
1

Knowledge-Based Paranoia Search
Stefan Edelkamp

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Abstract—This paper proposes knowledge-based paranoia
search (KBPS) to find forced wins in the card game Skat;
an internationally played card game, and likely one of the
most interesting card games for three players. It combines
efficient partial information game-tree search with knowledge
representation and reasoning. This worst-case analysis, initiated
after a small number of tricks, leads to a prioritized choice
of cards. We provide variants of KBPS for the declarer and
the opponents, and an approximation to find a forced win
against most worlds in the belief space. Replaying thousands of
expert games, our evaluation indicates that the AIs with the new
algorithms perform better than humans in their play, achieving
an average score of over 1,000 points in the agreed standard for
evaluating Skat tournaments, the extended Seeger system.

I. INTRODUCTION

One central showcase of artificial intelligence is to prove
that computers are able to beat humans in games [1]. Success
stories in playing games have been highly influential for AI
research in general [2]. As many board games have either been
solved [3] or AIs show superhuman performance [4], one of
the next AI challenges are card games with randomness in the
deal and incomplete information due to cards being hidden.
While there is impressive research on playing multi-player
non-cooperative card games like Poker [5], for cooperative
card games like Skat and Bridge, human play appears still to
be better than computer play. Despite early ground-breaking
results, e.g., in Bridge [6], according to [7] best computer
Bridge programs still play inferior to humans.

Another candidate for showing the intriguing challenges in
trick-taking card play is Skat, an internationally played game,
described by McLeod as the best and most interesting card
game for three players Skat has a deck of 32 cards; in a
deal each player gets 10 cards, with two left-over Skat cards.
There are four stages of the Skat game: i) bidding, where the
players communicate values towards their respective maximal
bidding strength; ii) Skat taking and selecting the game; iii)
choosing the two cards for Skat putting; iv) trick-taking game
play with up to 10 rounds of play. For higher bidding values,
stages ii) and iii) may be skipped. The winner of the bidding
becomes the declarer, who plays against the remaining two
opponents. He adds the Skat to his hand and discard any two
cards. The declarer wins if he gets more than 60 points (Grand
or Suit) or makes no tricks (Null). To increase the bidding
value further, he can raise the contract from scoring 61 points
to 90 (Schneider) and 120 (Schwarz), and also to open the

hand to the opponents (Ouvert). Handling partial information
is the critical aspect in this game, given that for open card
play, the optimal score and the associated playing card can be
found in terms of milliseconds [8].

The contribution of this paper is knowledge-based paranoia
search (KBPS) for the trick-taking stage of the game.

The widely applied Perfect-Information Monte-Carlo Sam-
pling (PIMC) [9], [7] may not find a paranoid strategy, even
if one exists. Due to the problem of strategy fusion, it might
return a card corresponding to lines of play that lack knowing
the true world. Whenever a player has to play a card, we
restrict the consistent worlds to only those worlds where
the given card was actually legal [10]. In case of KBPS,
we include knowledge representation and reasoning into the
search and run the analysis for each card to be played.

We include the proposal into a Skat AI, able to play all
stages of the game and all game types. Using statistical tables
elicited from Human expert games, it derives accurate winning
probabilities, which are used mainly for the bidding and
game selection stages, and to put good Skats. For the trick-
taking stage of the game, it includes algorithmic strategies for
opening, middle- and endgame play using expert rules and
exploiting playing conventions to build a knowledge base on
plausible and effective locations of the cards. For the opening
stage, winning feature statistics from expert games are stored
in precomputed tables [11]. For the middle game we apply
suit-factor search [12]. For the endgame the remaining space
of possible beliefs is analyzed completely and recommended
cards are fused using a voting scheme [13].

II. ABOUT SKAT

Skat is a three-player imperfect information game played
with 32 cards, a subset of the usual 52 cards Bridge deck.
It shares similarities to Marias(ch) (played in Czech Republic
and Slovakia) and Ulti (played in Hungary).

At the beginning of a game, each player gets 10 cards,
which are hidden to the other players. The remaining two
cards, called the Skat, are placed face down on the table. Each
hand is played in two stages, bidding and card play.

The bidding stage determines the declarer and the two
opponents: two players announce and accept increasing bids
until one passes. The winner of the first bidding phase con-
tinues bidding with the third player. The successful bidder of
the second bidding phase plays against the other two. The
maximum bid a player can announce depends on the type of
game the player wants to play and, in case of a trump game,978-1-6654-3886-5/21/$31.00 ©2021 IEEE

2

Fig. 1. Skat game replay of our AI playing against a human and another AI.

a multiplication factor determined by the jacks. The soloist
decides on the game to be played. Before declaring, he may
pick up the Skat and then discards any two cards from his
hand, face down. These cards count towards the declarer’s
score. An example for Skat selection is shown in Fig 1.

Card play proceeds as in Bridge, except that the trumps and
card ranks are different. In grand, the four jacks are the only
trumps. In suit, seven further cards of the selected suit are
trumps. There are no trumps in null games. Non-trump cards
are grouped into suits as in Bridge. Each card has an associated
point value between 0 and 11, and in a standard trump game
the declarer must score more points than the opponents to win.
Null games are an exception, where the declarer wins only if
he scores no trick.

III. RELATED WORK

The game of Skat is considered in many books [14], [15],
[16], [17], [18], [19]. A recent mathematical introduction to
Skat playing has been given by [20]. There are frequent
bachelor and master theses on the topic of Skat (e.g., by Fabian
Knorr, 2018, University Passau, or by Dennis Bartschat, 2019,
University of Koblenz), but due to the limited time for
programming, the proposed Skat bots do not reach a human-
adequate playing strength.

