
StABLE: Analyzing Player Movement Similarity
Using Text Mining

Luana Fragoso
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

luana.fragoso@usask.ca

Kevin G. Stanley
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

kstanley@cs.usask.ca

Abstract—Digital games are increasingly delivered as services.
Understanding how and why players interact with games on
an ongoing basis is important for maintenance. Logs of player
activity offer a potentially rich window into how and why
players interact with games, but can be difficult to render
into actionable insights because of their size and complexity. In
particular, understanding the sequential behaviour in-game logs
can be difficult. In this paper, we present the String Analysis
of Behaviour Log Elements (StABLE) method, which renders
location and activity data from a game log file into a sequence
of symbols which can be analyzed using techniques from text
mining. We show that by intelligently designing sequences of
features, it is possible to cluster players into groups corresponding
to experience or motivation by analyzing a dataset containing
Minecraft game logs. The findings demonstrate the validity of
the proposed method, and illustrate its potential utility in mining
readily available data to better understand player behaviour.

Index Terms—log analysis, bag of words, movement, motiva-
tion, experience, data mining, data analytics

I. INTRODUCTION

Interactive digital entertainment is part of life in the In-
formation Age. In America, 64% of households own a de-
vice used to play games and 60% of Americans play video
games daily [1]. All of this gaming activity is a significant
economic driver. Video games moving into the mainstream
has created additional pressure on developers to provide high-
quality games on strict schedules, and to maintain them after
launch to protect in-game monetary streams, which can pass
1 billion USD annually for games like Fortnite [2].

Improving game log analysis is an attractive target for
developers interested in understanding how and why players
interact with their games. Game logs are entirely under the
control of the developers, can include substantial detail about
player activities, and can unobtrusively collect data from
actual play sessions. For games which simulate worlds, and
movement through those worlds, the traces of where a player
went, how they got there, and what they did while in transit
could be mined for player behaviours.

Movement and actions through virtual worlds are the pri-
mary mechanics in open-world (sandbox) games. However,
there is a lack of studies addressing analysis in open-world
games with user-generated or procedure-generated content [3],

[4]. This type of game is complex to analyze because of its
freedom of letting players play as they want. There are no
missions or pre-defined goals, not even an end. Sandbox games
cannot directly benefit from most current player modeling
methods as they are based on anchoring analysis on goals and
achievements [5]–[7]. Few authors have addressed methods
for analyzing player behaviours for sandbox games [8]–[11],
but none based on movement analysis. Movement behaviour is
extensively studied for real-world applications in GIScience,
and can be applied to modeling virtual movements [12], [13].

In this paper, we present the String Analysis of Behaviour
Log Elements (StABLE) method. We derived movement be-
haviours from location data based on previous work in GI-
Science [14]–[16]. Our method keys on the observation that
location and action patterns through time can be represented
as long strings, and therefore could be amenable to text mining
techniques. We employ the canonical Bag of Words, N-gram,
and cosine similarity tools [17] to compare different aspects of
player movement behaviour. Depending on how the strings are
encoded, different questions can be answered. We evaluate the
utility of StABLE by using it to answer the following recurrent
questions in the game user research (GUR) field:

RQ1: Do players have similar visited frequency behaviours
in the game? [12], [18]

RQ2: Do players change their visited frequency behaviour
through the game? [19], [20]

RQ3: Do players have similar movement behaviours when
comparing themselves through the game? [5], [6], [21]

RQ4: Do players with similar expertise level move in the
same manner through the game? [7], [22], [23]

RQ5: Can we cluster the players based on the self reported
motivation given their movement similarities? [24], [25]

The findings from the RQs show that StABLE is versatile,
efficient, and able to logically discern important play style and
play motivation patterns amongst users. Because we are not
design experts, the intention of addressing those questions is to
demonstrate the flexibility of StABLE as a method to answer
many different questions around gameplay rather than to make
a specific contribution to game studies. For the sake of space,
we do not compare StABLE to other methods in the results
of this paper, and leave this study as a future work.978-1-6654-3886-5/21/$31.00 ©2021 IEEE

II. BACKGROUND AND RELATED LITERATURE

Player modeling based on movement behaviour has poten-
tial because movement is a primary mechanic in open-world
games [12]. Movement analysis is not new in GUR, but is
traditionally visualized as heatmaps or trajectories [18], [19],
[26]. Recent work by Aung et al. [23] is the first to add spatio-
temporal data metrics with the DEDICOM algorithm [20],
[27], among other behavioural metrics, to classify players in
open-world games. However, one must know the semantics of
the world map to interpret the results, which can be impractical
for procedurally generated games like Minecraft.

