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Abstract—Our paper explores the game theoretic value of the
7-in-a-row game. We reduce the problem to solving a finite board
game, which we target using Proof Number Search. We present
a number of heuristic improvements to Proof Number Search
and examine their effect within the context of this particular
game. Although our paper does not solve the 7-in-a-row game,
our experiments indicate that we have made significant progress
towards it.

Index Terms—proof number search, (m,n,k)-games, artificial
intelligence, game theoretic value

I. INTRODUCTION

Our paper explores how Proof Number Search (PNS) can
be adapted to prove the infinite 7-in-a row game, whose game
theoretic value has long been open. This game belongs to the
family of (m,n, k)–games – a generalisation of Gomoku and
Tic-tac-toe. In these games two players take turns in placing
a stone of their color on a rectangular board of size m × n
(where both m and n can be infinite), the winner being the
player who first gets k stones of their own color in a row,
horizontally, vertically, or diagonally. We focus on a weak
variant of (m,n, k)–games, called the maker-breaker setup,
where the second player (breaker) cannot win by collecting
k stones in a row, hence its objective is to prevent the first
player (maker) from winning.

On the theoretical side, we present a tiling technique that
can be used to prove that breaker wins on an infinite board by
partitioning the board into finite pieces and generalising the
breaker strategy on the small boards to the infinite one.

Afterwards, we search for a breaker win strategy on the
finite board using PNS, a technique that has already been
successfully applied to several board games, e.g. Gomoku,
Hex, and Go. PNS benefits from the non-uniform branching
factor of the AND-OR game tree. Exploiting domain specific
knowledge of (m,n, k)–games, we develop several methods
that increase this non-uniformity, which further reduces the
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search space and increases the computational gain of PNS
compared to Alpha-Beta [5] pruning in many scenarios.

Our methods can be grouped into three categories. The first
category concerns the reduction of the search space, such as
early recognition of winning states, recognition of mandatory
moves, and partitioning of the board. The second category is
about identifying isomorphic states. Finally, the third category
of heuristics guides the traversal of the search space by
overriding the static initialization rule of the proof and disproof
number values with heuristic ones. Our initialization uses
a simple combination of heuristic features and parameters
learned from previously proven states, foreshadowing the
potential of enhancing other board game solvers with machine
learning. Our paper presents a quantitative evaluation of the
effect of these changes on the search space.

The 7-in-a-row game corresponds to the (∞,∞, 7)–game
and our paper presents work geared towards proving the con-
jecture that its game theoretic value is a draw. Our contribution
can be summarized as follows:
• We present a tiling technique that allows us to reduce

the infinite board (∞,∞, 7)–game to (infinitely many)
independent finite (4, n, 7tr)–games for some fixed n.

• We incorporate various search heuristics specific to
(m,n, k)–games into PNS. In particular, we introduce
three methods that are – to the best of our knowledge
– novel: 1) isomorphy detection, 2) breaking the board
into components, 3) heuristic proof number and disproof
number initialization.

• We empirically evaluate each of our methods.
• We prove that the (4, n, 7tr)–game is maker win for
n ≤ 14. Our experiments, however, suggest that as n
increases, the closer we get to a breaker win situation,
leading to the conjecture that there is a n0 where the
game theoretic value flips, i.e. the game is maker win for
n < n0 and breaker win for n ≥ n0.

II. BACKGROUND AND RELATED WORK

A. (m,n, k)–games

(m,n, k)–games are played on an m × n board, where
two players take turns in marking one of the empty fields
of the board. The player, who can collect k marks in a978-1-6654-3886-5/21/$31.00 ©2021 European Union



row (horizontally, vertically, or diagonally) wins the game.
(m,n, k)–games belong to positional games [3], defined more
abstractly, as follows. Let H = (V,E) be a hypergraph. The
two players take turns to mark a node with their color and
the winner is the player who first colors an entire hyperedge
with his color. In particular, an (m,n, k)–game is a positional
game where V := {v | v ∈ m× n board} and E contains all
horizontal, vertical and diagonal lines of length k.

A player is said to have a winning strategy if it can always
win, regardless of the opponent’s strategy. A player has a draw
strategy if the other player does not have a winning strategy.
Accordingly, the game theoretic value of a game can be 1)
first player win, 2) second player win, or 3) draw.

The strategy stealing argument can be used to show that the
second player cannot have a winning strategy: if it had, the
first player could start with an arbitrary move and then mimic
the second player’s strategy to win, leading to contradiction.
This motivates a weaker version of the (m,n, k)–games, called
maker-breaker setup, in which the aim of the second player
(breaker) is to prevent the first player (maker) from winning,
i.e., breaker is not rewarded by collecting an entire hyperedge.
The game theoretic value in the maker-breaker setup is 1)
maker win if the first player has a winning strategy or 2)
breaker win otherwise.

