b)

Fig. 3. Experimental results on MiniGrid. (a) Mean reward during training for: our DE-AIRL with different numbers of seed levels on both SeedEnv and
ProcEnv, naive AIRL with different numbers of demonstrations on ProcEnv, and expert performance on ProcEnv. (b) Discriminator loss during training on
either SeedEnv (our approach) or ProcEnv (naive AIRL).

• Naive AIRL: We apply AIRL directly on ProcEnv and
show results for a varying number n of demonstrations.

• GAIL: We train a policy with GAIL on SeedEnv and
then evaluate it on ProcEnv.

Complete details of experiments, including an ablation study
for the AIRL modifications described in section IV, are given
in Supplementary Material 1.

A. Performance on Minigrid

Minigrid is a grid world environment with multiple variants.
For our experiments, we use the MultiRoom task: a PCG
environment consisting of a 15 × 15 grid, where each tile
can contain either the agent, a door, a wall, or the goal. See
figure 2 for an example screenshot of the environment. The
aim of the agent is to explore the level and arrive at the goal
tile by navigating through 2 or 3 rooms connected via doors.
The shape and position of the rooms, as well as the position
of the goal and the initial location of the agent, are random.
Each episode lasts a maximum of 30 steps. The ground-truth
reward function gives +1.0 for each step the agent stays at the
goal location. The action space consist of 4 discrete actions:
move forward, turn left, turn right and open door.

As the results in figure 3 show, using a SeedEnv with only
40 levels and the associated 40 demonstrations, AIRL is able
to extrapolate a good reward function enabling the agent to
achieve near-expert performance in ProcEnv. However, if we
train a reward model with only 40 demonstrations directly on
the full PCG environment, we obtain an inadequate reward
function and consequently a poor agent policy. This is also
demonstrated by the loss curves: the loss of the discriminator
with 40 demonstrations on ProcEnv converges to zero very
quickly, indicating the overfitting to level characteristics we
discussed in section V. The results also show that 40 is a good
number of seed levels for SeedEnv: whereas we find a good
policy for SeedEnv with only 30 seed levels, the reward func-
tion does not generalize beyond the expert levels to be useful
on ProcEnv. Moreover, the plots show that naive AIRL is not
successful on ProcEnv with even 100 – so more than twice

1Supplementary Material with code is available at http://tiny.cc/de airl

as many – expert trajectories. Only with 1000 demonstrations
does naive AIRL achieve near-expert performance, showing
that our DE-AIRL is much more demonstration-efficient.

B. Performance on DeepCrawl

DeepCrawl is a Roguelike game built for studying the
applicability of DRL techniques in video game development.
The visible environment at any time is a grid of 10× 10 tiles.
Each tile can contain the agent, an opponent, an impassable
object, or collectible loot. The structure of the map and object
locations are procedurally generated at the beginning of each
episode. Collectible loot and actors have attributes whose
values are randomly chosen as well. The action space consists
of 8 movement actions: horizontal, vertical and diagonal.

For our experiments, we use three different tasks defined in
the DeepCrawl environment (see figure 2):
• Potions: The agent must collect red potions while avoid-

ing all other collectible objects. The ground-truth reward
function gives +1.0 for collecting a red potion and −0.5
for collecting any other item. An episode ends within 20
steps.

• Maze: In this variant, the agent must reach a randomly
located goal in an environment with many impassable
obstacles forming a maze. The goal is a static enemy
and there are no collectible objects. The reward function
gives +10.0 for each step the agent stays in proximity to
the goal. Episodes end after 20 timesteps.

• Ranged Attack: For this task, the agent has two addi-
tional actions: melee attack and ranged attack. The goal
of the agent is to hit a static enemy with only ranged
attacks until the enemy is defeated. The ground-truth
reward function gives +1.0 for each ranged attack made
by the agent. The levels are the same as for the Potions
task, plus a randomly located enemy. Episodes end after
20 timesteps.