Movement analysis from GIScience include the use of fea-
tures derived from absolute locations and time, called move-
ment parameters (MPs) [28]. Visit frequency, dwell time, and
trip duration are popular MPs found in many works [14], [15],
[29], [30], and could be easily applied for movement analysis
in virtual world [12]. Visit frequency is the number of times
an individual visited a location. Dwell time is the duration an
individual stayed in the same location. Trip duration is how
long an individual moved between locations. Dodge et al. [15]
used a variant of the Edit Distance (ED) algorithm to compare
MPs of hurricanes. In GUR, Glyph [31] and Gamalyzer [22]
also use a variant of ED to compare game states and goals.

Computing this matrix for long strings is prohibitive, and
might require pruning techniques such as in Gamalyzer [22],
where behaviours beyond a time window size k are not com-
pared to each other, resulting in a computational complexity
of O(m × k). This pruning works for linear games [22],
[31] because behaviours that happen later on in the game are
performed in a different context than those at the beginning
of the game [22]. Popular and more efficient techniques in
text mining are N-grams, Bag of Words (BoW), TF-IDF, and
cosine similarity [17].

N-grams capture sequential patterns of length N by treating
combinations of words as new words.

Bag of Words (BoW) combines two or more strings by
taking the union of the observed words from each string. When
BoW is combined with N-grams, the histogram can be built
for a specific N-gram, or for a range of N-grams. For example,
a BoWs built from trigrams would be a histogram of all three
word sequences in the text, but a BoW built over a range
N = {1, 2, 3} would contain a histogram containing all single
words, all two word sequences and all three word sequences
in the text.

Term Frequency - Inverse Document Frequency (TF-
IDF) normalizes the count of the word histograms to fairly
compare strings with unequal length. Term Frequency (TF) is
the ratio of the count of a word in a string divided by the
number of words in the same string.

Cosine Similarity is a canonical equation to calculate
similarity between vectors as the cosine angle between the
vectors. The cosine similarity of two documents ranges from
0 to 1, where 0 means they are not equal and 1 means they
are totally similar.

Lee et al. [21] reported a general approach to identify bots
based on player self-similarity using cosine similarity. They

created vectors to represent the amount of activity a player
performed over a specific time frame. They employed cosine
similarity to evaluate the self-similarity of players through the
game.

A more general method able to analyze player behaviours,
individually and in groups, that also works for more complex
game analysis, like for sandbox games, is needed [3], [4].
Although Gamalyzer [22] and Glyph [31] showed potential
use of ED to analyze sequence of actions, they are not a
good fit for sandbox games because of their poor scaling for
long strings, and strict ordering comparison. Similar to Lee et
al. [21], we use a frequency vector and cosine similarity to
compare behaviours, but we do not compare the vectors for
each interval.

Popular data mining methods in GUR such as Hidden
Markov Models (HMM) [5], Frequent Pattern Mining (FPM)
[32], and Neural Networks (NN) [33] while effective, provide
less observable and therefore descriptive outcomes. HMM
strongly assume that a behaviour happens based on the previ-
ous one which is a poor model for non-linear sandbox games.
Finding the right support value for FPM is challenging. While
low support returns too many patterns that further analysis
is impossible, high support returns a few patterns that might
not be conclusive. NN require significant amount of data to
achieve accurate and repeatable results. Collecting data from
video games is not always easy, since the datasets are usually
private [3].

III. STABLE

The StABLE concept is summarized in Figure 1. The
method aggregates movements as MPs and encodes them as
strings to use text mining techniques for comparison. Each step
presents different possible implementations. In the following
paragraphs, we explain the concept of each step and how we
implemented them.1

Extract
Features

Stratify

CompareModel

Partition location
data into bins

Re-express the data
into aggregate

phenomena as strings

Compare strings
using NLP techniques

Use similarity to
determine the
phenomena

Player ID
Location
Action

Fig. 1. StABLE concept

Given a preprocessed dataset ordered by timestamp con-
taining the player ID, locations, and actions, StABLE first

1Our implementation in Python (v3.7) can be found at
https://github.com/fragosoluana/stable-minecraft

sorts the locations into bins to simplify the detection of MPs
(stratification). Our implementation requires a dataset with
columns containing locations in four dimensions: x, y, z,
and world label, because many video games have different
worlds or levels. StABLE stratifies the locations into a grid
by concatenating the locations of each position x, y, and z
plus the world. For example, if the player was in world 0 and
at the location (217, 914, 493), the final cell label would be the
string 0-217-914-493. Cell size is a parameter. Discretized
locations are stored in an intermediate variable loc_bin.