The following observations are easy to prove. If maker
wins some (m,n, k)–game, then its winning strategy directly
applies to any games with greater m or n, or smaller k. If
breaker wins some (m,n, k)–game, then it also wins if m or
n are decreased, or k is increased. If first player wins some
(m,n, k)–game, then it also holds that maker wins that game.
Conversely, if breaker wins, then the game is a draw. It is,
however, possible that the maker-breaker variant is a maker
win but the original game is a draw: for example, the (3, 3, 3)–
game (or Tic Tac Toe).

Several games have been proven to be draws, e.g. the
(5, 5, 4)–game by [4], the (6, 6, 5)–game by [14], and the
(7, 7, 5)–game by [6]. Recently, [9] prove that the (8, 8, 5)-
game is a draw as well. On the other hand, [1] show that first
player wins the (15, 15, 5)–game, also called Gomoku.1

In the maker-breaker setup, a maker-color in some square
corresponds to removing that square from all hyperedges. In
contrast, a breaker-color in a square corresponds to removing
all hyperedges containing that square. Hence, each move can
be seen to make the hypergraph smaller. We introduce l-lines,
to characterize the active parts of the board:

Definition II.1 (l-line). An l-line is a hyperedge which con-
tains no breaker-colored squares and exactly l empty squares.

We use l-lines to define an aggregate statistic board measure,
called potential, which will be crucial for developing good
search heuristics. [3] already introduces potential and it is used
in several works on (m,n, k)–games.

1Gomoku is also played on a 19× 19 board, but the (19, 19, 5)–game is
still unsolved.

Definition II.2 (Potential). Suppose board b contains xl
different l-lines for l ∈ 1 . . . k. The potential of b is

pot(b) =

k∑
l=1

xl · 2−(l−1)

B. 7-in-a-row game

The 7-in-a-row game is an (m,n, k)–game, where m,n =
∞, representing the board Z× Z and k = 7, hence it can be
witten as the (∞,∞, 7)–game. [4] proves that the (∞,∞, 9)–
game is a breaker win and [11] proves that the (∞,∞, 8)–
game is a breaker win, as well. [1] proves that first player
wins the (15, 15, 5)–game, which implies that maker wins the
(∞,∞, 5)–game.2 These results imply that the (∞,∞, k)–
game is maker win for k ≤ 5 and breaker win for k ≥ 8.
The cases k ∈ {6, 7} are unknown, generally conjectured
to be both breaker win. Our primary objective in this paper
is to build techniques and intuition towards proving that the
(∞,∞, 7)–game is a breaker win, and hence a draw.

C. Proof Number Search

Proof number search (PNS) is a widely used alogorithm
for solving games [2], [8]. It is based on conspiracy number
search [10], which proceeds in a minimax tree into the
direction where the least number of leafs must be changed in
order to change the root’s minimax value by a given amount.
PNS follows a similar strategy, applied to AND/OR trees: it
proceeds into the direction where the given node can be proven
with the least effort.

Definition II.3 (proof/disproof number). Given a rooted
AND/OR tree with root r. The proof/disproof number
(PN /DN ) is the minimum number of descendent leafs, which
need to be proven/disproven in order to prove/disprove r. If r
is a leaf then the proof and disproof numbers are by definition
1.

It follows, that{
PN= 0,DN=∞ if r is proven
PN=∞,DN= 0 if r is disproven

In order to prove an OR node, we only need to prove one
of it’s children, but to disprove it, we need to disprove all of
it’s children. The contrary is true for AND nodes. This implies
that the proof numbers and disproof numbers can be computed
recursively:

PN(r) =


min

ch: children(r)
PN(ch) if r is an OR node∑

ch: children(r)

PN(ch) if r is an AND node

DN(r) =


∑

ch: children(r)

DN(ch) if r is an OR node

min
ch: children(r)

DN(ch) if r is an AND node

2However, it does not imply that the (∞,∞, 5)–game is first player win,
which is still open.



Plain PNS is a best-first algorithm: it selects iteratively
the most promising leaf, and extends it, until the root is
proven/disproven. Finding the most promising leaf is com-
puted by starting from the root, and choosing iteratively the
branch which may need the least effort to prove. We measure
this effort by the PN ,DN values: we choose the child with
minimal PN value at OR nodes, and minimal DN value at
AND nodes. For further details of PNS and its variants see
[15].