Kupferschmid and Helmert [21] developed the double-
dummy Skat solver (DDSS), a fast open card Skat game solver,
which found its way into the Kermit player [22]. DDSS was
extended to cover the partial observable game using Monte-
Carlo sampling [6]. It reached only moderate performance re-
sults, mainly due to lacking knowledge information exchange
between the players.

There have been larger efforts to apply machine learning to
predict bidding options and hand cards in Skat [23], [22], [24],
[25], [26], [10]. Additionally, we have seen feature extraction
in the related game of Hearts [27], and automated bidding
improvements in the game of Spades [28]. The results show
that the prediction accuracy can be improved.

Buro et al. [22] indicate that their player Kermit achieved
expert-playing strength. A direct comparison is difficult, as the
bots play on different server architectures.

Cohensius et al. [28] elaborated on an intuitive way of
statistically sampling the belief space of hands (worlds) based

on the knowledge inferred within play. The matrices P i for
the belief of card location for each player i show a probability
pij,k for the other players j on having a card k in his
hand. While the approach has been developed for Spades,
it also applies to Skat [9]. In a different line of research,
Edelkamp [11] showed how to predict winning probabilities
for the early stages of the game, and how to play the Null
game. Edelkamp [13]) studied Skat endgame play using a
complete analysis of the belief-space that is compactly kept
and updated in knowledge vectors. Referring to combinatorial
game theory [29], Edelkamp [12] proposes suit factorization
and mini-game search for improved middlegame play in Skat.

Sturtevant and Korf [30] described a paranoid algorithm
for the case of perfect information multi-player games. In
that work the player to act is paranoid with respect to the
preferences of the other players, assuming that they are in a
coalition against the agent. This reduces the multi-player game
to a 2-player game, such that α-β pruning may be applied.
Partial-information α-β paranoid search has been considered
by Furtak [10], The work differs from Sturtevant and Korf’s
algorithm in that the agent does not have perfect informa-
tion. Moreover, because the agent does not know the true
world, it is also paranoid wrt. the outcome of any stochastic
events (chance nodes), namely the actual distribution of any
unobserved cards. The information was used for bidding and
stored in tables for the (32!/10!2!) · 3 · 5 ≈ 224 million hands
(including game type and turn), symmetry-reduced and com-
pressed. Edelkamp [13] considered a similar paranoia partial
information search option for analyzing Skat puzzles mainly as
a motivating aspect to introduce knowledge representation and
reasoning in bitvector sets for endgame play. As with Furtak
[10], the algorithm never went into the players’ trick-taking
stage, as it was cast inefficient to be useful under real-world
playing constraints. In this work, we successfully integrate this
analysis option into actual game play, leading to a considerable
increase in playing strength.

IV. SKAT BOT

Bidding and game selection both use statistical knowledge
of winning ratios in human expert games, stored in tables and
addressed via patterns of winning features. This assumes a
predictor for a given hand with high accuracy, before play (no
move history). We assume the player’s position to be part of
his hand. The winning probability of a hand decreases during
the bidding stage by the anticipated larger strength of the
opponent hand. Other than this, no opponent model is used.

The Skat bot estimates winning probabilities with statistical
tables that are extracted from a database of millions of high-
quality expert games; more precisely, winning probabilities
Prob(h, p, s, b, t) including current hand h, choices of game
type t, Skats s, position of the player p, and bidding value
b. The probabilities are then used in the first three stages of
the Skat game: bidding, game selection, and Skat putting. For
each bidding value and each game type selected, it generates
and filters all

(
22
2

)
= 231 possible Skats and takes the average

of the payoff of skat putting, which, in turn, is the maximum
of the

(
12
2

)
= 66 possible skats to be put. The winning ratios

3

in expert games can easily be analyzed statistically, but by the
high number of n =

(
32
10

)(
22
10

)(
12
10

)
≈ 2.8 quadrillion possible

Skat deals, proper generalizations are needed.
For Null games, given hand h and skat s the approach es-

timates the winning probability Prob(h, s) = Prob(h, s,♣) ·
Prob(h, s,♠) · Prob(h, s,♥) · Prob(h, s,♦) [31], [14]. For
trump games, we consult a table addressed by the so-called
winning parameters: number of non-trump suits that the player
lacks; number of eyes in Skat, condensed into four groups;
value of the bidding stage, projected to four groups; position
of the declarer in the first trick; number of trump cards in
hand; number of non-trump cards in hand; constellations of
jacks condensed into groups; and number of cards estimated
to lose, based on summing the expected number of standing
cards. Statistical tests [20] showed that these parameters have
a significant influence and can, therefore, be used as essential
attributes to accurately assess the probability of winning a
trump game. In particular, a Grand table with 113, 066 entries
is built on top of 7 of these winning parameters and a Suit table
with 246, 822 entries using 9 of them. For Skat putting we
refine the lookup value for different cases in a linear function
together with further winning features such as the expected
number of tricks while respecting the retaking options of the
issuing right, and the exact number of points put into the Skat.

Trick-taking is arranged wrt. an ensemble of different card
recommendations. For the sake of brevity, we refer the reader
to precursor work [11], [13], [12]. In short terms, we find

• killer cards that force a win for the declarer (or the
opponents) to meet (or to break) the contract of the game;
this option mainly includes the KBPS card proposals
of this paper; other are simpler rules that count the
number of points certain to be made for the player in
the remaining tricks.

• endgame cards as the results of strategy fusion, realized
via a voting on the winning ratio of open card game
solver calls on the remaining worlds in the belief space
of the player [13]. The endgame player is invoked after
five tricks with a maximum number of 2500 worlds in the
belief space, the win ratio for a card (confidence level) is
set to 90%. Additional bonus is given for a high number
of eyes and for meeting higher contracts.