In the feature extraction step, player behaviours are en-
coded as strings. As player behaviour unfolds through time, a
record of symbols representing that behaviour can be gener-
ated. The nature of the symbols selected determines the type
of analysis conducted and by extension, questions answered.
Changing these parameters changes the operationalization of
the comparison. For example, comparing two strings based
only in the location bins, the comparison will answer the
question “Does player A follow the same trajectories as
player B?”. If we added the timestamp to the trajectory
record the comparison would prefer co-located play. Because
timestamp and location are individual words, players who
visited the same locations at different times would be more
similar to co-located players than players who never visited
those location, as the Bag of Words (BoW) would treat
location and time as independent words in the histogram.
However, if location and time were merged into a single word
timestamp1-loc_bin1 timestamp2-loc_bin2...
co-located play would be required for similarity, as bins in
the BoW histogram require both the time and location to
be identical to be considered the same. To illustrate the
power and flexibility of this technique we developed three
different strings: the location, dwell-trip, and dwell-trip-action
constructions.

Location construction. We chose to create the location
construction to show that StABLE can be used for analysis
based solely on visited locations. To probe use of space using
StABLE, we encoded the location bins as separate words.
Players who visited the same places, more often, would be
more similar. The loc_bin attribute is enough to describe
this behaviour.

Dwell-trip construction. To render strings which capture
movement patterns independent of location, we aggregate
movement into periods of motion (trips) and stationary periods
(dwells). For every sequential record where player location is
unchanged, dwell time is incremented (X). For every sequential
record where player location is different, trip duration is
incremented (Y), until the player remains at the same location
for at least three timestamps, breaking the trip [14]. This
aggregation naturally transforms the location records into pairs
of dwells (d) and trips (t), and captures how players move,
instead of where. Each player’s trajectory can be expressed as
a string of the form: dX1 tY1 dX2 tY2....

Dwell-trip-action construction. Designers might not only
be interested in how players move, but what actions they
undertake while moving (for example attacking, building, or

interacting with others). We created a string incorporating
whether or not an action had occurred during each dwelling or
movement period. If at least one action has occurred, the word
a1 is added after the dwell time or trip duration, otherwise,
a0 is added. The resulting string is dX1 aZ1 tY1 aZ2 dX2

aZ3 tY2 aZ4..., where Z can be 0 or 1.
Between-player and within-player analysis. Comparing

players with each other can be used to segment players into
clusters of playstyles, but comparing players with themselves
can also be useful to describe how gameplay changes with
time or through phases (tutorial, main game, end game) or
in within player experiments (for example before and after
a patch is deployed). We implemented StABLE to be able
to compare different players (between-player analysis), and
behaviours from a single player through time (within-player
analysis). In the between-player analysis, all the data from
each player is compared to each other. In a within-player
perspective, StABLE performs a simple per-player median
split on their play log to obtain two strings to be compared.

To compare the constructed strings, the BoW with TF-
IDF is performed given an N-gram value. N-gram is related
to the temporal aspect of the MPs, and subsequently how
the similarity is interpreted. For the simple location string
the N-gram is the sequence of movements, where N = 1
directly reproduces standard aggregate location distributions.
The dwell and trip construction is the sequential movement
patterns and naturally follows pairs of dX tY, which implies
that N should increase by twos to capture subsequent motion.
Similarly, N should increase by fours in the case of the
dwell-trip-action construction. After constructing the BoW
histogram, similarity can be calculated using cosine similarity.

The final step of StABLE (model) returns a matrix for a
between-player analysis, and a simple list for a within-player
analysis, as shown in Figure 1 with 3 players. The similarity
matrix (sim) in a between-player analysis is a symmetric
matrix P×P , where P is the total number of players, with the
diagonal populated by ones, where each element in the matrix
simij is the similarity score between the behaviours of players
i and j. In a within-player analysis, the list contains P scores.

IV. RUNNING STABLE

We collected data from the canonical sandbox game
Minecraft [34] to answer the five questions in Section I.
Minecraft worlds are procedurally generated with voxels that
represent resources in the world. Minecraft is popular in the
research community [35].

A. Study Procedure and Apparatus

We recruited 40 participants (7 female) aged 18 to 34
(µ = 20.97, σ = 3.63). Participants already had a Minecraft
account prior to participating in the study. Thirty six of the
participants reported playing digital games at least a few
times per week. Participants completed informed consent,
and demographics questionnaires before playing. Enrollment
happened via a website, and under the authorization of our
institutional ethics review board. After completing the surveys,

participants were added to the server white-list and received
an email on how to install Minecraft Forge in their computers
and connect to the server. Participants were instructed to play
normally. Data collection occurred over 2.5 weeks. At the
end of the study, participants completed the SIMS test [36].
Participants received an honorarium of CAD $25.