D. Search space reduction techniques

Solving a game typically involves traversing a large space,
hence success is heavily dependent on techniques that reduce
search. In the following, we summarize the heuristics that have
been successfully applied to solve (m,n, k)–games.

In any game with confluent branches, i.e., when different
move sequences can result in identical game state, one can
save a lot of computation by collapsing identical states, i.e.,
turning the search tree into a directed acyclic graph (DAG).
This is typically implemented using a transposition table (see
e.g. [13]). [1] and [9] both report using transposition tables.

Threat space search [1] revolves around the observation that
in situations where the non-current player has an immediate
win option – a threat – the current player is forced to block
that move, hence its effective branching factor is reduced to
1. Any strategy that creates threats has the potential to greatly
reduce the proof search effort. While threats have proven to
be very useful for proving first player (maker) victory, their
use is less clear for proving draw.

A relevance-zone, also called R-zone is a generalisation of
threats and captures the part of the game board in which a
player has to move into in order to win. Identifying R-zones
often allows for reducing the branching factor. R-zones have
been used to speed up proof search both in maker win games
[16], [17] and breaker win games [9].

Heuristic ordering of game states allows for first exploring
more promising moves. A more promising move is more likely
to lead to victory, after which there is no need to explore
alternative moves. [1] use simple manual heuristics to select
the top best moves of first player. [9] uses board potential to
order moves. In the context of PNS, heuristic ordering can
be implemented via better initialization of PN /DN values in
leaf nodes: instead of 1 it can be an estimate of how many
descendents of the leaf need to be proven/disproven in order
to prove/disprove it. A perfect estimate would ensure that
PNS finds the smallest solution tree without extending any
node outside of the solution. While such perfect estimate is
infeasible, in many scenarios we have a more accurate estimate
than 1. [1] use 1+ d/2 for initial PN /DN values, where d is
the depth of the leaf, encouraging more shallow search.

Another simple but important heuristic is to eliminate
squares that are not contained in any l-line: all hyperedges
that contain such squares are already blocked by breaker so
neither player benefits from moving there.

Pairing strategies [4], [7], [11], [14] yield a useful tool
for proving that a board position is a draw or breaker win.

A pairing strategy is a set of pairwise disjunct pairs of
vertices, such that each hyperedge contains at least one pair.
Such pairing does not necessarily exist, but if it does, it
can be shown that breaker can win the game: it can block
all hyperedges by always marking vertex v after maker has
selected the pair of v. Identifying a pairing strategy is a
useful method for early termination of proof search. When
a pairing strategy is not available, partial pairings can be
used to eliminate parts of the hypergraph. Given hypergraph
(V,E) and some subset Vpair ⊆ V , let Epair ⊆ E denote
the hyperedges restricted to Vpair. If (Vpair, Epair) contains a
pairing strategy, then the proof theoretical value of (V,E) is
the same as that of (V − Vpair, E − Epair) ( [9]).

Vertex domination was proposed in [9]. We say that vertex
vi dominates vertex vj if E(vi) ⊇ E(vj). [9] proves that if
vi dominates vj , then we can always select vi instead of vj .
Furthermore, if two vertices mutually dominate each other,
then they form a partial pairing and hence can be removed,
along with the containing hyperedges.

Board potential provides another powerful technique to
discover that breaker has won the game.

Theorem II.1. Consider board b, with breaker moving next.
If pot(b) < 1 then breaker wins in b.

Proof. Consider all lines n1 . . . nr containing some square
s. Suppose their lengths are l1 . . . lr, respectively. The con-
tribution of these lines to the total potential is cont(s) =∑r

i=i 2
−(li−1). If maker moves to s, all lines turn shorter by

one, doubling their contribution to 2 · cont(s). If, on the other
hand breaker moves to s, the lines become dead, making their
contribution 0. In either case, the change in potential is the
same (cont(s)), but with different sign.

If breaker comes next on board b, he can always select the
square s with the largest corresponding potential contribution.
Any square s′ that maker subsequently selects has at most
the same contribution, i.e., cont(s) ≥ cont(s′). This means
that the potential of the resulting board b′ cannot increase:
pot(b′) ≤ pot(b) − cont(s) + cont(s′) ≤ pot(b). Breaker
hence has a strategy that ensures that the potential is mono-
tonic decreasing in every two steps. This, combined with the
assumption that pot(b) < 1, entails that for any successor
board b′ of b pot(b′) < 1. Assume, for contradiction that
maker wins. This can only happen if his last move was into
a 1-line. However, the potential contribution of that line is 1,
contradicting the assumption that breaker can always ensure
that the potential is strictly less than 1.