• hope cards as the only cards that can save the game for
either the declarer or the opponents, i.e., all other cards
lead to a forced loss, this card is played instantly

• expert cards for each player in each position in the trick,
based on if-then-else rules that consider the current the
hand of issuing players, the history of tricks being played,
the partial knowledge of cards present in the opponent
hands, etc.

The priority is as follows. First, killer cards are recom-
mended; if this strategy fails to find a forced win, endgame
and hope cards are searched for; if this does not meet the
required criteria or confidence level, we fall back to expert
cards recommendation. The expert rules, used for the first few
tricks and as a default, includes card recommendations based
on suit factors (either trump or non-trump). Each card in the
factor is assigned a value 0, 1, or 2, where 0 denotes a hand

card, 1 a card in the other players’ hands, and 2 a card that is
not playable (either being played or put into the Skat). For
the declarer issuing trump we precomputed tables of sizes(
11
k

)
· 211−k = 11, 264 (k = 1 trump), 28, 160 (2 trumps),

42, 240 (3 trumps), 42, 240 (4 trumps), 29, 568 (5 trumps),
14, 784 (6 trumps), 52, 80 (7 trumps), 1, 320 (8 trumps), 220
(9 trumps), and 22 (10 trumps). For non-trump suits a table
with

∑7
k=1

(
7
k

)
· 27−k = 2, 059 entries is built.

V. KNOWLEDGE-BASED PARANOIA SEARCH

We represent the knowledge in the players as sets. To
introduce the reasoning on the sets we give a brief example.
Suppose we have the following deal

P0 : ♥J,♦J,♥A,♥K,♥9,♥7,♣A,♣8,♣7,♠A,
P1 : ♣J,♠J,♥Q,♣T,♣K,♣Q,♠T,♠7,♦Q,♦7,
P2 : ♥T,♥8,♣9,♠K,♠Q,♠9,♠8,♦A,♦T,♦8,
Skat: ♦K,♦9

with the opponent P2 to issue the first card. The game that is
being played is ♥.

We have the following initial knowledge for P2: h0 = h1 =
{}, h2 = {♥T,♥8,♣9,♠K,♠Q,♠9,♠8,♦A,♦T,♦8}
pool = {♣J,♠J,♥J,♦J,♥A,♥K,♥Q,♥9,♥7,♣A,♣T,
♣K,♣Q,♣8,♣7,♠A,♠T,♠7,♦K,♦Q,♦9,♦7}
skat = {}, declarerorskat = {}, partnerorskat = {}
noskat = {♣J,♠J,♥J,♦J,♥A,♥T,♥K,♥Q,♥9,♥8,♥7,
♣A,♠A,♦A}

The declarer sees table card ♦A and updates his knowledge
sets to h0 = {♥J,♦J,♥A,♥K,♥9,♥7,♣A,♣8,♣7,♠A},
h1 = h2 = {}, skat = {♦K,♦9}
pool = {♣J,♠J,♥Q,♥T,♥8,♣T,♣K,♣Q,♣9,♠T ,
♠K,♠Q,♠9,♠8,♠7,♦T,♦Q,♦8,♦7}

The opponent player 1 now encounters ♦A,♥A on the
table and updates his knowledge sets to
h0 = {}, h1 = {♣J,♠J,♥Q,♣T,♣K,♣Q,♠T,♠7,♦Q,♦7},
h2 = {}, skat = {}
pool = {♥J,♦J,♥K,♥T,♥9,♥8,♥7,♣A,♣9,♣8,♣7,
♠A,♠K,♠Q,♠9,♠8}
declarerorskat = {}, partnerorskat = {♦T,♦K,♦9,♦8}
noskat = {♣J,♠J,♥J,♦J,♥T,♥K,♥Q,♥9,♥8,♥7,
♣A,♠A}

The general approach to solve a card game with randomness
in the deal and partial information is to compute approximate
Nash equilibria e.g., using counterfactual regret minimiza-
tion [5]. As this computation appears not to be feasible within
the given time limits to play a card, approximations have to be
found - of which inference, sampling, paranoid search, etc. are
some examples. We identified two different approaches for the
search of playing cards with uncertainty. One is to generate
a set of possible (or all) worlds coherent with the generated
knowledge, and, then, to merge the result, possibly improved
with dominance checks [7]. This is what is done during
endgame play [13]. When the set of worlds is statistically
Monte-Carlo sampled wrt. the knowledge of the distribution
bias can be given to the distribution. However, the approach

4

often misses the best playing card in early stages of the game,
when less knowledge is available. The number of declarer
cards unknown to the opponents is important. Is it only one
card, the is no need to cut low, as the card will likely be put
into the Skat. If the opponents issues, he might use a sharp
10 to win the game. One can also determine if a victory can
be enforced or Schneider avoided.

Furtak first describes paranoid search for creating hand
databases [10]. Edelkamp [13] also presented a first attempt for
conducting a search for a forced win against all odds, aimed at
the first card of the Skat game. While interesting for solving
Skat puzzles in newspapers, the running time for the analysis,
however, was way too large to assist actual play given the
restrictions to select a card imposed by the play clock.