We collected the game log using Minecraft Forge [37], a
framework to facilitate the interface between Minecraft and
player designed mods. We built a custom data logging mod
that collects 25 different events from the game each second.
At the end of the experiment, each event in the game log was
uploaded to a table in a MySQL database. A Minecraft multi-
player server was installed on a Virtual Machine running Linux
(RHEL 6.10) with 2 CPUs and 4 GB of RAM. The server ran
Minecraft Forge v13.20.0.2228 on Minecraft v1.11.2 using our
mod. Participants accessed the server from their own personal
computers, but they had to install the same Minecraft Forge
version to avoid conflicts. All players started the game in the
same position and played with the same randomly selected
world seed (5791568963867681365).

B. Preprocessing

From the perspective of a designer using StABLE, the only
information needed are the columns of the dataset representing
player’s location and action. Data were selected and filtered
from Minecraft game logs to address the five research ques-
tions in Section I. We selected four tables from our database
that include the necessary data to run StABLE. Cited columns
were employed in our analysis.

PlayerTick stores time, player ID, position x, position y,
position z, current dimension, experience level, among others.
This dataset has 1.6 million records.

PlayerInteract provides data when the player is about to
interact with a block. It has 5.1 million records of time, player
ID, among others.

PlayerLoggedIn provides data when a player connects to
the server. We recorded 466 records of time and player ID.

PlayerLoggedOut provides data when a player disconnects
from the server. We recorded 448 records of time and player
ID.

After selecting the necessary data, we filtered the dataset to
remove unwanted data. Because we were not policing player
activity while playing Minecraft, there was a chance of some
of them used bots to advance in the game. With Player-
LoggedIn and PlayerLoggedOut tables, we could calculate
how long players played per session to possibly eliminate these
bots. For each PlayerLoggedOut data point, we subtracted
its time to the closest time before in PlayerLoggedIn with
the same player ID. We then took the average hour per
session. Only two players played for longer than 8 hours on
average, who were eliminated from the PlayerTick dataset as
we suspected bots were playing.

Few players interacted with the game for more than 1.5
hours at a time. If players had dwell times in excess of 1.5
hours, the corresponding data was removed because we sus-
pected that the game had been left open. Because we analyze

player’s motivation for RQ5, only the players in PlayerTick
who answered the SIMS questionnaire were selected. At the
end of the filtering, PlayerTick had a total of 30 players with
1.4 million records.

We aggregated both PlayerInteract and PlayerTick to the
level of a second for each player. When aggregating, we took
the mean location and the total number of actions. With single
data points for each timestamp, we were able to merge both
datasets based on their player ID and timestamp. The resulting
dataset G (Table I) had a total of 30 participants and around 1.1
million records, and the following columns: player (player id),
location (pos x, pos y, pos z, and world), and number of
actions in a timestamp (n action). The dataset G is given to
StABLE, which generates the three string constructions and
returns the between-player and within-player similarities.

TABLE I
FINAL SCHEMA OF GAME LOG G DATASET WITH AROUND 1.1 MILLION

RECORDS. THIS DATASET IS USED TO RUN STABLE.

Attribute Description
player id Player’s ID

pos x Minecraft coordinate for position in x
pos y Minecraft coordinate for position in y
pos z Minecraft coordinate for position in z
world Minecraft world where the player is located

n action Number of voxel interactions

In addition, we classified players as advanced and non-
advanced to cluster them based on their expertise. Minecraft
players can obtain experience levels [11]. There are three
worlds in Minecraft: the Overworld, the Nether, and the End.
All players start in the Overworld, where they need to open a
portal if they want to reach the Nether. Players need to open
a portal to reach the End with items found exclusively in the
Nether. The Nether also contains unique resources that can be
used to create potions, weapons and armor.

We retrieved the maximum experience level (MEL) ever
reached for each player, which reflects the longest period
they were alive, and their activity during that period. We
then established an approximation for expertise where players
with 21 or more MEL were labelled as advanced because that
was the lowest MEL of any player who reached the Nether,
resulting in 18 advanced players and 12 non-advanced players.

The SIMS scores and expertise information were merged in
a dataset P that is used to interpret the model from StABLE.
The final P dataset containing the player ID, expertise, and
SIMS scores is shown in Table II, with 30 records and 6
attributes. With this dataset and the similarity matrix, the five
research questions posed by this paper can be addressed.

V. ANALYZING STABLE SIMILARITIES

We investigated the similarities in a between and within-
player analysis. We applied statistical tests in all of the
five research questions to differentiate group of players, with
the null hypothesis that the group of players (expertise or
motivation) do not behaviour differently. We used the Mann-
Whitney U statistical test because similarity-based partitioning

TABLE II
FINAL SCHEMA OF PLAYERS P DATASET WITH 30 RECORDS. SIMS

SCORES WERE CALCULATED BASED ON [36]. THIS DATASET IS USED TO
INTERPRET THE RESULTS FROM STABLE.