III. REDUCTION OF THE (∞,∞, 7)–GAME TO THE FINITE
(4, n, 7tr)–GAME

We aim to prove that the (∞,∞, 7)–game is a draw by
proving that breaker wins this game. Finding a breaker strategy
on an infinite board can be difficult, but in some cases breaker
can partition its strategy into pieces. Such partition involves
partitioning the board itself and dealing with each partition
independently: when maker colors a node in one of the
partitions, breaker answers in the same partition, regardless of



the other partitions. Beyond node partitioning, we also have
to partition the edges of the hypergraph: for every hyperedge
there should be a hyperedge in one of the partitions, which is
a subset of the initial hyperedge. Formally:

Theorem III.1. Let H = (V,E) be a hypergraph and
let V1, V2, . . . denote a (possibly infinite) partitioning of its
vertex set. Let E1, E2, . . . denote edges defined on V1, V2, . . . ,
respectively, such that ∀e ∈ E(∃i(∃e′ ∈ Ei(e

′ ⊆ e))). If
breaker wins in each (Vi, Ei) then it wins (V,E) as well.

Remark III.2. Note that in case breaker cannot win in some
of the partitions, this does not imply that maker wins (V,E).

Proof. Consider an edge e ∈ E. We know that there is an edge
e′ contained among the edges Ek of some subgraph (Vk, Ek)
such that e′ ⊆ e. Each time maker moves, it colors a vertex
that is contained in exactly one Vi. Breaker can respond by
following his winning strategy in the same subgraph (Vi, Ei).
This ensures that in each subgraph (Vi, Ei) breaker will
eventually block all hyperedges. Hence breaker will eventually
block e′ as well, which implies that it also blocks e.

We partition the board into finite (4, n) blocks with nodes
x(i,j) i ∈ [1 . . 4], j ∈ [1 . . n], with the following hyperedges:
Horizontal edges, for i ∈ [1 . . 4]

{x(i,1), x(i,2), x(i,3), x(i,4)} (1)
{x(i,n−3), x(i,n−2), x(i,n−1), x(i,n)} (2)
{x(i,j), . . . , x(i,j+6)} j ∈ [2 . . n− 7] (3)

Vertical edges:

{x(1,j), x(2,j), x(3,j), x(4,j)} j ∈ [1 . . n] (4)

Diagonal edges:

{x(i+1,1), x(i+2,2), x(i+3,3), x(i+4,4)} i ∈ [0 . . . n− 4] (5)
{x(i−1,1), x(i−2,2), x(i−3,3), x(i−4,4)} i ∈ [n+ 1 . . . 5] (6)

Extra edges:

{x(3,1), x(2,2), x(1,3)}, {x(2,1), x(3,2), x(4,3)},
{x(3,n−3), x(2,n−2), x(1,n−1)},
{x(2,n−3), x(3,n−2), x(4,n−1)} (7)
{x(2,1), x(1.2)}, {x(n−2,1), x(n−1,2)} (8)

For the visualization see Fig. 2.

Theorem III.3. Let us partition our infinite hypergraph (V,E)
into (4, n) blocks, and define the above hyperedges on the
blocks. Then for every hyperedge e ∈ E there exist a block
(Vi,j , Ei,j), which contains a hyperedge f ∈ Ei,j , which is
the subset of e.

Proof. For any 7-line l ∈ E one of the following holds:
C.1 All v ∈ l are contained in a single block.
C.2 l crosses at least 2 blocks, and it contains 4 vertices in

one of them.
C.3 l crosses 3 blocks, and has at most 3 nodes in each block.

That’s only possible in the corners.

Fig. 1: There are 6 4-lines which cross the horizontal border
of two neighbouring blocks. We choose a subline, and we add
it to the respective block. We choose the larger one by the 3-1
split, and we choose the upper ones by the 2-2 split. In the
left figure you can see, how a 4-line can cross the horizontal
border, and in the right the respective subparts, which we add
to the respective blocks.

In C.1, l must be horizontal (because a block has 4 rows) and
hence it is covered by (2) obviously.
In C.2, l has at least 4 nodes in one block and is covered by
(1), (4), (5) or (6).
In C.3, consider the 4 ×∞ region, where l has four nodes.
If all these nodes are in one block, then (5) or (6) covers l.
Otherwise, this 4-line crosses the horizontal separator between
neighbouring blocks (see figure 1). If the separator splits the
nodes 2-2, the upper two is covered by (8). Otherwise, the
split is 3-1 and the 3-subline is covered by (7).

Definition III.1. Let (4, n, 7tr)–game denote the maker-
breaker game on hypergraph H = (V,E), H = {v(i,j)| i ∈
[1 . . . 4], j ∈ [1 . . . n]} and (truncated) hyperedges defined
above.

