
Distance-Based Mapping for General Game Playing
Joshua D. A. Jung and Jesse Hoey
Cheriton School of Computer Science

University of Waterloo
{j35jung,jhoey}@uwaterloo.ca

Abstract—In the field of General Game Playing (GGP), ar-
tificial agents (bots) may be required to play never-before-
seen games with less than one minute to initialize and train.
Although tabula rasa approaches, like Monte-Carlo Tree Search,
are popular in this domain, they do not leverage information from
the many different games that a bot has previously encountered.
A major barrier to transfer learning has been the difficulty
in identifying similar features in the rule descriptions of two
different games. We present two methods, called MMap and
LMap, for heuristically approximating a distance between two
games’ graphs, and producing a mapping for the symbols
of one to the other, thereby enabling transfer. We evaluate
the effectiveness of these methods across a variety of transfer
scenarios, and find that both methods are far more accurate than
a simpler baseline mapper. MMap is found to be more robust
than LMap, but LMap is much faster, and so more suitable for
general use in GGP.

I. INTRODUCTION

In the enduring competition between human and machine,
recent years have been unkind to humanity. We have seen top-
level human players lose to artificial agents (bots) at games
like Chess, Go, and even video games like Dota and StarCraft.
Each of these victories for machine-kind has marked a sub-
stantial milestone in artificial intelligence research. However,
these bots are typically extremely specialized, requiring many
human-hours to design and many thousands (or more) of
machine-hours to train. Among these bots, AlphaZero stands
out as a generalist, but even AlphaZero can require days or
weeks to train on a specific problem [1].

General Game Playing (GGP) is a subfield of artificial
intelligence that demands bots be both general and fast. A bot
may be given a set of rules for a game that it has never seen
before, and expected to begin playing that game less than one
minute later. Although headway has been made in adapting
deep learning (and specifically, AlphaZero) to GGP, training
time is still on the order of hours [2]. For now, approaches like
Monte-Carlo Tree Search (MCTS) remain popular [3], as they
are able to learn quickly without prior knowledge. However,
this tabula rasa approach to learning leaves useful information
on the table. A bot may encounter many games (as in the
Lifelong Learning paradigm), and learn to play each of them
quite well. Should it come across a game that is similar to one
it has already seen, it should be possible to gain an advantage
by leveraging that prior knowledge through transfer learning.

Transfer learning has been popularized by deep learning, but
is not limited to deep neural networks. Other techniques, like

policy or value transfer, have been used successfully for games
with many shared features. However, part of the foundation of
GGP research is deliberately making it difficult to recognize
the components of a game, via the process of obfuscation.
During obfuscation, every word in a game’s description that
is not a base part of the Game Description Language (GDL),
is replaced by a different, arbitrarily chosen word. In Chess,
for example, every occurrence of the word ‘knight’ might
be replaced by ‘firetruck’. This prevents word choice from
influencing a bot’s behaviour, but leaves the structure of the
rules intact. This structure can be efficiently cast into a graph
representation, but finding similar features among graphs is
a costly process. As a result, transfer learning has seen only
limited use in GGP.

In this paper, we present novel methods for forming a
mapping from the elements of a source game (which we will
call G1) to a target game (G2) with the goal of enabling a
GGP bot to cast information from a newly encountered game
to one that it has seen before. From there, any manner of
transfer learning may be applied.

Our method is the first to approximate an edit distance
between nodes in two different rule graphs. This not only
allows symbols to be mapped from G1 to G2, but also
produces an overall distance that can be used to judge the
quality of a mapping, and choose the best game from which
to transfer. In general, finding the edit distance between two
graphs is a well-known NP-Hard problem, so it is necessary
to employ novel heuristics and greedy strategies to remain as
lightweight as possible. The faster a mapping algorithm can
be made, the more time a bot will have for self-play during
its short initialization period.

The main contributions of this paper are:
1) A heuristic rule graph search that approximates the

similarity of nodes, while limiting the number of other
nodes expanded;

2) Two greedy methods (called MMap and LMap) for
producing a symbol mapping from G1 to G2 by ap-
proximating their edit distance;

3) An evaluation of the effectiveness of these methods
across a variety of transfer scenarios, which show MMap
to be more robust, LMap to be faster, and both to be
much more accurate than a simpler baseline mapper.

II. BACKGROUND AND RELATED WORK

A. General Game Playing

General Game Playing began as a way to promote the
research of generally capable, rather than purpose-specific,978-1-6654-3886-5/21/$31.00 ©2021 IEEE

1: (<= (goal black 100)
2: (true (piece count red ?rc))
3: (true (piece count black ?bc))
4: (greater ?bc ?rc))

Fig. 1. An example GDL statement from Checkers, in the GGP base game
repository. It specifies that if the game ends and black has more pieces than
red, then black wins (i.e. receives a score of 100).

artificial agents. Much of early GGP research was centered
around the annual GGP competition, which was first held in
2005 [4]. The competition standardized the setting in which
bots played games. Competing bots were given the rules of the
game and allowed a period of time for initialization (typically
on the order of 90 seconds), and then a shorter period of time
(typically on the order of 10s of seconds) to play each turn.