Attribute Description
player id Player’s ID

in motivation SIMS intrinsic motivation
id regulation SIMS identified regulation
ex regulation SIMS external regulation
amotivation SIMS amotivation

xp Advanced or non-advanced

does not necessarily return normal distributions. We reported
the results with a significant effect when p < 0.05. We used
the library stats under scipy (v 0.19.1) in Python.

We ran StABLE with the dataset G (Table I) using the
default grid stratification with cells of size of 1, which is a
voxel in Minecraft. For the sake of space, we only show figures
of the results for a selection of N-grams. A Mac-Book Pro 2.7
GHz Intel Core i7 with 16 GB 1600 MHz DDR3 RAM was
used to perform the analysis. The run time and memory use of
StABLE for each research question did not exceed 2 minutes
or 200MB respectively, not including the time and memory
required to download and store the original data.

A. Location Analysis

The location construction was used to answer RQ1 and
RQ2. The former requires the similarities between players.
We represented the similarity matrix as a box plot in Figure
2, where each box plot is a row of the matrix. The highest
similarity between two players was 76.89% (σ = 14.38%),
where only 7 pairs of players had a similarity over 50%.
An analysis with N = {1, 2} and N = 2 resulted in lower
similarities with the highest similarity at 68.09%, µ = 8.17%,
and σ = 7.82%; and, the highest similarity at 43.64%,
µ = 0.65%, and σ = 3.64%, respectively. Because each
player has a distribution of similarities with all other players,
we took the mean of each row of the similarity matrix, and
tested whether there were differences between non-advanced
and advanced players in mean behavioural similarity. The
independent variable was the player experience with 2 levels
(advanced and non-advanced), and the dependent variable
was the mean similarity distribution, which did not find a
significant difference between the groups (p > 0.05) for any
N value.

RQ2 is a within-player analysis, and we represented the
scores as a bar plot (Figure 3). Players are more similar to
themselves through time than with each other with N = 1. The
highest similarity is 91.97%, µ = 57.88%, and σ = 20.62%.
An analysis with N = {1, 2}, and N = 2 resulted in lower
similarities with the highest similarity at 89.5%, µ = 52.09%,
and σ = 20.66%; and, the highest similarity at 74.85%,
µ = 29.6%, and σ = 22.28%, respectively. The statistical
test showed that player expertise was not distinguishable to a
level of significance (p > 0.05) for any N value, where the

Advanced
Non-Advanced

Fig. 2. Similarity scores between players using the location construction to
answer RQ1. Players are in descending order of experience level in the x-
axis. The lower and upper quartile values of the similarities (box), the median
(line), and the range of the similarities (whiskers) are illustrated.

Advanced
Non-Advanced

Fig. 3. Similarity scores in a within-player analysis using the location
construction to answer RQ2. Players are in descending order of experience
level in the x-axis.

independent variable was player experience (2 levels), and the
dependent variable was the similarity scores.

B. Playstyle stability

For RQ3, we used the dwell-trip construction to investigate
playstyle stability in a within-player analysis. We visualize
the scores with a bar plot. In Figure 5 (N = 2), 77% of
the advanced players had trip behaviour similarity over 50%.
An N = {1, 2, 3, 4} showed even higher similarity scores
for advanced players. Most non-advanced players showed a
similarity closed to 60%. Doubling the N-gram to 4 resulted
in small similarities. We applied statistical tests to verify if
advanced players had more stable playstyles (more similar to
themselves) than non-advanced players. The test showed dif-
ferent sensitivity to playstyle changes for N = 2 (p < 0.001),
N = 4 (p < 0.05), and N = {1, 2, 3, 4} (p < 0.0005), with
player experience as the independent variable (2 levels) and
similarity scores as the dependent variable.

C. Player similarity with experience

We investigated RQ4 with the dwell-trip construction in
a between-player analysis. Figure 4.a shows the similarity
distributions among players with N = 2. The similarities
ranged from 10.15% to 92.17%(µ = 52.44%, σ = 17.08%).
Advanced players showed an overall similarity average higher

a) b)

Fig. 4. Players are in descending order of experience level in the x-axis. (a) Similarity scores between players using the dwell-trip construction to answer
RQ4. (b) Total number of words per player with the dwell-trip construction.

Fig. 5. Similarity scores in a within-player analysis using the dwell-trip
construction to answer RQ3. Players are in descending order of experience
level in the x-axis.

than non-advanced players, 59.39% against 45.97%. An N =
{1, 2, 3, 4} resulted in similarities ranging from 22.18% to
95.34% (µ = 65.58%, σ = 15.03%). Advanced players
still showed a higher similarity average (71.90%) than non-
advanced players (58.99%). Similarities were lower with N =
4, ranging from 0% to 17.07% (µ = 1.98, σ = 1.94%).
Advanced and non-advanced players had significantly different
mean similarity scores (p < 0.005) for any N value. Note that
StABLE is not strongly influenced by the length of the strings
(Figure 4.b). For example, even though player 0 had a string
with a length more than the double of the next largest number
of words, his/her similarity was equivalent to others (3, 4, 5
and 17).