Conjecture III.1. There is a breaker win strategy for the
(4, n, 7tr)–game if n is large enough.

It is an easy consequence of Conjecture III.1 and Theorems
III.1 and III.3 that the (∞,∞, 7)–game is a draw. Hence, we
have reduced our proof task from the infinite (∞,∞, 7)–game
to finding some n for which the finite (4, n, 7tr)–game is
breaker win. In the following we present our results towards
proving the latter conjecture.

We support Conjecture III.1 by the following. We define the
table (4,N, ∗) as follows. The table is [1..4]× [1..∞), and we
add the 7 extra edges (including (1)) in the only end.

Conjecture III.2. There is a breaker win strategy for the
(4,N, ∗)–game.

This conjecture is based on the following experience for pla-
nar game boards (In general, it should be true for hypergraphs
with subexponential growth). If Maker can win, then he can
win in a small number of moves and with a very limited-size
proof tree. Also, if we see that breaker can choose between
too many options which do not lead to a limited-size win for
maker, that the state is a breaker win. All these are even more
true if the game board has a small area in which the maker has
better opportunities. Like in (4, N, 7tr). Here, we experienced
that maker has a strong attack in the first few columns, but if
the breaker finds the proper defense in the first few moves, then
every possible attack ends up in a state where maker seems



to have much worse attacking power compared to the starting
state, and from which every reasonable greedy breaker strategy
seems to be enough for preventing maker from winning. We
were able to formally prove that there is no maker win if
maker can use the first 13 coloums. When we considered tiny
modifications of the board, if maker could win, then he was
able to win using only the first 6 coloumns.

IV. PROOF NUMBER SEARCH FOR SOLVING THE
(4, n, 7tr)–GAME

As we have seen in Section III, any breaker win strategy
for the (4, n, 7tr)–game for some n can be extended to a
breaker win strategy in the (∞,∞, 7)–game. The board of the
(4, n, 7tr)–game is finite (with 4 ·n moves), and so are the set
of possible move sequences, hence it may be possible to find
its game theoretic value using search algorithms. Nevertheless,
naive and exhaustive search remains infeasible even for small
n values: there are roughly (4 · n)! valid games.3

In the following, we instrument PNS to solve the (4, n, 7tr)–
game. One main strength of PNS is that it makes no game
specific assumptions and can be used for any finite game.
It can be seen as a refinement of Alpha/Beta [5] pruning,
in that in each extension step it takes a global look at the
whole search tree and selects the branch that requires the least
number of nodes to prove in order to prove the root node.
This can result in the pruning of large parts of the search
tree. Nevertheless, as we shall see in Section V, the search
space remains prohibitively large for plain PNS. Hence, we
introduce several methods that reduce computation. Some of
our methods are well known or refinements of earlier ideas.
Those that are novel to the best of our knowledge are the
following: 1) isomorphy detection, 2) breaking the board into
components and 3) heuristic PN /DN initialization.

A. Early recognition of winning states

The search space grows exponentially with the number of
valid steps, hence it is crucial to realise once the game has been
decided and no further search is necessary. Theorem II.1 yields
a sufficient condition for terminating the game, which we refer
to as Breaker win stop. There is a more trivial Maker win
stop condition: the crossing of two 2-lines.

Theorem IV.1. Supposing an optimal breaker, maker can win
if and only if he moves to the crossing of two 2-lines.

Proof. The if case is trivial since moving into the crossing
of two 2-lines yields two 1-lines. To prove the only if part,
assume for contradiction that maker wins without ever moving
into the crossing of two 2-lines. Each time maker moves into a
2-line, the optimal breaker strategy responds by moving into
the resulting 1-line. Since it never happens that more than
one 1-line is created, breaker can always break all 1-lines, so
maker cannot win. This contradiction proves the theorem.

3The real number of games is somewhat less since as soon as maker wins,
we can terminate the game.

B. Eliminating branches from the search space

We identify situations where we can safely restrict the valid
moves. Proving that these restrictions do not affect the game
theoretic value of the board is left to the reader.
• Forced move: if a board contains a 1-line or the crossing

of two 2-lines (Theorem IV.1), we are allowed to disre-
gard all other moves.

• Dead square elim: if an empty square is not contained in
any lines, then we can eliminate that square, since neither
player benefits from moving there.

• Dominated square: Suppose square s is contained in
a single line l. If there is another square s′ that is only
contained in l, then they form a partial pairing and s, s′, l
can be eliminated. If l is a 2-line, then its other square
s′ dominates s and we can always assume that maker
eagerly moves to s′, forcing breaker to move to s.