Game rules were written in Game Description Language,
which is the de facto language of GGP. GDL is a logic
programming language (like Prolog) with a small number of
built-in relations that are particular to playing games [5]. The
game state is determined by the set of facts that are true at a
given time, and game dynamics are given by a set of rules. Any
words that are not part of the built-in vocabulary of GDL are
obfuscated (i.e. replaced by arbitrary, unrelated words) before
the game description is sent to a bot, thereby denying the
use of semantic information through the particular vocabulary
used. Figure 1 gives an example of (non-obfuscated) GDL
code from the description of Checkers [6].

B. Rule Graphs

Stanford’s GGP framework [7] includes code for parsing
each GDL statement into a directed tree. This tree may be
further refined into a rule graph1, using a method like those
described by Genesereth [6] or Kuhlmann [8]. This produces
a coloured, directed graph, where the colours capture built-ins
(i.e. logical connectives and GDL keywords), and assign types
to user-defined entities (e.g. proposition, variable). The names
of these user-defined entities (which may be obfuscated) are
discarded. For each user-defined entity, there is an occurrence
node for each time that entity appears in the GDL code, and
a single symbol node that links all occurrences together. If
the entity takes N arguments, there will also be N argument
nodes connected to the symbol node2. Edges (with few excep-
tions) represent parent-child relationships in the GDL (e.g. the
children of an AND node are its arguments). An example of
a rule graph is given by Figure 2.

The size of a rule graph varies with the complexity of the
game’s description. This is distinct from the actual difficulty
of a game (i.e. the size of its state space), though the two tend
to be correlated. Table I gives the number of nodes generated
for an assortment of games familiar to humans. The largest of
these (Chess) contains over 5,000 nodes.

Although a rule graph may not be a minimal representation
of a game, Kuhlmann and Stone [9] proved that if two rule

1Rule graphs are not the only useful structures that can be obtained from
GDL. Propositional networks [6] are commonly used in the GGP literature.

2This applies only to Genesereth’s version.

graphs are isomorphic, then the games that they represent
are equivalent. Jiang et al. [10] also developed methods for
proving game equivalence. If a bot has previously played a
game that is equivalent to its current task, then it is extremely
desirable to identify that game, because all previous knowledge
can be immediately transferred. However, this approach is
limited to games that are exactly the same. Kuhlmann and
Stone [9] extended it by looking for isomorphisms within a
set of predetermined variations. For example, they were able
to identify games that were identical, but for different board
sizes, numbers of pieces, or turn limits. We would like to
be more general than this by identifying similarities without
needing to predefine patterns for which to search.

C. Other Methods for Mapping and Transfer

Others have done transfer between non-identical games by
extending the Structure Mapping Engine [11]. Klenk and For-
bus [12], were able to establish mappings between kinematics
problems, while Hinrichs and Forbus [13] mapped between
games where a character moves on a 2D grid. Both showed
positive transfer in their respective domains. These works are
similar in purpose to our own, though execution times do not
seem to have been a major concern, as they were not reported.

Although not strictly a kind of mapping, feature extraction
is a common practice in GGP that allows a bot to find
information known to be useful in a variety of games. Since
board games are encountered frequently, there are methods
for finding sequences of numbers, board coordinates [14],
[15], and moveable pieces [16], which can then be combined
to produce heuristics. Game-independent features may also
be discovered autonomously [17], and whole games may be
decomposed if they are made up of smaller sub-games [18].

III. METHOD

A. Rule Graph Generation

We begin with a rule graph for a known game that will
act as G2 (or potentially, many stored rule graphs, from
which we will choose the best), and we must process a new
GDL description into a rule graph to act as G1. We do so
using the method described by Genesereth [6] because, unlike
Kuhlmann’s method [8], it does not require coloured edges,
which makes processing the graph somewhat simpler. A visual
representation of a rule graph is given by Figure 2 for the GDL
statement in Figure 1. We defer a full description of the graph
generation process to Genesereth’s work, but we would like to
draw attention to a few of the node types (colours) that will
be important in the descriptions to follow.

In Figure 2, symbol nodes are given a dashed border. There
is one symbol node for each unique user-defined symbol in a
GDL description, positioned such that all of the relationships
of that symbol can be discovered by searching from its symbol
node. Of these nodes, some represent variables (purple), and
others represent non-variables (white). Variables are important
to the logic of a game, but cannot appear in the game state,
which must be fully instantiated. It is therefore the non-
variable symbol nodes that we are interested in mapping.

Fig. 2. (Left) The rule graph generated from the GDL code in Figure 1. Names are overlaid for clarity, although they are not normally visible. Symbol
nodes have dashed edges (variable symbols are purple, non-variables are white). Non-variable occurrence nodes are blue. Variable occurrences are dark green.
Argument nodes are orange. Each built-in GDL keyword has a unique colour. (Middle) Coloured, barbed arrows indicate the edges that can be discovered by our
distance algorithm, starting from the ‘red’ symbol node. Dark red edges are part of the initial expansion, lighter red arrows are part of subsequent expansions,
and yellow double-headed arrows are sibling relationships that are not true edges in the graph. (Right) Edges discovered, starting from ‘piece count’ (p c).