Even for the more complex DeepCrawl tasks, the results
in figure 4 show that our demonstration-efficient AIRL ap-
proach allows agents to learn a near-expert policy for ProcEnv
with few demonstrations: in two of the three tasks only 20

http://tiny.cc/de_airl


Fig. 4. Experimental results on DeepCrawl tasks. Mean reward during training for: our DE-AIRL with different numbers of seed levels on both SeedEnv and
ProcEnv, naive AIRL with different numbers of demonstrations on ProcEnv, and expert performance on ProcEnv.

Fig. 5. Mean reward on SeedEnv throughout training for AIRL without the shaping term, and for GAIL, plus expert performance on ProcEnv for comparison.
SeedEnvs consist of 40 levels for Minigrid, and 20 levels for the DeepCrawl tasks.

demonstrations are necessary, while for the Ranged Attack
task 10 already suffice. Similar to Minigrid, the naive AIRL
approach directly applied on ProcEnv does not achieve good
performance even with 100 demonstrations – so with more
than five times as many demonstrations. With 1000 demon-
strations, naive AIRL reaches similar performance on Potions
and Maze, but still not on the Ranged Attack task. In figure
2 of the Supplementary Material, we provide more detailed
results for the DeepCrawl experiments, including the evolution
of discriminator losses which behave consistently with what
we have observed for the Minigrid environment.

C. Importance of disentanglement

We claimed above that the use of a disentangling IRL
algorithm like AIRL is fundamental for PCG games. We
test this experimentally by training an AIRL reward function
without the shaping term φ(s) on a SeedEnv. As the plots
in figure 5 show, this modified version does not achieve the
same level of performance as the full disentangling AIRL on
all tasks. We believe this is due to the variability of levels
in SeedEnv: removing φ(s) takes away the disentanglement
property, which results in the reward function no longer being
able to generalize, even for the small set of fixed seed levels.
Similar results were observed by [34].

We also train a state-only GAIL model on a SeedEnv.
On Minigrid and Maze the policy reaches near-expert per-
formance, while on Potions and Ranged Attack it resembles
the performance of AIRL without φ(s). We believe that this
discrepancy is caused by the different degree of “procedural-

ity” of these tasks: for Potions and Ranged Attack, there are
many different collectible objects with procedural parameters
– in fact, all entities and their attributes are chosen randomly
at the beginning of each episode. For the other two tasks, the
number of procedural choices is smaller, consisting only of the
static obstacles and no attributes. The degree of procedurality
presumably allows GAIL to achieve good results on SeedEnv
for Minigrid and Maze, but not for Potions and Ranged Attack.
However, on none of the tasks does GAIL reach the level
of performance of our demonstration-efficient AIRL approach
when transferring policies from SeedEnv to ProcEnv, as shown
in table I. Note that, as we have mentioned before, GAIL is
not an IRL method and hence cannot be re-optimized on the
ProcEnv environment, contrary to AIRL, so this shortcoming
is not unexpected.

VII. IMPLEMENTATION DETAILS

In this section we give additional details on the network ar-
chitectures used for DE-AIRL on the Minigrid and DeepCrawl
environments. In table II we detail the hyperparameters used
for all tasks for both policy and reward optimization.

A. Network Structures

The original authors of AIRL [7] use a multilayer perceptron
for reward and policy models, however we use Convolutional
Neural Networks (CNNs) like [9]. Moreover, we use Proximal
Policy Optimization (PPO) [33] instead of Trust-Region Policy
Optimization (TRPO) [35] as in the original paper.



TABLE I
AVERAGE GROUND-TRUTH EPISODE REWARD OVER 100 EPISODES ON PROCENV. OUR AIRL APPROACH TRAINS AN AGENT DIRECTLY ON PROCENV

USING THE REWARD MODEL LEARNED ON SEEDENV, WHEREAS THIS IS NOT POSSIBLE FOR GAIL, HENCE THE GAIL POLICY IS TRAINED ON SEEDENV
AND THEN TRANSFERRED TO PROCENV.