With the same dwell-trip construction, a network graph
was employed as another way to visualize player similarity
relationships for RQ4. Figure 6 shows the network graph for
players who had a similarity of greater than 50%, with N = 2,
and with connection to at least another player. Advanced play-
ers were similar to each other, but non-advanced players were
more likely to show similar behaviours to advanced players
than to the other non-advanced players. We can also depict
from the graph that the most experienced player (player 0,
with an experience level of 68) as well as player 4 (experience

level of 35) presented the highest degree in the graph, both
with 26 edges. All the advanced players appeared in the graph,
whereas non-advanced players 25, 28, and 29 were not in the
graph, who showed the lowest similarity distributions in Figure
4.a.

15

8

7

1 2

04
16

3

13

12 10 14

9

11

6

5

17 0

Fig. 6. Graph network in a between-player analysis using the dwell-trip
construction for RQ4. The shorter the edges between the players, the more
similar they are.

D. Player similarity and motivation

We used the dwell-trip-action construction for RQ5. We
applied the Louvain community detection to cluster players
based on their similarities with N = 4. We ran Louvain
with predefined community labels to fix the number of re-
sulting communities to avoid clustering into insignificantly
small communities. We used average edge weight as the node
importance. We performed a median split of average edge
weight to seed communities. The start node for the Louvain
method was the node with highest weight average in the
network.

A graph with all the players resulted in a single community.
Filtering out the lowest scores (< 10%), resulted in two
communities. The resulting network graph can be seen in
Figure 7. We mapped the SIMS scores to the groups identified
through Louvain, and applied the Mann-Whitney U test.
Intrinsic motivation showed a significant difference across the
player clusters (p < 0.05).

Fig. 7. Network graph of players in a between-player analysis with the dwell-
trip-action construction, where each color shows a community as determined
by the Louvain method. The closer the nodes, the more similar they are.

VI. DISCUSSION

Our results demonstrate that it is possible to use StABLE to
compare strings of movement and activity patterns to answer a
number of important questions in GUR. We were able to com-
pare the similarity of locations and trajectories both between
and within-players. We found that players did not have similar
location strings to each other nor with themselves, which
might be due to Minecraft’s mechanics. The expertise analysis
showed that the movement and activity patterns associated
with advanced players were more likely to be similar than
non-advanced players. By aggregating away location, and ex-
amining patterns of travel and dwelling, we demonstrated that
we could probe how people play. Unsupervised clustering of
the similarities partitioned players by motivation, as encoded
by the SIMS response, demonstrating that our technique can
be used to identify why people play from how people play.

The findings we described here have strong internal validity,
but weaker generalizability given the single game, limited
demographic, and relatively small number of participants.
However, the intent of this paper was not to provide strongly
generalizable findings relating movement patterns to expertise,
but to demonstrate that StABLE, as a tool for game log analy-
sis, has substantial utility. The tool itself, and more importantly
the concept underlying the tool, has broad applicability and
can be used to analyze many types of sequential log data.
While we focused on movement data in an open world game

in this work, many other genres of games and streams of data,
and player attributes could be analyzed.

Because we focused on providing broad evidence of appli-
cability rather than focusing the application of StABLE to
a single problem, this work provides more questions than
answers with respect to game behaviours. We established
that movement pattern similarity could cluster players a way
that reflected their SIMS scores, but did not dig into which
playstyle patterns were diagnostic. We demonstrated that, for
Minecraft at least, advanced players had greater movement
pattern similarity to each other than to non-advanced players,
but did not probe the nature of those movement patterns.
We showed that advanced players had more stable movement
patterns than non-advanced players, but did not attempt to
describe those patterns. Answering game play questions raised
by StABLE is a potentially fruitful and fascinating avenue for
future research.

The primarily limitation of this work is the scope of the
data analyzed. By only analyzing a relatively small population
over a single game, we cannot make strong conclusions
about our game-related findings. As a methodological paper,
this proof is sufficient; however, more detailed analysis of
larger datasets, preferably obtained from actual commercial
games is an obvious next step. Within the method itself,
many potential avenues for further improvement exist. We
employed the simplest (and most canonical) string comparison
method. Extending this work to include more advanced and
nuanced string comparison algorithms could be fruitful. The
core contribution and insight in this work is the use of feature
sequences to selectively probe specific behaviours. We have
only explored three simple feature constructions: location,
dwell-time and dwell-time-action. Many more sophisticated
feature strings could be envisioned, and should be investigated.