To alleviate the computational burden, we propose the
search to be initiated only after a few tricks have been played.
The algorithm has been adapted to the knowledge already
inferred by the Skat AI. It, thus, takes as an input knowledge
sets [13] corresponding to the inference that player Pi must
have cards Cj (not) in his hand. This knowledge is inferred
e.g., by unrealistically bad skats, players not obeying trump
or non-trump cards and by playing conventions (putting the
lowest-valued card in the declarer’s trick, and the highest-value
trick to the one of my partner, with some exceptions). As with
many other parts of the Skat AI, for efficiency reasons, sets
of cards are encoded as bit-vectors of length 32 (unsigned
int). This allows fast bit manipulation, such as card selection
and copying. The minimax alpha-beta simulating moving test-
driver search algorithm [8] to analyze partial information
trump games is implemented as a binary search (see Figure 2)
over an AND/OR tree decision procedure (see Figure 3)
that returns, whether or not the declarer can win the game
according to a given contract limit. It progresses belief sets
for partial information. The knowledge-based Paranoia search
(KBPS) algorithms are applied in forehand, in middlehand,
and in rearhand positions of the players. Besides updating
knowledge vectors, scoring values, current contract limit, the
call has to respect played cards on the table to trigger a correct
analysis. By monitoring server logs online during play, we
validated the working of the algorithm: once a win has been
found it persists to the end, in many cases long before the
human opponent recognized that he is lost.

a) Paranoia Search for the Declarer: The KBPS worst-
case analysis for the declarer is used in trump games. Its
implementation is a loop over backtracking moving test driver
branch-and-bound procedure to find the optimal game value.
As we use the search option dynamically, the algorithm is
initiated after a fixed number k of played cards. In the overall
architecture it acts as a prioritized killer card proposal that
warrants a forced win. Paranoia search takes the partially
played game, and a set of possible worlds as a parameter,
encoded as knowledge sets, and contract bound. We limit the
uncertain knowledge to the sets of free cards that are still to
be distributed among the two opponent players. All fixed cards
are assigned to one hand. Fig. 4 shows the implementation of
the declarers’ KBPS backtracking algorithm at an OR node for
the first opponent in the AND-OR partial observable search
tree. It determines if a game can be won against all worlds

solve(hand0,hand1,hand2,doublehand,played,as,gs,table)
left = as-1, right = 120
while (true)
if (left == right-1) return right
limit = (left+right)/2
x = run(hand0,hand1,hand2,doublehand,played,as,gs,table)
if (!x) right = limit else left = limit

Fig. 2. Moving test driver for declarer knowledge-based paranoia search;
hand0 are the cards of the declarer, hand1/hands2 opponent cards known to
him, doublehand is the pool; unknown, which hands the cards belong.

run(hand0,hand1,hand2,doublehand,p,as,gs,table)
h[0] = hand0; h[1] = hand[1]; h[2] = hand2, i = table;
aspts = as; gspts = gs, pool = doublehand; played = p
return AND(hand0);

Fig. 3. Running declarer knowledge-based paranoia search; starting and or
tree search after set some global backtracking variables.

according to a given score bound limit as fixed by the overall
binary search. For the sake of simplicity, we omit code for
transposition table pruning [32] and for pruning of equivalent
cards [6]. As the declarer knows that Skat (except for Hand
games), as with the above overall knowledge representation
and reasoning example there are 3 knowledge sets provided
to the player: pool, denoting all remaining cards not yet known
on which opponent hand they reside, h1, cards already known
to be in the 1st opponent hand, h2, cards already known to be
in the 2nd opponent hand. Furthermore, we have avail: hand
cards playable according to the rules of Skat, obeying trump
and suit; index, bit: selected card, for being played; played:
cards already played; w: winner of trick; i0, . . . , i2: table cards
by players; r1, r2 number remaining cards available; limit:
current bound for game value; score: card value of table cards;
aspts: point total for the declarer (according to the given
knowledge of the Skat); gspts; point total for the opponents.

The KBPS algorithm searches the tree of playable cards, and
branches wrt. the set of known cards and the current belief,
while respecting the rules of play and the number of cards that
a player can have. If suits are not obeyed, knowledge vectors
for cards available to each hand are updated during the search.
Before cards are selected from the pool of cards available to
both players they are assigned to one opponents’ hand.

The algorithm can be extended to cover more knowledge
inference options like playing conventions for the opponents
such as giving the highest-valued card to a trick that goes to
the partner, and a lower-valued card to a trick the declarer.

If the capacity of a hand is exceeded, we encounter a dead-
end and a backtrack is initiated. In other words, if more cards
are assigned to the player than his hand can hold, the entire
subtree is pruned. By the virtue of enumeration of all card
combinations, the algorithm computes the game-theoretical
partial information (minimax) score, assuming optimal play
of the players. The transposition table and equivalent card
pruning are implemented in a way not to violate this outcome.

A proof that a win is forced and will not be lost during
subsequent play can be done by induction on the number of
remaining cards to be played, but is quite obvious, as the
game-theoretical minimax value is computed at the root node.

5

OR1(avail)
avail = playable(avail,h[1],i)
while (avail)
index = select(avail);
bit = (1<<index);
h2 = h[2]; o = pool
if (c = first-card-on-table(i))

if (trump & (1 << c))
if (|trump & bit| == 0)
h[2] |= trump & pool;
if (exceeded(h[2]))

h[2] = h2;
avail &= ∼bit;
continue;

pool &= ∼h[2];
else
if (|suit(c) & bit| == 0)

h[2] |= suit(c) & pool;
if (exceeded(h[2]))

h[2] = h2;
avail &= ∼bit;
continue;

pool &= ∼h[2];
if (exceeded(h[1]|bit))

(h[2],pool) = (h2,f);
avail &= ∼bit;
continue;

(h1,p,i[1],r) = (h[1],played,index,-1);
pool &= ∼bit; h[1] &= ∼bit; played |= bit;
if (endoftrick(i))

w = winner(2,0,1);
score = value(i);
gspts += w ? score ; 0;
aspts += w ? 0 : score;
(i0,i2) = (i[0],i[2]); i[0] = i[1] = i[2] = -1;
r = (gspts >= 120-limit) ? 0 :

(aspts > limit) ? 1 :
(w == 0) ? AND(h[0]) :
(w == 1) ? OR1((pool|h[1]) & ∼h[2]) :
OR2((pool|h[2]) & ∼h[1]);

i[0] = i0; i[2] = i2;
gspts -= w ? score : 0;
aspts -= w ? 0 : score;
(i[1],h[1],h[2],pool,played) = (-1,h1,h2,o,p);

avail &= ∼bit;
if (r == 0) return 0;

return 1;

Fig. 4. Declarer KBPS at an OR search node for the first opponent’s selection
of a card; other search node implementations are simpler or similar.