Each symbol will have an outgoing directed edge to some
number of occurrence nodes, its children. An occurrence node
(blue for non-variables, dark green for variables) represents
one place that the corresponding symbol appears in the GDL
game description. If it is passed arguments, then it will have
their occurrence nodes as its children, and if it is itself an
argument to some other occurrence, that occurrence node will
be its parent. If a symbol takes N arguments, then its node
will additionally have N argument nodes (orange) as children.
These nodes are connected to every occurrence that appears
in a particular argument position.

Importantly, the only nodes that are able to form connections
from one GDL statement to another are symbol and argument
nodes. All other types of nodes form connections that are local
within the original GDL. In order to keep the execution time
of our graph searches manageable, it is therefore necessary
to be careful in the handling of symbol and argument nodes.
Hereafter, if we do not specify the type of a symbol node, we
are referring to a non-variable.

B. Approximate Edit Distance

In order to find a mapping from the symbols of G1 to those
of G2, we need a way to measure the similarity of nodes
(n1 and n2) in different graphs, using only colour and graph
structure. To that end, we approximate a kind of edit distance,
which requires counting the number of changes needed to
change the part of G1 reachable from n1 into the part of G2

reachable from n2 (or vice versa, as the process is symmetric).
We are allowed to add a node, delete a node, or change the
colour of a node, at a cost of 1 unit distance per operation.
Our notion of edit distance differs from common usage in two
important ways. First, if the colour of two nodes is different,
we immediately truncate the search and assign a distance of
1. Second, if their colours match, then distance is given by:∑

neighbours distance

(# of neighbours) + 1
(1)

where neighbours are generally child, parent, and sibling
nodes, and distance is (an approximation of) the minimum
distance from pairing all neighbours of n1 to neighbours of
n2. So, if n1 and n2 are of different colours, then their distance
is 1, which is the highest possible value. If they are the same

colour, and their children (and all of their successors) have
matching colours, then the distance is 0, its minimum value.
If n1 and n2 are the same colour, but none of their N children
can be matched to a same-coloured node (or alternatively, if
one of n1 or n2 has N children, and the other has none),
then the distance between n1 and n2 will be N/(N + 1).
This property ensures that matching nodes of the same colour
can never be worse than matching nodes of different colours,
and that all incorrectly matched nodes will be on the outer
fringe of the graph. This is desirable because we do not wish
to continue matching nodes ‘through a mistake’. To see this,
consider a case where we can match a node in G1 that has
two children to a node in G2 with two children. If the node in
G1 represents the ‘plus’ operation, and the node in G2 is the
‘distinct’ operation (i.e. 6=), then it does not matter how well
the child nodes can be matched. Context dictates that these
two portions of graph serve different purposes.

Our method of averaging the edit distance is also desirable
because it does not penalize nodes that have many children. If
we dealt in total edit distance, then a pair of nodes with 8/10
successfully matched neighbours would have a higher distance
than a pair of nodes with 1/2 matches.

The details of our distance algorithm are given by Figure 3.
It can be summarized as a depth-first search that tries to find
user-defined symbols, and stops when it reaches them. Two
examples of this search are given by Figure 2. The Distance
function should initially be called with two symbol nodes and
a depth of 0. To prevent out-of-control graph expansion, the
depths at which symbol, argument, and occurrence nodes can
be expanded are tightly controlled. Line 6 ensures that symbol
nodes can only be expanded at depth = 0 (i.e. initially).
Argument nodes may only be fully expanded at depth <= 1
(line 8); otherwise, we only check which symbol is its parent.
Occurrence nodes are replaced by their corresponding symbol
node if depth > 1 (line 28), which effectively halts expansion.
Combined, these depth limits have the effect of allowing
full expansion for the initial symbol nodes and their child
occurrence and argument nodes, but thereafter shutting down
any expansion that could cross into separate GDL statements.

Briefly, we list some other notable features of the algorithm.
Line 5 enforces a maximum search depth. From line 6, variable
occurrence nodes are never expanded. Line 26 prevents cycles.

1: function DISTANCE(n1, n2, depth)
2: if n1.colour = n2.colour then
3: dist← 0
4: count← 1
5: if depth < MAX DEPTH then
6: if n1.colour is VAR OCC OR

↪→ (n1.colour is SYMBOL AND depth > 0) then
7: pass
8: else if n1.colour is ARG AND depth > 1 then
9: p1 ← SYMBOL parent of n1

10: p2 ← SYMBOL parent of n2

11: if p1.colour 6= p2.colour then
12: dist← dist+ 1
13: count← 2
14: else
15: cDist, cCount← ListDistance(n1.children,

↪→ n2.children, depth+ 1)
16: pDist, pCount← ListDistance(n1.parents,

↪→ n2.parents, depth+ 1)
17: sDist, sCount← ListDistance(n1.siblings,

↪→ n2.siblings, depth+ 1)
18: dist← cDist+ pDist+ sDist
19: count← cCount+ pCount+ sCount+ 1

20: return dist/count
21: else
22: return 1
23:
24: function LISTDISTANCE(nList1, nList2, depth)
25: for each node ∈ nList1 or nList2 do
26: if node if it would form a cycle then
27: remove node from its list
28: else if node.colour is NON VAR OCC AND depth > 1 then
29: replace node with its parent SYMBOL node
30: assigned, tuples← ∅
31: totalDist, count← 0
32: for each n1 ∈ nList1 do
33: for each n2 ∈ nList2 do
34: dist← Distance(n1, n2, depth)
35: if dist = 0 then
36: add n1 and n2 to assigned
37: remove n1 from nList1 and n2 from nList2
38: count← count+ 1
39: else
40: add (dist, n1, n2) to tuples

41: sort tuples in increasing order by dist values
42: while not all nodes ∈ assigned AND tuples is not empty do
43: (dist, n1, n2)← first element popped from tuples
44: if n1 6∈ assigned & n2 6∈ assigned then
45: add n1 and n2 to assigned
46: remove n1 from nList1 and n2 from nList2
47: totalDist← totalDist+ dist
48: count← count+ 1
49: for each remaining node ∈ nList1 or nList2 do
50: totalDist← totalDist+ 1
51: count← count+ 1
52: return totalDist, count

Fig. 3. Algorithm for finding the distance of two rule graph nodes.