C. Avoiding repeated searches

The same set of moves, played in different orders result in
identical boards. We can save a lot of computation and mem-
ory by maintaining a transposition that maps boards to search
nodes, as we can use the same search node for identical boards.
This turns the search tree into a search DAG. Furthermore, we
also exploit the horizontal symmetry of the game, i.e., collapse
states that are symmetrical. We introduce an even more refined
transposition table which exploits the isomorphy of boards
(considered as hypergraphs). We transform each graph into a
canonical form and store it in the transposition table. We refer
to this extension as Isomorphy.

D. Partitioning the board

Consider a hypergraph (V,E) with marks of maker and
breaker at VM , VB ⊂ V , respectively (with VM ∩ VB = ∅).
We define the residual hypergraph (V ′, E′) as follows. V ′ =
V \VM \VB and E′ =

{
e∩V ′ | e ∈ E, e∩VB = ∅

}
. When

we continue playing in (V,E, VM , VB), then it is equivalent
to starting a new game in (V ′, E′).

Theorem III.1 implies that if the residual graph is not
connected, then we only need to find the game-theoretic values
of the components. We can use a similar tool if the hypergraph
is not 2-connected.

Theorem IV.2. Let H = (V,E) a (possibly infinite) hyper-
graph with subhypergraphs (V1, E1) and (V2, E2) satisfying
V1 ∪ V2 = V , V1 ∩ V2 = {v} and E = E1 ∪ E2. If maker
starts the game, then he can win in (V,E) if and only if one
of the following holds.

1) Maker can win (V1, E1).
2) Maker can win (V2, E2).
3) Maker can win both games (V1, E1) and (V2, E2) with

the extra advantage that v is colored with maker’s color
and maker can still make the next move.

Proof. If 1) or 2) holds, then maker wins (V,E) by winning
(V1, E1) or (V2, E2). If 3) holds then maker chooses v and
then wins the game (Vi, Ei) in which breaker does not respond
in his next move.



Fig. 2: (Left) Disproof setup: 2 weak attacker moves, and
one strong defender move (Right) The visualization of the
hyperedges shorter than 7 that are added to each partition
defined in Section III.

If none of the three conditions hold, then by symmetry, we
can assume that breaker can win (V1, E1) (played normally)
and breaker wins (V2, E2) even if maker has the extra move
at v. Breaker can follow these strategies as in Theorem III.1.
(In (V2, E2), breaker assumes having maker’s mark at v.)

Theorem IV.3. Let H = (V,E) be a (possibly infinite) hyper-
graph with subhypergraphs (V1, E1) and (V2, E2) satisfying
V1 ∪ V2 = V , V1 ∩ V2 = ∅ and E = E′1 ∪ E′2 ∪ {e} and
Ei = E′i∪{e∩Vi}. If maker starts the game, then he can win
in (V,E) if and only if one of the following holds.

1) Maker can win (V1, E
′
1).

2) Maker can win (V2, E
′
2).

3) Maker can win both games (V1, E1) and (V2, E2).

Proof. If one of them holds, then maker can win (V,E) by fol-
lowing the winning strategy or strategies as in Theorem III.1.

If none of them holds, then by symmetry, we can assume
that breaker can win both (V1, E1) and (V2, E

′
2), and hereby

he can win (V,E).

A linear time algorithm can be used to detect if the
hypergraph is not 2-connected. In such cases, the board can
be reduced to 4 smaller boards, according to Theorems IV.2
and IV.3 that can be evaluated independently. We refer to this
optimisation as Components.

E. Replacing PN /DN values with game specific heuristics

PNS maintains PN /DN values for each search node, track-
ing the number of leaves that need to be proven or disproven
to solve the given node. These values determine the next leaf
to expand. However, by setting leaf PN /DN values to 1, this
technique disregards the fact that two leaf nodes can be hugely
different, due mostly to two factors: 1) the winner might be
much more apparent in one situation than in another and 2)
boards with many colored squares are easier to evaluate as
they are closer to the end of the game. In the following, we
explore the benefit of replacing PN /DN values with heuristic
board evaluation functions in the leaf nodes 4.

We know that once the potential of the board goes below a
threshold (1 before breaker move), breaker has won the game.
Manual inspection of game plays reveals that strong breaker
moves are often those that greatly decrease potential. Figure 3
shows how potential changes in a typical close game. Potential
values are monotonic decreasing if we consider OR and AND

4 [1], [12], [15] also explore alternative initialization techniques.