As long as the knowledge is exact, i.e., given that no false
information is contained in the knowledge vectors, then the
algorithm progressing the vector does not falsify it. We are
not claiming correctness, if no forced win is found, then the
game continues with other card recommendations.

Proposition 1 (Soundness KBPS for Declarer Play): Given
that the knowledge provided in the knowledge vectors is valid
at invocation time of the algorithm, once value 1 is returned
by the KBPS declarer algorithm (cf. Figure 4), the game is
won by the declarer and this forced win will manifest during
subsequent trick-taking play. If the algorithm optimizes the
number of points in the moving test driver, the declarer will
receive more than points the computed limit.

b) Paranoia Search for Schneider & Schwarz: When a
game can be won to the contract of 61 points, it is desirable to
aim at Schneider (90 pts) or Schwarz (120 pts). This is done
by restarting the analysis with a higher contract, once the one
for the current limit has been proven to be a win.

c) Approximate Paranoia Search: The worst-case analy-
sis has two major limitations. As stated in Theorem 1, the AIs
act in paranoia. Suppose that all non-trump card of a suit are

neither in the declarers hand nor in the Skat, then even extreme
distributions of the cards with all cards on either hand have to
be accounted for in the analysis. The probability for this case,
however, is only 1.5625%. The virtue of good Skat play is
to play well against most likely and not all card distributions.
For the approximate KBPS algorithm we, therefore, demand
that certain distributions of cards are unlikely, and should be
excluded from the search. Secondly, the running time is larger
in case of more uncertainty, so that belief space measured
in the number of worlds the AI plays against, may hinder
finishing a complete KBPS exploration in time.

Both objections can be met together by limiting the cards
that can be assigned to each hand. This is the basis of
approximate knowledge-based paranoia search (AKBPS), that
poses constraints on the cards distributions allowed on each
hand, or —for implementation purposes— enforces some
cards assigned to a hand. Of course, the theorem no longer
holds, as there are some worlds that are not considered, still the
observation is, that early suggestions of cards that wins against
all but extreme worlds are extremely valuable. In contrast,
Furtak used lower bounds, and set the declarer cut-off to 57.

d) Paranoia Search for the Opponents: Extending the
approach from the declarers’ point of view to the ones of the
opponents is tricky, mainly due to the presence of the unknown
Skat. For example, if one of the other players does not obey,
it is no longer immediate that the card is on the remaining
player’s hand, as it can reside in the Skat. In the knowledge-
based paranoia search algorithm, illustrated for the case of
the declarer’s AND node in Figure 5 (for efficiency reasons,
we are using many bitvector set operations!), this leads to the
introduction of further knowledge vectors. We now have five
sets that are updated denoting that the declarer or the Skat
has a card, or that the opponent, or the Skat has a card of the
pool of remaining cards, only if taken or a card is definitely
known to be on the hand, e.g., by selecting it, it is moved.
In some respects, the knowledge sets (declarerorskat and
partnerorskat) are caches for the main pool of cards (pool)
for the remaining players. In some of the conditions applied
we take care that no more cards are moved to a hand than it
can cope with.

If one opponent sees a definite win, this does not mean
that the other opponent sees it as well. Given a different set
of hand cards he may have very different knowledge on the
distribution of cards. As it is defined, it requires one defender
to assume that his partner will intentionally play poorly. Again,
soundness can be proven by induction of the remaining cards
to be played, and the observation that a search tree with less
remaining cards is part of a search tree with more remaining
cards, leading to a forced win. According to the uncertainty
in the Skat there are three pools of cards that reflect the rising
knowledge instead of one.

Proposition 2 (Soundness KBPS for Opponent Play): Given
that the knowledge provided in the knowledge vectors is valid
at invocation time of the algorithm, once a card is returned
by the KBPS opponen algorithm (cf. Figure 5), the game is
won by the opponent and this forced win will manifest during
subsequent trick-taking play. If the algorithm optimizes the
number of points in the moving test driver, the declarer will

6

not receive more points than the computed limit.
e) Worst-Case Analysis for Avoiding Schneider/Schwarz:

In opponent play, using a paranoid assumption on the card play
is less effective than for the declarer play, and often applies to
the endgame analysis. When the game is won by the declarer,
however, KBPS, frequently applies to avoid a high loss with 90
declarer points, called Schneider, or a maximum loss with 120
declarer points. Therefore, once the contract of the declarer has
been achieved, we use KBPS in opponent play with a scoring
limit for Schneider/Schwarz.

VI. EXPERIMENTS

The Skat AI is written in C++, compiled with gcc version
4.9.2 (optim. level -O2). Each player client runs on 1 core of
an Intel Xeon Gold 6140 CPU @ 2.30GHz.

We determine the average of the game value according
to the extended Seeger-(Fabian-)System, the internationally
agreed DSKV standard for evaluating game play, normalized
to a series of 36 games. The score is based on the number
of wins and losses of each player in the series, and the game
value of the games being played. For a single game g, the
outcome is V (D, g), if the game is won for the declarer
D and −2 · V (D, g), if it is lost. In a series of games
G = g1, . . . , gX these values are added for each player, so that
V (A,G) = V (A, g1)+. . .+V (A, gX). The evaluation strength
of Player A wrt. B and C is V (A,G) + 50 · (#win(A,G)−
#loss(A,G)) + 40 · (#loss(B,G) + #loss(C,G)).

a) Database Play: The obtained results on 50,000 human
expert trump games are presented in Tables I– Table III. For
the three valid combinations of AI/Human bidding/discard-
ing/game announcement we separate between the play with
and without the support of Paranoia search. In the columns
we further partition the game outcomes with respect to the
declarer in the i) original Human game play, ii) an open card
solver (that we call Glassbox), and iii) AI trick-taking selfplay.