From lines 32 to 48, we are finding the distances of all pairs of
nodes in two lists, and then greedily drawing pairs for nodes
that have not yet been matched (like Kruskal’s algorithm).
Lines 35-38 represent an optimization that allows a pair to be
assigned early, if it is a perfect match. Lines 49-51 assign a
maximum distance of 1 to any nodes that were not matched.

C. Desirability Score

Using distance alone, it is sometimes possible for several
pairs of symbol nodes to appear equally viable, which can be
a problem when those pairs are incompatible with each other

(i.e. want to map one node to different things). Since our map-
ping procedures are greedy, we provide additional information
in the form of a desirability score (DS), to boost choices that
are more likely to be correct. While searching graphs to find
distance, we also track the total number of individual nodes
successfully matched, and the number of those nodes that were
previously mapped symbol nodes. Given two possible pairings
with the same distance, we prefer the pair that successfully
matched more nodes, because a larger graph expansion means
that the pair is more likely to be mapped uniquely well. We
also favour pairs with more previously-mapped neighbours.
When a pair is added to the overall mapping, it is assigned
a unique colour that is different from the generic colour for
symbol nodes. Finding a match of these uniquely coloured
nodes during a later graph search is rarer, and therefore more
desirable, than a match among other colours. This feature
is particularly useful for breaking ties among long chains of
nodes that otherwise appear identical, like board coordinates.

The desirability score, DS, of matching nodes n1 and n2,
is given by:

DS(n1, n2) = αD(
Dist(n1, n2)

Dmax
) + αN (1− Num(n1, n2)

Nmax
)

+ αA(1−
Assign(n1, n2)

Amax
) (2)

where Dist is the distance function, Dmax is the maximum
distance among all pairs, Num is the total number of nodes
successfully matched in the graph search for n1 and n2,
Nmax is the maximum number among all pairs, Assign is the
number of previously mapped (i.e. assigned) nodes matched
during the distance search, Amax is its maximum among all
pairs, and the α values are tunable weights. Generally, we
want αD > αN > αA, but this isn’t strictly necessary.

Finally, if we find more than one pair of nodes that score
equally well and are incompatible with each other, we apply a
flat penalty to the score of all such pairs. The intuition for this
is that we would prefer to select a pair that is slightly more
distant over one where we know that we are guessing. Later
score updates may break the tie and lift the penalty.

D. Mapping Algorithms

After generating the rule graph for G1, we have two
methods for comparing and greedily selecting symbol pairs
to add to the mapping, called MMap (Matrix Mapper) and
LMap (Line Mapper).

Of the two, MMap is more thorough, but slower. After every
assignment is made, it recalculates the desirability score for
every pair of symbol nodes (which form a matrix), and selects
the one with the lowest score to map next3. LMap employs
the heuristic of Riesen et al.’s Greedy-GED algorithm [19],
which requires calculating the distances for only two lines in
the matrix that MMap generates. To do this, we must first
select a node, n1, from G1. We make this selection using
the Num and Assign portion of the desirability score. The

3There is room for optimization here, since only the nodes neighbouring
the most recently assigned pair actually need to be recalculated.

distance and DS are then calculated for n1 and every symbol
node in G2. Among these, the node that produces the lowest
DS is selected as n2, and a distance and DS are found for
every node in G1 paired with n2. From these pairs, the one
with the lowest DS is added to the mapping. This second line
of scores provides a second chance, in case the initial node
selected from G1 was a poor choice. However, LMap is still
far more aggressive in its greed than MMap.

Whichever method is used, once a pair has been selected
for mapping, the colour of both nodes is changed to a shared
unique colour, and the process is repeated. Mapping stops
when one or both graphs have run out of symbol nodes, or
the best raw distance scores have exceeded a tunable threshold
value. At this point, any remaining nodes are left unmatched,
and assigned a distance of 1.

If we have multiple candidates for G2, then this procedure
can be repeated for each of them, and the one with the lowest
overall distance should be considered the best mapping, and
therefore the best option for transfer.

IV. EXPERIMENTAL EVALUATION

The experiments reported in this section were designed to
test the robustness of our MMap and LMap algorithms to
unpredictable changes in the mapped game’s rule graph. Each
of them involve mapping some experimental game (G1) onto a
standard game that has previously been encountered and stored
to disk (G2). This recreates the experience of a transfer-bot,
which would need to perform such a mapping before transfer
learning. The majority of our experiments involve mapping
onto either “8 Queens Puzzle - Legal Guided4”(which requires
8 chess queens to be placed on an 8× 8 board without being
able to attack each other) or standard Checkers, which can
both be found in Stanford’s base game repository [7]. These
two games were chosen because they produce very differently
sized rule graphs (given in Table I), and each has a number of
useful variants that can also be found in Stanford’s repository.