Fig. 3: Stepwise potential in an illustrative game. Maker
moves increase, while breaker moves decrease potential. In
most reasonably ”close” games, the average potential trends
downwards.

nodes separately. We search for a heuristic DN function in the
form of αpot(b) and select α = 1000 based on a grid search
on the values {2, 10, 20, 100, 200, 1000, 2000}. Note however,
that it makes little sense to compare potential values across OR
and AND nodes, as OR node values are systematically lower,
since the last move was by breaker. Hence, for OR nodes we
consider the potential of the parent (an AND node), which is
inherited by the child with the smallest potential. All other
children are adjusted with the potential difference relative to
the smallest child. Given board b with parent p and sibling s
such that s has the smallest potential among the children of
p, our heuristic DN value is

DN(b) =

{
1000pot(b) b is an AND node
1000pot(p)−pot(s)+pot(b) b is an OR node

The applicability of the potential function is less straight-
forward in replacing the PN function. This is because maker
typically wins well before all squares are colored, and it might
have many short wins that is not captured in aggregate line
information. Original PN is good at capturing short wins as
such branches will have less leaves, i.e., lower PN values.
Hence, instead of replacing PN values, we are looking to
adjust them with game specific knowledge. We do this by
accumulating search data and fit a model to it.

We run PNS on 4 × n boards for n ∈ {7, 8, 9, 10} and
collect states whose proof theoretic values have been proven.
To obtain a balanced training set, we use two setups. The
proof setup starts from the empty board b which is maker win
for these n values. The disproof setup starts from a board
b′ which contains two weak maker moves and one strong
breaker move, shown in Figure 2. This initialization changes
the game theoretic value, i.e., breaker wins. Hence we collect
data both from successful proof and disproof searches. This
yields 11076040 board positions.

Figure 4 plots the game theoretic value as a function of the
board potential and the number of remaining empty squares.
On both plots, there is a well visible separating plane between
maker/breaker win configurations. We estimate the probability



Fig. 4: Game theoretic value heatmap as a function of potential
(x-axis) and the number of remaining empty cells (y-axis).
Left: OR nodes (maker moves). Right: AND nodes (breaker
moves).

of breaker win by fitting a logistic regression curve to this
data. Our heuristic PN function is obtained by adding this
probability to the leaf PN value.

logOdds(b) =− 6.2− 13.4 · nodeT (b)
− 1.52 · emptyS(b) + 25.83 · pot(b)

probBwin(b) =1− 1

1 + e−logOdds(b)

pn(b) =1 + β · probBwin(b)

where nodeT (b) is 0 for AND nodes and 1 for OR nodes and
emptyS(b) is the number of empty squares. The value of β
is set to 10 based on a small grid search in [1, 1000].

V. EXPERIMENTS

We evaluate our techniques introduced in Section IV sep-
arately, as well as jointly on various (4, n, 7tr) boards. Our
two evaluation metrics are 1) Size which refers to the number
of nodes created during search and 2) Time which is the total
search time in seconds. We enforce a 1 hour time limit and a
60GB memory limit on each experiment.

In Table I we evaluate the effect of each technique separately
on a small board of size 4× 7. Our baseline is PNS extended
with a symmetry aware transposition table: we include the
transposition table in the baseline because without it PNS
quickly runs out of memory even on very small boards.
We observe that all techniques, except for isomorphy bring
significant improvement both in terms of time and search
space size. The most powerful method is forced move, which
alone reduces the search space by three orders of magnitude.
Note that the component checking algorithm requires that
dead squares are eliminated, hence the line corresponding to
components contains dead square elim as well.

Checking for isomorphy reduces the search space by around
one order of magnitude, however, it brings extra computation
that makes the overall search slower. We find that the greater
the boards, the less frequently we find isomorphic states, hence
we decided to remove isomorphy from later experiments to
avoid the added time penalty. Identifying situations where it
is still worth checking for isomorphy deserves further analysis
which we leave for future work.

TABLE I: The effect of PNS enhancements on search space
and search time, on board 4× 7, proof setup

Method Time (s) Size
Baseline PNS 4.49 1921106
Forced move 0.005 822

Dead square elim 0.98 332740
Dominated squares 0.34 116991
Breaker win stop 1.78 660763

Heuristic PN and DN 1.03 481553
Components 0.69 167514
Isomorphy 18.47 249348

We call PNS+ the variant with all techniques except for
isomorphy. To better assess the quality of each technique, we
run PNS+ on larger boards and we check what happens if
the optimisations are removed one by one. The results are
shown in Table II, both in proof and disproof setups. Instead
of raw time and size values, we indicate ratios with respect to
PNS+ to emphasize the performance contribution. In general,
leaving out one of the heuristics slows down the proof setup
much more than the disproof setup. Designing good heuristics
is usually easier for the proof setup, as the disproof setup has
much weaker stop-conditions.