In Table I we see that with the support of the Paranoia
search, the declarer is able to win 42, 228 − 41, 765 = 463
more than the AIs without Paranoia search and far more than
the Humans in their play 42, 228 − 41, 283 = 945. This is a
significant progress, given that the number of wins was already
high. The number of games won (and the extended Seeger
values) were higher than the ones obtained by the humans.

The AIs with KBPS show better winning ratios than the hu-
mans, and a significant positive effect on the playing strength
in extended Seeger score: for AI bidding and Skat putting
almost 1, 000 points. With up to 50% additional time, there
is a computational trade-off, but in server play selecting the
card to play remains below 5s. In contrast to Null games,
automated Skat putting in trump is worse to the Human one,
and, therefore, subject to further research. For AI bidding the
total of wins/losses is not matching the total number of games,
as some games might be folded.

We analyzed another set of over 75 thousand human expert
games (different server to ours, all kinds of games). We varied
the card number k to start approximate KBPS at card k and
KBPS at card k + 3. At k = 6 we reached 1000.24 extended
Seeger scoring points. At k = 3 we could slightly improve the
value to 1001.39, in a tradeoff of a slowdown factor 2-3.

Human Glassbox AI +Paranoia −Paranoia
Wins Wins Wins Opponents Opponents

−Paranoia false false false 2,563 2,530
Declarer false false true 2,208 2,241

false true false 231 226
false true true 2,658 2,663
true false false 3,438 3,407
true false true 5,540 5,571
true true false 975 970
true true true 31,285 31,290

Total +PO 41,283 35,149 41,691 48,898 -
Total -PO 41,283 35,149 41,765 - 48,898

Total Score 977.76 980.07
Total Time 37h:51m 31h:01m
+Paranoia false false false 2,460 2,458
Declarer false false true 2,315 2,313

false true false 193 194
false true true 2,696 2,695
true false false 3,236 3,240
true false true 5,742 5,738
true true false 785 788
true true true 31,475 31,472

Total +PO 41,283 35,149 42,228 48,898 -
Total -PO 41,283 35,149 42,218 - 48,898

Total Score 990.25 991.79
Total Time 43h:32m 42h:06m

TABLE I
SKAT AI REPLAYING 50,000 HUMAN TRUMP GAMES WITH AND

WITHOUT KBPS, USING AI BIDDING GAME SELECTION AND SKAT
PUTTING. SCORE IS EXTENDED SEEGER, AVERAGED OVER 36 GAMES.
TABLE SPLIT BASED ON KBPS BEING APPLIED FOR DECLARER AND

OPPONENTS. TOTAL OF GAMES IS SMALLER BECAUSE OF 1, 102 FOLDINGS
(NO BID).

Human Glassbox AI +Paranoia −Paranoia
Wins Wins Wins Opponents Opponents

−Paranoia false false false 3,854 3,822
Declarer false false true 2,779 2,811

false true false 198 195
false true true 1,040 1,043
true false false 2,137 2,110
true false true 5,271 5,298
true true false 965 953
true true true 33,756 33,768

Total+PO 42,129 35,959 42,846 50,000 -
Total−PO 42,129 35,959 42,920 - 50,000
Total Score 953.31 955.91
Total Time 34h:20m 25h:31m
+Paranoia false false false 3,784 3755
Declarer false false true 2,849 2,878

false true false 184 128
false true true 1,054 1,056
true false false 1,998 1,973
true false true 5,410 5,435
true true false 761 752
true true true 33,960 33,969

Total + PO 42,129 35,959 43,273 50,000 -
Total - PO 42,129 35,959 43,338 - 50,000
Total Score 963.35 965.53
Total Time 47h:21m 38h:05m

TABLE II
SKAT AI REPLAYING 50,000 HUMAN TRUMP GAMES WITH AND

WITHOUT KBPS USING HUMAN BIDDING, GAME SELECTION, AND SKAT
PUTTING. SCORE IS EXTENDED SEEGER, NORMALIZED TO 36 GAMES.

TABLE SPLIT KBPS BEING APPLIED FOR DECLARER / OPPONENTS.

VII. CONCLUSION

We have seen an improvement for knowledge inference in
searching partial information games. The novelty is to include
knowledge representation and reasoning into the backtrack
partial-information game-tree search. In contrast to perfect-
information Monte-Carlo sampling used by many AI card
playing systems [6], with a search for a sampled set of worlds,
the KBPS search algorithm operates against all possible worlds
in one search tree, avoiding the fusion of different card

7

Human Glassbox AI +Paranoia -Paraonoia
Wins Wins Wins Opponents (PO) Opponents (PO)

−Paranoia false false false 3,941 3,894
Declarer false false true 2,519 2,566

false true false 200 196
false true true 1,211 1,215
true false false 2,611 2,581
true false true 5,502 5,532
true true false 934 923
true true true 33,082 33,093

Total +PO 42,129 35,959 42,314 50,000 -
Total -PO 42,129 35,959 42,406 - 50,000

Total Score 935.23 938.41
Total Time 34h:10m 25h:15m
+Paranoia false false false 3,853 3,808
Declarer false false true 2,607 2,652

false true false 187 185
false true true 1,224 1,227
true false false 2,452 2,415
true false true 5,661 5,698
true true false 732 724
true true true 33,284 33,292