For each trial, we randomized the order of the nodes in
G1’s rule graph. This does not change the structure of the
graph, but ensures that the order in which GDL statements
are presented in the rule set cannot factor into the mapping
process. A mapping algorithm that relied on this ordering
could easily be defeated, since the order of statements can
be changed without affecting the underlying game.

Numeric symbols have been omitted from correctness per-
centages, where a numeric symbol is one that represents a
number, or part of a number-like sequences (like ‘m1’, ‘m2’,
‘m3’, etc.). We have made this choice because numbers are
defined in a structured, repetitive way that allows them to
be discovered by simpler methods [14], [15], and they often
significantly outnumber all other nodes. Checkers, for instance,
defines 202 numeric symbols, compared to only 50 other non-
variable symbols, which we are more interested in mapping.

4“Legal Guided” refers to extra rules that prevent a bot from making illegal
moves. In “Unguided” versions of the game, illegal moves are allowed, but
will result in a score of 0 upon termination.

Cross-domain mapping is a relatively underdeveloped area
of research for GGP, so we do not have an established baseline
to compare against. We will, however, include results for
a “Myopic” mapping algorithm that functions identically to
LMap, but has a maximum search depth of 1. This limits its
view to the immediate neighbourhood around each symbol
node, and makes it essentially equivalent to the original
Greedy-GED algorithm [19].

Mean values reported have been averaged over 20 trials
run with different random seeds. We used a maximum search
depth of 5, a penalty for incompatible pairs of 0.1, a distance
threshold of 0.5, and parameter values αD = 0.8, αN = 0.18,
and αA = 0.02. All code was written in Java, and all exper-
iments were run as single-threaded processes on a Windows
10 machine with a 2.8 GHz i7 processor.

In this section, we detail the methodology for three different
kinds of quantitative evaluation. Section V discusses results,
and additionally notes several informal experiments that can-
not be readily evaluated.

1) Self-Mapping: As a baseline, we begin by mapping the
rule graphs of various games onto themselves, unaltered. (I.e.
If G1 is Checkers, then G2 is also Checkers.) Although we
know that a perfect matching must exist, this process of self-
mapping is not guaranteed to succeed flawlessly, as some
symbol nodes may appear to be identical when considering
only a finite neighbourhood around them. Since we know
which symbols ought to be matched together, the correctness
of a mapping is simply given by the percentage of these
matches that were actually made.

2) Adding or Removing Nodes: We continue self-mapping,
but introduce unpredictable changes to G1 by either deleting
or duplicating nodes chosen randomly. Deletion has the effect
of reducing the information present in G1, while duplication
adds noise that can be misleading. To delete a node, we remove
all of its in- and out-edges, making it completely inaccessible
from elsewhere in the graph. To duplicate a node, we create
a second instance of it and duplicate all in- and out-edges. In
both cases, we target occurrence nodes5 because they provide
essential information to our mapping algorithms, and because
a change to one occurrence node is directly comparable to
one change in the GDL code. In particular, removing an
occurrence node is akin to crossing out a single symbol in
GDL. (Duplicating a node does not have a similarly intuitive
analogy, but is essentially the inverse operation.)

In general, this may leave functions without arguments or
arguments without parents, so the resulting graph no longer
represents a syntactically correct game. We are therefore only
approximating the actual GDL changes that a GGP bot might
encounter. However, this approach is useful for its ability to
alter a rule graph by any amount in a way that cannot be
predicted by a bot’s creator in advance. Since we are ultimately
still self-mapping, correctness can be evaluated in the same
way as previously.

5We also tested duplicating/deleting any nodes that were not symbol nodes.
Results followed the same general patterns observed when altering only
occurrence nodes.

TABLE I
SELF-MAPPING STATISTICS FOR GAMES OF VARYING COMPLEXITY.

Time to Build Myopic Self-Mapping MMap Self-Mapping LMap Self-Mapping
Game Nodes Graph (ms) % Correct Time (ms) % Correct Time (ms) % Correct Time (ms)

8 Queens, Gd. 464 1.81 ±1.64 80.63 ±9.25 5 ±7 100.00 ±0.00 224 ±140 100.00 ±0.00 59 ±28
Tic-tac-toe 469 1.75 ±1.83 85.33 ±10.24 3 ±3 88.00 ±10.24 133 ±70 85.33 ±10.24 46 ±24

Connect Four 553 1.86 ±1.90 96.79 ±3.55 2 ±3 100.00 ±0.00 125 ±60 100.00 ±0.00 54 ±27
Rubik’s Cube 1521 2.85 ±5.64 50.31 ±5.29 11 ±9 100.00 ±0.00 8612 ±451 100.00 ±0.00 535 ±238

Checkers 3990 4.73 ±7.42 67.10 ±5.92 49 ±27 100.00 ±0.00 43680 ±4166 100.00 ±0.00 1371 ±316
Chess 5668 7.88 ±13.30 65.71 ±4.20 57 ±26 97.14 ±1.21 86964 ±4400 95.18 ±2.34 3612 ±323

3) Mapping to Game Variants: To ensure that mapping
can be performed between functional games that are different
in meaningful ways, we examine the families of games that
include 8 Queens and Checkers. Within a family, symbol
names and much of the game logic are shared, but games
are different by some combination of altered board size, board
topology, or rule set. For example, a game within the Checkers
family is Checkers, played on a Torus, where pieces must
jump if they are able. We assign either 8 Queens (Guided) or
Checkers to G2, and their respective variants to G1.