VII. CONCLUSION

Game logs contain rich information on player experience,
but this data can be difficult to mine for insights. We have
presented the StABLE method for log analysis, which lever-
ages techniques from text mining to perform comparisons of
sequence of behavioural features. Using StABLE we were
able to mine insights about player behaviour, expertise and
motivation from Minecraft play logs collected over a two week
period. The findings demonstrate the utility of our approach in
game log analytics, and point the way towards both additional
research in methods, and application to game log analysis in
both commercial and research settings.

REFERENCES

[1] E. T. E. S. Association, “Industry Facts,” 2018. [Online].
Available: http://www.theesa.com/about-esa/essential-facts-computer-
video-game-industry/

[2] Kellie Ell, “Video game industry is booming with continued revenue,”
2018. [Online]. Available: https://www.cnbc.com/2018/07/18/video-
game-industry-is-booming-with-continued-revenue.html

[3] D. Hooshyar, M. Yousefi, and H. Lim, “Data-driven approaches to game
player modeling: A systematic literature review,” ACM Comput. Surv.,
vol. 50, no. 6, Jan. 2018.

[4] G. N. Yannakakis, P. Spronck, D. Loiacono, and E. André, “Player
Modeling,” Artificial and computational intelligence in games, vol. 6,
pp. 45–59, 2013.

[5] S. Bunian, A. Canossa, R. Colvin, and M. S. El-Nasr, “Modeling Indi-
vidual Differences in Game Behavior using HMM,” AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, 2017.

[6] J. Pfau, J. D. Smeddinck, and R. Malaka, “Towards deep player behavior
models in mmorpgs,” in Proceedings of the 2018 Annual Symposium on
Computer-Human Interaction in Play, ser. CHI PLAY ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 381–392.

[7] S. Ahmad, A. Bryant, E. Kleinman, Z. Teng, T.-H. D. Nguyen, and
M. Seif El-Nasr, “Modeling individual and team behavior through
spatio-temporal analysis,” in Proceedings of the Annual Symposium on
Computer-Human Interaction in Play, ser. CHI PLAY ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 601–612.

[8] S. Müller, S. Frey, M. Kapadia, S. Klingler, R. P. Mann, B. Solenthaler,
R. W. Sumner, and M. Gross, “Heapcraft: Quantifying and predicting
collaboration in minecraft,” in AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 2015.

[9] S. Müller, E. Zürich, M. Kapadia, S. Frey, S. Klingler, R. P. Mann, B. So-
lenthaler, and R. W. Sumner, “HeapCraft Social Tools: Understanding
and Improving Player Collaboration in Minecraft,” in Proceedings of
the 10th International Conference on the Foundations of Digital Games
(FDG ’15), 2015.

[10] S. Mueller, B. Solenthaler, M. Kapadia, S. Frey, S. Klingler, R. P. Mann,
R. W. Sumner, and M. Gross, “Heapcraft: Interactive data exploration
and visualization tools for understanding and influencing player behavior
in minecraft,” in Proceedings of the 8th ACM SIGGRAPH Conference
on Motion in Games, ser. MIG ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 237–241.

[11] A. Canossa, J. B. Martinez, and J. Togelius, “Give me a reason to dig
minecraft and psychology of motivation,” in 2013 IEEE Conference on
Computational Inteligence in Games (CIG), 2013, pp. 1–8.

[12] M. S. El-Nasr, A. Drachen, and A. Canossa, Game Analytics. Springer,
London, 2013.

[13] A. Drachen and A. Canossa, “Analyzing spatial user behavior in
computer games using geographic information systems,” in Proceedings
of the 13th international MindTrek conference: Everyday life in the
ubiquitous era, 2009, pp. 182–189.

[14] T. Paul, K. Stanley, N. Osgood, S. Bell, and N. Muhajarine, “Scaling
behavior of human mobility distributions,” in Geographic Information
Science, J. A. Miller, D. O’Sullivan, and N. Wiegand, Eds. Cham:
Springer International Publishing, 2016, pp. 145–159.

[15] S. Dodge, P. Laube, and R. Weibel, “Movement similarity assessment
using symbolic representation of trajectories,” International Journal of
Geographical Information Science, vol. 26, no. 9, pp. 1563–1588, 2012.

[16] K. Farrahi and D. Gatica-Perez, “Discovering routines from large-scale
human locations using probabilistic topic models,” ACM Trans. Intell.
Syst. Technol., vol. 2, no. 1, Jan. 2011.

[17] C. C. Aggarwal and C. Zhai, Mining Text Data. Springer, 2012.
[18] A. Canossa, T.-H. D. Nguyen, and M. Seif El-Nasr, “G-Player: Ex-

ploratory Visual Analytics for Accessible Knowledge Discovery,” in
Proceedings of the First International Joint Conference of DiGRA and
FDG, 2016.

[19] G. Wallner, N. Halabi, and P. Mirza-Babaei, “Aggregated visualization
of playtesting data,” in Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’19. New York, NY,
USA: Association for Computing Machinery, 2019.