Total +PO 42,129 35,959 42,776 50,000 -
Total -PO 42,129 35,959 42,869 - 50,000

Total Score 947.41 950.39
Total Time 37h:39m 46h:49m

TABLE III
SKAT AI REPLAYING 50,000 HUMAN TRUMP GAMES WITH AND WITHOUT

KBPS USING HUMAN BIDDING, AND AI SKAT PUTTING. SCORE IS
EXTENDED SEEGER NORMALIZED TO 36 GAMES. TABLE SPLIT ON KBPS

BEING APPLIED FOR DECLARER / OPPONENTS.

suggestion and resulting in a single card recommendation. It
progresses the knowledge in the search tree in an efficient
manner, resulting in an optimal search algorithm that is fast
enough to be applied in early stages of the game even after a
few cards have been played and especially for declarer play,
leads to card suggestions that even experienced humans often
do not see. If the analysis succeeds, this killer card is forced. If
not, other card recommendations like expert rules or end game
play apply. Although exemplified for Skat, the contribution is
general to work for other multi-player card games like Spades,
Hearts, Tarot, Marias, Ulti, or Bridge, and likely to other
domains. The results in increased playing strength especially
for the declarer are unexpectedly promising. Even experienced
top players were often surprised to lose against the automated
play to victory, once a forced win had been found. More
research is needed to increase the knowledge in the search
tree, especially for opponent play.

Future work is to extend the reasoning in Paranoia search
further. To improve the reasoning about the knowledge that
is forwarded in the search. We saw that paranoia search is a
worst-case analysis. It is not difficult to see that a best-case
analysis also applies, e.g., to determine if —in the view of
an opponent— the declarer can win by certain. In this case
they can switch to save Schneider. There are further research
avenues towards approximate KBPS search, as the virtue of
good card play is a card selection to win not against all but
most possible distributions. Approximate paranoia search may
be extended to work hierarchically, looking for say forced wins
against all but a rising number of less extreme cases for the
distribution of the remaining cards. With further algorithmic
refinement, we envision using (approximate) KBPS to be
able to decide, if a Grand is safe and should be played.
The only matter is to improve efficiency, either by algorithm

AND(avail)
while (avail)
index = select(avail);
bit = (1<<index);
(h0,h2,o,as,ms) =

(h[0],h[2],pool,declarerorskat,partnerorskat);
if (c = first-card-on-table(i))
if (trump & (1 << c))
if (|trump & bit| == 0)
partnerorskat |= trump & pool;
if (exceeded(partnerorskat))
h[2] = h2; partnerorskat = ms;
avail &= ∼bit;
continue;

pool &= ∼partnerorskat;
h[2] |= noskat & partnerorskat;
if (exceeded(h[2]))
(h[2],pool,partnerorskat) = (h2,o,ms);
avail &= ∼bit;
continue;

partnerorskat &= ∼h[2];
else
if (|suit(c) & bit| == 0)
partnerorskatat |= suit(c) & o;
if (exceeded(partnerorskat))
(h[2],t,partnerorskat) = (h2,o,ms);
avail &= ∼bit;
continue;

pool &= ∼partnerorskat;
h[2] |= noskat & partnerorskat;
if (exceeded(h[2]))
(h[2],pool,partnerorskat) = (h2,o,ms);
avail &= ∼bit;
continue;

partnerorskat &= ∼h[2];
if (exceeded(h[0]|bit))
(h[2],partnerorskat,pool) = (h2,ms,o);
avail &= ∼bit;
continue;

p = played; pool &= ∼bit;
h[0] &= ∼bit;h[2] &= ∼bit;
declarerorskat &= ∼bit;
partnerorskat &= ∼bit;
played |= bit; i[0] = index; r = -1;
if (endoftrick)
w = winner(1,2,0);
score = value(i);
ap = aspts; gp = gspts;
gspts += w ? score: 0;
aspts += !w ? score: 0;
t1 = i[1], t2 = i[2];
if (|played| == 30) aspts += value(∼played);
i[0] = i[1] = i[2] = -1;
r = (gspts >= 120-limit) ? 0:

(aspts > limit) ? 1:
(w==0)? AND((pool|declarerorskat|h[0]) & ∼h[2]):
(w==1)? OR1(h[1]):
OR2((o|partnerorskat|h[2]) & ∼h[0]);

i[1] = t1; i[2] = t2;
gspts = gp; aspts = ap;

else r = OR1(feasible(h[1],i));
(h[0],h[2],played,declarerorskat,partnerorskat,pool) =

(h0,h2,p,as,ms,o);
avail &= ∼bit; i[0] = -1;
if (r == 1) return 1;

return 0;

Fig. 5. Opponent KBPS at an AND search node for a declarer’s selection of
a card; other search node implementations are simpler or similar.

engineering, exploitation of parallel hardware, or by neglecting
lost cards from the analysis.

Acknowledgements: Thanks to Rainer Gößl, a world-class
Skat player, who helped with his Skat expertise. This work has
been supported by the OP RDE funded project Research Cen-
ter for Informatics No.: CZ.02.1.01/0.0./0.0./16019/0000765

8

REFERENCES

[1] J. Schaeffer, “The games computers (and people) play,” in Fortieth
Anniversary Volume: Advancing into the 21st Century, ser. Advances
in Computers, M. V. Zelkowitz, Ed. Elsevier, 2000, vol. 52, pp.
189–266. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0065245800800194

[2] D. Silver and A. H. et al., “Mastering the game of Go with deep neural
networks and tree search,” Nature, vol. 529, p. 484, 2016.

[3] J. Schaeffer, Y. Björnsson, N. Burch, A. Kishimoto, M. Müller, R. Lake,
P. Lu, and S. Sutphen, “Solving checkers,” in International Joint
Conference on Artificial Intelligence, 2005, pp. 292–297.