Although our mapping algorithms cannot make use of
the shared symbol names due to obfuscation, these names
are useful for evaluation. We calculate the correctness of a
mapping by first finding the set of symbols whose names
appear in both G1 and G2, and then finding the fraction
of those symbols that are matched correctly. This approach
would not work if our games were not explicitly part of a
family, as two symbols could share a name without actually
representing the same concept. The problem of evaluating
mappings between more distantly related games is discussed
further in Section V-B.

V. RESULTS AND DISCUSSION

A. Main Results

1) Self-Mapping: Table I gives results for the self-mapping
of various games. In addition to 8 Queens and Checkers, a
few other well-known games were chosen at varying levels of
complexity. Although the time taken to build a rule graph does
scale with the complexity of that graph, this time was less than
10 milliseconds for all games tested. Since it is insignificant
compared to the time taken for mapping, we will ignore graph
generation time, moving forward.

The Myopic mapper is (naturally) very fast, and performs
fairly well for simple games, but correctness drops sharply for
games that are more complex. This is sensible, as larger rule
graphs provide more opportunity for nodes to be similar in
their immediate neighbourhoods. MMap and LMap compare
well to each other with regard to mapping accuracy. They score
less than 100% in the same places, and for the same reasons.
In Tic-tac-toe, they sometimes map ‘X’ to ‘O’ and/or ‘row’
to ‘column’. This is understandable, as these symbols serve
very similar purposes and appear identical within the bounds
of our search, even though they would be differentiable if
that search were extended to the entire graph. We observe
a similar phenomenon for Chess, where symbols representing

the two directions for diagonal checking, as well as rook/queen
or bishop/queen attack symbols may be confused.

Run time clearly favours LMap over MMap. While LMap
runs in less than 4 seconds for all games tested, MMap takes
∼44 seconds for Checkers and ∼87 seconds for Chess. This is
problematic for GGP, where a bot can expect to have no more
than 30 seconds to 1 minute for initialization. This limits the
application of MMap to relatively simple games only, barring
further optimization.

2) Adding or Removing Nodes: From Figure 4, it is im-
mediately clear that both MMap and LMap (with a maximum
search depth of 5) outclass a Myopic mapper (with a maximum
depth of 1) in terms of mapping accuracy. This was true when
0 nodes were removed/duplicated, and remained true for all
values that we tested.

In the node removal experiment, we varied the number
of deletions from 0 up to the total number of occurrence
nodes in the rule graph. Neither MMap nor LMap dropped to
0% accuracy, even when all occurence nodes were removed
because they were able to glean some information using ar-
gument nodes, exclusively. The Myopic mapper was rendered
completely ineffective at this stage. For both games, MMap
and LMap retained an accuracy of more than 70% until over
50% of occurrence nodes had been removed.

Our node duplication experiment similarly shows that both
MMap and LMap produce far better accuracy that a Myopic
mapper for any number of occurrence nodes duplicated. Here,
we also see a gap between MMap and LMap that is present in
both games, but most pronounced for Checkers. It indicates
that MMap is more robust than LMap to the addition of
random misleading information, though this comes at the cost
of a much higher execution time.

3) Mapping to Game Variants: Table II gives results for
mapping 8 Queen variants onto ‘8 Queens, Legal Guided’
(hereafter, just ‘8 Queens’), and Checkers variants onto Check-
ers. The percentage of non-numeric symbols shared serves as
a rough, but incomplete measure of similarity between games.
Although a symbol may be shared, its usage can be different.
We see this in the results for ‘31 Queens, Guided’. Despite
all non-numeric symbols being shared with 8 Queens, it was
the only 8 Queens variant that caused both MMap and LMap
to score less than 100% in mapping accuracy. This occurred
because 31 Queens features many more numeric symbols.
Though they are not directly included in accuracy calculations,
the existence of these symbols caused mis-mappings among
other symbols that consume them as arguments.

0 20 40 60 80 100 120
0

20

40

60

80

100

Nodes removed

A
cc

ur
ac

y
of

m
ap

pi
ng

(%
)

Removing Occurrence Nodes (8 Queens)

0 100 200 300 400 500
0

20

40

60

80

100

Nodes duplicated

Duplicating Occurrence Nodes (8 Queens)

0 200 400 600 800
0

20

40

60

80

100

Nodes removed

A
cc

ur
ac

y
of

m
ap

pi
ng

(%
)

Removing Occurrence Nodes (Checkers)

0 500 1,000 1,500 2,000
0

20

40

60

80

100

Nodes duplicated

Duplicating Occurrence Nodes (Checkers)

Fig. 4. Mapping accuracy for alterations of 8 Queens (top) and Checkers (bottom). MMap in red, LMap in blue, Myopic in black.

TABLE II
MAPPING STATISTICS FOR THE 8 QUEENS AND CHECKERS FAMILIES.