[20] C. Bauckhage, R. Sifa, A. Drachen, C. Thurau, and F. Hadiji, “Beyond
heatmaps: Spatio-temporal clustering using behavior-based partitioning
of game levels,” in 2014 IEEE Conference on Computational Intelli-
gence and Games, 2014, pp. 1–8.

[21] E. Lee, J. Woo, H. Kim, A. Mohaisen, and H. K. Kim, “You are a Game
Bot!: Uncovering Game Bots in MMORPGs via Self-similarity in the
Wild,” in Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS), 2016.

[22] J. C. Osborn and M. Mateas, “A Game-Independent Play Trace Dissim-
ilarity Metric Categories and Subject Descriptors,” in Proceedings of
the 9th International Conference on the Foundations of Digital Games
(FDG ’14), 2014.

[23] M. Aung, S. Demediuk, Y. Sun, Y. Tu, Y. Ang, S. Nekkanti, S. Raghav,
D. Klabjan, R. Sifa, and A. Drachen, “The trails of just cause 2: Spatio-
temporal player profiling in open-world games,” in Proceedings of the
14th International Conference on the Foundations of Digital Games, ser.

FDG ’19. New York, NY, USA: Association for Computing Machinery,
2019.

[24] A. Canossa, “Give me a reason to dig: Qualitative associations between
player behavior in minecraft and life motives,” in Proceedings of the
International Conference on the Foundations of Digital Games, ser. FDG
’12. New York, NY, USA: Association for Computing Machinery, 2012,
p. 282–283.

[25] N. Yee, “Motivations for Play in Online Games,” Cyberpsychology and
Behavior, vol. 9, no. 6, pp. 772–775, 2006.

[26] J. C. Campbell, J. Tremblay, and C. Verbrugge, “Clustering Player
Paths,” in Proceedings of the 10th International Conference on the
Foundations of Digital Games (FDG ’15), 2015.

[27] R. Sifa, S. Srikanth, A. Drachen, C. Ojeda, and C. Bauckhage, “Pre-
dicting Retention in Sandbox Games with Tensor Factorization-based
Representation Learning,” IEEE Conference on Computatonal Intelli-
gence and Games, CIG, vol. 0, pp. 1–8, 2016.

[28] S. Dodge, R. Weibel, and A.-K. Lautenschütz, “Towards a taxonomy
of movement patterns,” Information Visualization, vol. 7, no. 3-4, pp.
240–252, 2008.

[29] C. Song, T. Koren, P. Wang, and A. L. Barabási, “Modelling the scaling
properties of human mobility,” Nature Physics, vol. 6, pp. 818–823,
2010.

[30] R. Zhang, K. G. Stanley, D. Fuller, and S. Bell, “Differentiating
population spatial behavior using representative features of geospatial
mobility (refgem),” ACM Trans. Spatial Algorithms Syst., vol. 6, no. 1,
Feb. 2020.

[31] T.-H. Nguyen, M. Seif El-Nasr, T.-H. D. Nguyen, and A. Canossa,
“Glyph: Visualization Tool for Understanding Problem Solving Strate-
gies in Puzzle Games,” in Proceedings of the 10th International Con-
ference on the Foundations of Digital Games (FDG ’15), 2015.

[32] Z. Chen, M. S. El-nasr, A. Canossa, J. Badler, S. Tignor, and R. Colvin,
“Modeling Individual Differences through Frequent Pattern Mining
on Role-Playing Game Actions,” in AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, 2015, pp. 2–7.

[33] J. Pfau, J. D. Smeddinck, and R. Malaka, “Deep player behavior models:
Evaluating a novel take on dynamic difficulty adjustment,” in Extended
Abstracts of the 2019 CHI Conference on Human Factors in Computing
Systems, ser. CHI EA ’19. New York, NY, USA: Association for
Computing Machinery, 2019.

[34] Mojang, “Minecraft,” Game [PC], Stockholm, Sweden, May 2009,
mojang, Stockholm, Sweden. Last played March 2020.

[35] S. Nebel, S. Schneider, and G. D. Rey, “Mining learning and crafting
scientific experiments: A literature review on the use of Minecraft in
education and research,” Educational Technology and Society, vol. 19,
no. 2, pp. 355–366, 2016.

[36] F. Guay, R. J. Vallerand, and C. Blanchard, “On the
Assessment of Situational Intrinsic and Extrinsic Motivation: The
Situational Motivation Scale (SIMS),” Motivation and Emotion,
vol. 24, no. 3, pp. 175–213, 2000. [Online]. Available:
https://doi.org/10.1023/A:1005614228250

[37] F. Development LLC, “Minecraft forge,” 2018. [Online]. Available:
https://files.minecraftforge.net/