TABLE II: The penalty associated with removing each heuris-
tic. Numbers are ratios with respect to PNS with all heuristics.
Values marked with * reached either time or memory limit.

n = 11 n = 12
Time Size Time Size

Proof Setup
PNS+ 1.00 1.00 1.00 1.00

Components 2.69 3.01 1.30 1.61
Breaker win stop 0.75 1.00 1.32 1.74
Dead square elim 2.45 2.96 3.07 4.10

Dominated squares 3.58 3.58 14.25 15.56
Forced move 85.67 69.50 * *

Heuristic PN and DN 27.82 23.92 43.66 41.96
n = 8 n = 9

Time Size Time Size
Disproof Setup

PNS+ 1.00 1.00 1.00 1.00
Components 0.93 1.14 0.88 1.05

Breaker win stop 1.01 1.03 0.97 0.99
Dead square elim 1.52 2.30 1.39 2.41

Dominated squares 1.44 2.00 2.05 2.04
Forced move 2.37 2.38 3.50 3.31

Heuristic PN and DN 3.23 4.32 1.11 1.92

We use PNS+ configuration and explore what 4× n board
configurations we can solve with it. Within our time and
memory limit, PNS+ proves that maker wins for n ≤ 14. The
left part of Figure 5 shows that the search space and required
time grows exponentially, in line with our expectations. A
similar trend can be observed in the disproof setup, i.e., when
breaker wins (right side of Figure 5), potentially with a bit
slower increasing curve.

We find that the general pattern for maker win is to start
from the left and right sides where the extra short lines pose
serious threats. As breaker contains these threats, maker’s
position gets weaker towards the center, but as the two sides



Fig. 5: Exponentially increasing runtime and search space size
in proof and disproof setups. The logarithmic curve is steeper
in proof setup: the gradient of the fitted line is 2.78 vs 2.74.

meet, it can combine the threats and win there. The larger the
n, the harder this is for maker.

PNS+ proves maker win for all boards on which it termi-
nates, hence it remains hypothetical that increasing n tilts the
game towards breaker. To get an estimate of where the turning
point might be, we aim to quantify the difficulty of maker win
for different n values.

Let us consider the set of all descendants of the root node
that are all AND nodes, such that neither of their ancestors
are AND nodes. This includes the children of the root, as well
as all children of nodes that flipped from AND to OR due to
board simplification (via forced moves). We call this set the
support of the root, as the value of the root depends on this set
in that the root is a maker win exactly if one element of the
support is a maker win. In Table III we show what fraction of
the root support is breaker win, as n increases. We observe that
this fraction is increasing, which supports the conjecture that
for some n all nodes in the root support will turn to breaker
win, making the whole game breaker win.

For this last experiment, we impose a 10GB memory limit,
as a result of which PNS+ fails on the 4 × 12 board for
158 starting positions. For these, we repeat the experiment
with 125GB, but still get 14 failures. This is why Table III
shows intervals for this board size. Note, however, that maker
win positions are typically much faster to prove, so the failed
positions are likely breaker win. Hence we conjecture that the
values are closer to the higher end of the interval.

TABLE III: The balance between maker win and breaker win
nodes in the support set of the root for different n

Board Support size Breaker win Breaker win %
4x7 308 114 37%
4x8 314 150 48%
4x9 371 156 42%

4x10 415 200 48%
4x11 475 248 52%
4x12 515 290(+14 fail) 56-59%

VI. CONCLUSION AND FUTURE WORK

Our research aims to prove the longstanding conjecture that
the 7-in-a-row game is a draw and our paper presents progress
towards this proof. We reduce the original game into a small,

finite maker-breaker game called (4, n, 7tr)–game, for some
arbitrary n. We explore Proof Number Search for solving
this finite variant and introduce various heuristics to make
Proof Number Search more efficient. Our experimental results
indicate that maker wins for small n values, however, as n
increases, it gets harder for maker. We expect that there is
a turning point, i.e. a n0 value such that breaker wins for
n ≥ n0. However, our current PNS architecture cannot yet
scale to large enough n values.

There are several promising directions to improve our
results. Some existing search heuristics can be directly encor-
porated into our system, such as pairing strategies, partial pair-
ings and relevance-zones. Another possible direction is to relax
strategy partitioning of breaker and allow for some cooperation
between different boards. Preliminary experiments suggest that
such cooperation makes the game easier for breaker, bringing
the turning point closer to what is computationally feasible.
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