% Sym. Myopic MMap LMap
Game Variant Shared % Correct Time (ms) % Correct Time (ms) % Correct Time (ms)

6 Queens, Unguided 93.33 89.29 ±8.60 5 ±8 100.00 ±0.00 166 ±95 100.00 ±0.00 54 ±24
8 Queens, Unguided 93.33 89.29 ±8.60 3 ±4 100.00 ±0.00 203 ±110 100.00 ±0.00 41 ±17

12 Queens, Unguided 93.33 75.71 ±6.55 4 ±5 100.00 ±0.00 256 ±142 100.00 ±0.00 62 ±34
16 Queens, Unguided 93.33 75.71 ±6.55 4 ±5 100.00 ±0.00 300 ±96 100.00 ±0.00 56 ±30

31 Queens, Guided 100.00 67.50 ±8.05 6 ±8 87.50 ±0.00 584 ±197 68.50 ±0.00 123 ±80
Checkers, Small (6X8) 97.96 61.15 ±4.38 45 ±28 97.92 ±0.00 36586 ±674 97.92 ±0.00 1279 ±231
Checkers, Tiny (4X8) 95.83 69.67 ±5.43 36 ±14 97.83 ±0.00 35996 ±640 97.83 ±0.00 1214 ±210
Checkers, Must-Jump 84.62 41.25 ±4.15 22 ±14 100.00 ±0.00 36446 ±280 86.02 ±4.84 2251 ±211

Checkers, Cylinder, Must-Jump 84.62 40.00 ±3.25 24 ±14 100.00 ±0.00 34373 ±525 81.82 ±7.91 2351 ±172
Checkers, Torus, Must-Jump 84.62 40.00 ±3.25 24 ±14 100.00 ±0.00 34618 ±557 80.80 ±6.95 2334 ±221

In general, we see the same patterns from this experiment
as have been previously established. The Myopic mapper
crumbles quickly as complexity is increased, and as symbol
matches become less clear-cut. LMap is considerably faster
than MMap, but also more prone to errors. This is particularly
evident when looking at the Checkers variants, where MMap
scores 100% accuracy across the worst cases for LMap. On
the other hand, MMap takes more than 30 seconds for every
Checkers variant, which is likely too slow for use in GGP. It
remains to be seen if LMap’s mapping accuracy is low enough
to impede good transfer in a GGP bot.

B. Additional Results, Limitations, and Future Work

It is clear that an important next step for this line of
research is to test its compatibility with various methods of
transfer learning, like those discussed in Section II-C. This
would allow us to answer questions about the effectiveness of
transfer at various levels of mapping accuracy. Additionally,
we could analyze mappings between games that are not as
closely related, where concepts may be shared even when

symbol names are not. For example, we know that Checkers
and Chess are both games played on a board, where players
alternate turns, moving one piece at a time. If we try mapping
Chess to Checkers (with LMap, in this case), some of these
intuitive connections are borne out (e.g. board properties,
like rank and file, or capturing in Chess being mapped to
jumping in Checkers). On the other hand, some are dubiously
useful (e.g. knight movement mapped to king movement), or
obviously wrong (e.g. the en passant capturing rule mapped to
the ‘greater than’ operation). For this to be a useful mapping
overall, it must not only produce positive transfer, but also
provide a larger benefit than spending the same amount of
time on self-play. The most direct way to test this is to build a
transfer-bot and have it play against non-transfer counterparts.

Before conducting transfer, a bot must first decide which
game to transfer onto, given the choice of every game that
it has previously encountered. Here, mapping (LMap, in
particular), serves another important function. Because we are
keeping track of the edit distance for every pair in the mapping,
it is straightforward to produce an overall distance for two

games that serves as a measure of similarity. Some examples
of similarity between standard Checkers and various other
games are given by Table III. Intuitively, it seems sensible that
Checkers is closest to its own variants, farther from Chess, and
farther still from games like Connect Four, although we cannot
give an objective evaluation of these distance values.

If a bot is able to run a mapping between its current task
and every game in its knowledge base, then it can choose to
transfer from the one with the lowest average distance. For this
kind of usage, even an execution time of 4 seconds becomes
problematic, but there are ways that LMap can be optimized.
Since LMap is greedy, and the distance for a mapped pair is
fixed once that pair has been selected, we can terminate LMap
early when it becomes mathematically impossible for the
current mapping to produce a lower average distance than the
previously seen best. We could also consider applying more
aggressive heuristics, like shortening the maximum search
depth. Since we only care about approximating the overall
distance, some mapping quality could be sacrificed with the
intention of doing a more complete mapping for the game that
is ultimately selected for transfer. This approach could also be
necessary for scaling to games larger than Chess.

As the library of known games for transfer grows, it may be
useful to cluster them hierarchically. For example, all of the
Checkers variants might belong to one cluster, and that cluster
might be grouped with others at the next level. If a given game
matches poorly with a representative from a cluster, time could
be saved by declining to check the cluster’s other members.
This system also provides some relief to the problem of games
that are the same, but are described differently enough to
inhibit a good mapping. We will not be able to recognize the
similarity of the descriptions, but can store all of them within
the hierarchy without significantly hampering execution time.