Minigrid DeepCrawl

Seed levels MultiRoom Seed levels Potions Maze Ranged Attack

DE-AIRL (ours) 40 12.19 20 3.78 141.87 2.30

GAIL
40 9.00 20 1.71 33.77 1.01

100 9.21 100 2.38 66.00 1.11

• Minigrid. The policy architecture consists of two
branches. The first branch takes the global view of the
15×15 grid, and each tile is represented by a categorical
value that describes the type of element in that tile.
This input is fed to an embedding layer and then to a
convolutional layer with 3 × 3 filters and 32 channels.
The second branch is like the first, but receives as input
the 7 × 7 categorical local view of what the agent sees
in front of it. The outputs of the convolutional layers are
flattened and concatenated together before being passed
through a fully-connected layer of size 256. The last layer
is a fully connected layer of size 4 that represents the
probability distribution over actions.
The reward model and the shaping term φω have the same
architecture. Unlike the policy network, they take only the
global categorical map and pass it through an embedding
layer, two convolutional layers with 3× 3 filters and 32
channels followed by a maxpool, and then two fully-
connected layers of size 32 and a final fully-connected
layer with a single output. All other layers except the
last one use leaky-ReLu activations.

• Potions and Maze. The convolutional structure of the
policy of the Potions and Maze tasks are the same of
[30] without the “property module” and the LSTM layer.
The reward model takes as input only the global view,
then it is followed by a convolutional layer with 1 × 1
filters and size 32, by two convolutional layers with 3×3
filters and 32 filters, two fully-connected layers of size
32, and a final fully-connected layer with a single output
and no activation. The shaping term φω shares the same
architecture. We used leaky ReLu instead of simple ReLu
as used in DCGAN [36].

• Ranged Attacks. In this case the policy has the complete
structure of [30] without LSTM, and the reward model
is the same of the previous tasks with the addition of
other two input branches that take as input two lists of
properties of the agent and the enemy. Both are followed
by embedding layers and two fully connected layers of
size 32. The resulting outputs are concatenated together
with the flattened result of the convolutional layer of the
first branch. This vector is then passed to the same 3
fully connected layers of the potion task. The shaping

TABLE II
HYPER-PARAMETERS FOR ALL THE TASKS. MOST OF THE VALUES WERE

CHOSEN AFTER MANY PRELIMINARY EXPERIMENTS MADE WITH
DIFFERENT CONFIGURATIONS

Parameter Minigrid Potions Maze Ranged Attack

lrpolicy 5e−5 5e−5 5e−6 5e−5

lrreward 5e−6 5e−4 5e−4 5e−4

lrbaseline 5e−4 5e−4 5e−4 5e−4

entropy coefficient 0.5 0.1 0.1 0.1

exploration rate 0.5 0.2 0.2 0.2

K 3 3 5 3

γ 0.9 0.9 0.9 0.9

max timesteps 30 20 20 20

stdreward 0.05 0.05 0.05 0.05

term shares the same architecture.

VIII. CONCLUSION

We have presented an IRL approach, DE-AIRL, which
is based on AIRL with a few modifications to stabilize
performance, and is able to find a good reward function for
PCG environments with only few demonstrations. Our method
introduces a SeedEnv which consists of only a few levels
sampled from the PCG level distribution, and which is used
to train the reward model instead of the full fully-procedural
environment. In doing so, the learned reward model is able to
generalize beyond the SeedEnv levels to the fully-procedural
environment, while it simultaneously avoids overfitting to the
expert demonstration levels. We have shown that DE-AIRL
substantially reduces the number of required expert demon-
strations as compared to AIRL when directly applied on the
PCG environment. Moreover, the experiments illustrated that
the success of our approach derives from the disentanglement
property of the reward function extrapolated by AIRL. Finally,
we compared to an imitation learning approach, GAIL, and
observed that DE-AIRL generalizes better than the GAIL
policy when transferring from the expert demonstration levels
to the fully-procedural environment.



A disadvantage of our method is that we do not know
the required number of seed levels prior to training. In this
direction, an interesting next step would be to understand
what minimum number of seed levels is required to obtain
a good reward function as well as a good policy. For instance,
starting with a small number of seed levels, how can we
choose additional seed levels optimally based on the training
and learned reward function so far?
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[26] H. Küttler, N. Nardelli, A. H. Miller, R. Raileanu, M. Selvatici,
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