[4] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “Mastering Chess and Shogi by self-play with a general
reinforcement learning algorithm,” arxiv, Tech. Rep. 1712.018, 2017.

[5] M. Bowling, N. Burch, M. Johanson, and O. Tammelin, “Heads-up
limit hold’em poker is solved,” Commun. ACM, vol. 60, no. 11, pp.
81–88, 2017. [Online]. Available: http://doi.acm.org/10.1145/3131284

[6] M. Ginsberg, “Step toward an expert-level Bridge-playing program,” in
IJCAI, 1999, pp. 584–589.

[7] T. Cazenave and V. Ventos, “The αµ search algorithm for the game
of bridge,” CoRR, vol. abs/1911.07960, 2019. [Online]. Available:
http://arxiv.org/abs/1911.07960

[8] S. Kupferschmid, “Entwicklung eines Double-Dummy Skat Solvers mit
einer Anwendung für verdeckte Skatspiele,” Master’s thesis, Albert-
Ludwigs-Universität Freiburg, 2003.

[9] C. Solinas, D. Rebstock, and M. Buro, “Improving search with
supervised learning in trick-based card games,” in The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27
- February 1, 2019. AAAI Press, 2019, pp. 1158–1165. [Online].
Available: https://doi.org/10.1609/aaai.v33i01.33011158

[10] T. M. Furtak, “Symmetries and search in trick-taking card games,” Ph.D.
dissertation, University of Alberta, 2013.

[11] S. Edelkamp, “Challenging human supremacy in Skat,” in Proceedings
of the Twelfth International Symposium on Combinatorial Search,
SOCS 2019, Napa, California, 16-17 July 2019, 2019, pp. 52–
60. [Online]. Available: https://aaai.org/ocs/index.php/SOCS/SOCS19/
paper/view/18328

[12] ——, “Dynamic play via suit factorization search in Skat,” in KI, ser.
Lecture Notes in Computer Science, vol. 12325. Springer, 2020, pp. 18–
32. [Online]. Available: https://doi.org/10.1007/978-3-030-58285-2_2

[13] ——, “Representing and reducing uncertainty for enumerating the
belief space to improve endgame play in skat,” in ECAI, 2020, pp.
395–402. [Online]. Available: https://doi.org/10.3233/FAIA200118

[14] E. Lasker, Strategie der Spiele – Skat. August Scherl Verlag, Berlin,
1938.

[15] J. P. Wergin, Wergin on Skat and Sheepshead. Wergin Distributing,
Mc. Farland, USA, 1975.

[16] S. Grandmontagne, Meisterhaft Skat spielen. Selfpublisher, Krüger
Druck+Verlag, 2005.

[17] T. Kinback, Skat-Rätsel – 50 lehrreiche Skataufgaben mit Lösungen und
Analysen. Books on Demand, Norderstedt, 2007.

[18] M. Quambusch, Gläserne Karten – Gewinnen beim Skat. Stomi Verlag,
Schwerte Rau Verlag, Düsseldorf, 1990.

[19] S. Harmel, Skat–Zahlen. Klabautermann-Verlag, Pünderich (Mosel),
2016.

[20] R. Gößl, Der Skatfuchs – Gewinnen im Skatspiel mit Mathematische
Methoden. Selfpublisher. Dämmig, Chemnitz, Available from the
Author or via DSKV Altenburg, 2019.

[21] S. Kupferschmid and M. Helmert, “A Skat player based on Monte-Carlo
simulation,” in Computers and Games, 2006, pp. 135–147.

[22] M. Buro, J. R. Long, T. Furtak, and N. R. Sturtevant, “Improving
state evaluation, inference, and search in trick-based card games,” in
IJCAI 2009, Proceedings of the 21st International Joint Conference on
Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009,
2009, pp. 1407–1413. [Online]. Available: http://ijcai.org/Proceedings/
09/Papers/236.pdf

[23] T. Keller and S. Kupferschmid, “Automatic bidding for the game of
Skat,” in KI, 2008, pp. 95–102.

[24] C. Solinas, D. Rebstock, and M. Buro, “Improving search with super-
vised learning in trick-based card games,” CoRR, vol. abs/1903.09604,
2019. [Online]. Available: http://arxiv.org/abs/1903.09604

[25] D. Rebstock, C. Solinas, and M. Buro, “Learning policies from human
data for Skat,” CoRR, vol. abs/1905.10907, 2019. [Online]. Available:
http://arxiv.org/abs/1905.10907

[26] D. Rebstock, C. Solinas, M. Buro, and N. R. Sturtevant, “Policy based
inference in trick-taking card games,” CoRR, vol. abs/1905.10911,
2019. [Online]. Available: http://arxiv.org/abs/1905.10911

[27] N. R. Sturtevant and A. M. White, “Feature construction
for reinforcement learning in hearts,” in Computers and
Games. Springer, 2006, pp. 122–134. [Online]. Available:
https://doi.org/10.1007/978-3-540-75538-8_11

[28] G. Cohensius, R. Meir, N. Oved, and R. Stern, “Bidding in
spades,” in ECAI, 2020, pp. 387–394. [Online]. Available: https:
//doi.org/10.3233/FAIA200117

[29] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your
Mathematical Plays, Vol. 1–4. A K Peters, 2001.

[30] N. R. Sturtevant and R. E. Korf, “On pruning techniques for multi-player
games,” in AAAI/IJCAI, 2000, pp. 201–207.

[31] E. Lasker, Das verständige Kartenspiel. August Scherl Verlag, Berlin,
1929.

[32] A. Reinefeld and T. A. Marsland, “Enhanced iterative-deepening
search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 7, pp.
701–710, 1994. [Online]. Available: https://doi.org/10.1109/34.297950