Another avenue for future research is the application of
MMap and LMap to GGP frameworks other than GDL, such
as Ludii [20]. Since it is designed for clear, concise game
descriptions, we are optimistic that mappings could be both
more effective and faster to produce.

Beyond game playing in the abstract, a practical application
of this work will be to the transfer learning problems present in
smart home technologies for persons suffering from dementia.
In such problems, complex cognitive models of people may
be built that help a system to provide timely and appropriate
assistance, but these models will be structured around one
particular domain (e.g. kitchen activities). We are particularly
interested in how these models may be mapped to other
activities, easing the adoption of the technology more widely
across the home than is currently possible.

VI. CONCLUSION

We have developed a method for approximating an edit
distance between nodes in two different rule graphs, and have
applied it in two methods for mapping symbols from a source
game to a target game of differing domain. Our evaluation
shows that, while both methods achieve a high mapping accu-
racy for games that have been altered in unpredictable ways,

TABLE III
MEAN DISTANCES FROM STANDARD CHECKERS.

Game MMap Distance LMap Distance
Checkers 0.0000 ±0.0000 0.0000 ±0.0000

Checkers, Must-Jump 0.0929 ±0.0000 0.1135 ±0.0011
Checkers, Torus, M-J 0.0940 ±0.0000 0.1134 ±0.0007

Chess 0.4270 ±0.0043 0.4172 ±0.0034
8 Queens, Guided 0.7520 ±0.0000 0.7394 ±0.0001

Connect Four 0.7567 ±0.0037 0.7482 ±0.0003

MMap is somewhat more robust, but LMap is significantly
faster. In the GGP setting, where time is at a premium, LMap
is generally viable as a starting point for transfer. With further
optimization, MMap may become generally viable as well, but
for now, remains useful for low-complexity games.

ACKNOWLEDGMENT

This work was generously supported by the Natural Sci-
ences and Engineering Research Council of Canada.

REFERENCES

[1] D. Silver et al., “A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play,” Science, vol. 362, no. 6419, pp.
1140–1144, 2018.

[2] A. Goldwaser and M. Thielscher, “Deep reinforcement learning for
general game playing,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 34, no. 02, 2020, pp. 1701–1708.

[3] M. Świechowski, H. Park, J. Mańdziuk, and K.-J. Kim, “Recent ad-
vances in general game playing,” The Scientific World Journal, 2015.

[4] M. Genesereth, N. Love, and B. Pell, “General game playing: Overview
of the aaai competition,” AI magazine, vol. 26, no. 2, pp. 62–62, 2005.

[5] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth,
“General game playing: Game description language specification,” 2008.

[6] M. Genesereth and M. Thielscher, “General game playing,” Synthesis
Lectures on A.I. and Machine Learning, vol. 8, no. 2, pp. 1–229, 2014.

[7] A. L. Sam Schreiber, “The general game playing base package,” 2018.
[Online]. Available: https://github.com/chuchro3/ggp-base

[8] G. J. Kuhlmann, “Automated domain analysis and transfer learning in
general game playing,” Ph.D. dissertation, Uni. of Texas at Austin, 2010.

[9] G. Kuhlmann and P. Stone, “Graph-based domain mapping for trans-
fer learning in general games,” in European Conference on Machine
Learning. Springer, 2007, pp. 188–200.

[10] G. Jiang, L. Perrussel, D. Zhang, H. Zhang, and Y. Zhang, “Game
equivalence and bisimulation for game description language,” in Pacific
rim intl. conf. on artificial intelligence. Springer, 2019, pp. 583–596.

[11] B. Falkenhainer, K. D. Forbus, and D. Gentner, “The structure-mapping
engine: Algorithm and examples,” Artificial intelligence, vol. 41, no. 1,
pp. 1–63, 1989.

[12] M. Klenk and K. Forbus, “Cross domain analogies for learning do-
main theories,” Northwestern Univ, Evanston, IL, Qualitative Reasoning
Group, Tech. Rep., 2007.

[13] T. Hinrichs and K. D. Forbus, “Transfer learning through analogy in
games,” Ai Magazine, vol. 32, no. 1, pp. 70–70, 2011.

[14] G. Kuhlmann and P. Stone, “Automatic heuristic construction for general
game playing.” in AAAI, 2006, pp. 1883–1884.

[15] S. Schiffel and M. Thielscher, “Fluxplayer: A successful general game
player,” in Aaai, vol. 7, 2007, pp. 1191–1196.

[16] D. M. Kaiser, “Automatic feature extraction for autonomous general
game playing agents,” in Proc. of the 6th international joint conference
on Autonomous agents and multiagent systems, 2007, pp. 1–7.

[17] M. Kirci, N. Sturtevant, and J. Schaeffer, “A ggp feature learning
algorithm,” KI-Künstliche Intelligenz, vol. 25, no. 1, pp. 35–42, 2011.

[18] A. Hufschmitt, J.-N. Vittaut, and J. Méhat, “A general approach of
game description decomposition for general game playing,” in Computer
Games. Springer, 2016, pp. 165–177.

[19] K. Riesen, M. Ferrer, and H. Bunke, “Approximate graph edit distance
in quadratic time,” IEEE/ACM transactions on computational biology
and bioinformatics, 2015.

[20] E. Piette et al., “Ludii–the ludemic general game system,” arXiv preprint
arXiv:1905.05013, 2019.

